Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 01: Introduction
Version: October 25, 2009

vrije Universiteit amsterdam }ﬁb

Contents

Chapter

01:

Introduction

02:

Architectures

03:

Processes

04-:

Communication

05:

Naming

06:

Synchronization

07:

Consistency & Replication

08:

Fault Tolerance

09:

Security

10:

Distributed Object-Based Systems

11

: Distributed File Systems

12:

Distributed Web-Based Systems

13:

Distributed Coordination-Based Systems

26

Distributed System: Definition

A distributed system is a piece of software that ensures that:
a collection of independent computers appears to its users as
a single coherent system

Two aspects: (1) independent computers and
(2) single system = middleware.

Computer 1 Computer 2 Computer 3 Computer 4
1T

Appl. A Application B Appl. C

1
’ Distributed system layer (middleware) ‘

[Locaios 1 || |[Locaios2 || [[Localoss || |[Localos4 |
I I A ... 1

Goals of Distributed Systems

@ Making resources available
@ Distribution transparency
@ Openness

@ Scalability

26

12 Goals
Distribution Transparency

’ Transp. ‘ Description

Access Hides differences in data representation and invocation
mechanisms

Location Hides where an object resides

Migration Hides from an object the ability of a system to change
that object’s location

Relocation Hides from a client the ability of a system to change the
location of an object to which the client is bound

Replication Hides the fact that an object or its state may be replicated
and that replicas reside at different locations

Concurrency | Hides the coordination of activities between objects to
achieve consistency at a higher level

Failure Hides failure and possible recovery of objects

26

12 Goals
Distribution Transparency

’ Transp. ‘ Description

Access Hides differences in data representation and invocation
mechanisms

Location Hides where an object resides

Migration Hides from an object the ability of a system to change
that object’s location

Relocation Hides from a client the ability of a system to change the
location of an object to which the client is bound

Replication Hides the fact that an object or its state may be replicated
and that replicas reside at different locations

Concurrency | Hides the coordination of activities between objects to
achieve consistency at a higher level

Failure Hides failure and possible recovery of objects

Note

Distribution transparency is a nice a goal, but achieving it is a different story.

5

26

e
Degree of Transparency

Observation
Aiming at full distribution transparency may be too much:

e
Degree of Transparency

Observation
Aiming at full distribution transparency may be too much:

@ Users may be located in different continents

e
Degree of Transparency

Observation
Aiming at full distribution transparency may be too much:

@ Users may be located in different continents

@ Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

@ You cannot distinguish a slow computer from a failing one
@ You can never be sure that a server actually performed an
operation before a crash

26

e
Degree of Transparency

Observation
Aiming at full distribution transparency may be too much:

@ Users may be located in different continents

@ Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

@ You cannot distinguish a slow computer from a failing one
@ You can never be sure that a server actually performed an
operation before a crash

@ Full transparency will cost performance, exposing distribution of the
system

o Keeping Web caches exactly up-to-date with the master
o Immediately flushing write operations to disk for fault tolerance

26

Introduction 1.2 Goals

Openness of Distributed Systems

Open distributed system

Be able to interact with services from other open systems, irrespective
of the underlying environment:
@ Systems should conform to well-defined interfaces

@ Systems should support portability of applications
@ Systems should easily interoperate

Introduction 1.2 Goals

Openness of Distributed Systems

Open distributed system

Be able to interact with services from other open systems, irrespective
of the underlying environment:
@ Systems should conform to well-defined interfaces

@ Systems should support portability of applications
@ Systems should easily interoperate

Achieving openness

At least make the distributed system independent from heterogeneity
of the underlying environment:

@ Hardware
@ Platforms
@ Languages

12 Goals
Policies versus Mechanisms

Implementing openness
Requires support for different policies:

@ What level of consistency do we require for client-cached data?

@ Which operations do we allow downloaded code to perform?

@ Which QoS requirements do we adjust in the face of varying bandwidth?
@ What level of secrecy do we require for communication?

12 Goals
Policies versus Mechanisms

Implementing openness
Requires support for different policies:

@ What level of consistency do we require for client-cached data?

@ Which operations do we allow downloaded code to perform?

@ Which QoS requirements do we adjust in the face of varying bandwidth?
@ What level of secrecy do we require for communication?

Implementing openness
Ideally, a distributed system provides only mechanisms:

@ Allow (dynamic) setting of caching policies

@ Support different levels of trust for mobile code

@ Provide adjustable QoS parameters per data stream
@ Offer different encryption algorithms

Scale in Distributed Systems

Observation

Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

26

Scale in Distributed Systems

Observation

Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability

At least three components:
@ Number of users and/or processes (size scalability)
@ Maximum distance between nodes (geographical scalability)
@ Number of administrative domains (administrative scalability)

Scale in Distributed Systems

Observation

Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability
At least three components:
@ Number of users and/or processes (size scalability)

@ Maximum distance between nodes (geographical scalability)
@ Number of administrative domains (administrative scalability)

Observation

Most systems account only, to a certain extent, for size scalability. The
(non)solution: powerful servers. Today, the challenge lies in geographical and
administrative scalability.

26

Techniques for Scaling

Hide communication latencies
Avoid waiting for responses; do something else:

@ Make use of asynchronous communication
@ Have separate handler for incoming response
@ Problem: not every application fits this model

10/26

Techniques for Scaling

Distribution
Partition data and computations across multiple machines:

@ Move computations to clients (Java applets)
@ Decentralized naming services (DNS)
@ Decentralized information systems (WWW)

11/26

Techniques for Scaling

Replication/caching
Make copies of data available at different machines:

@ Replicated file servers and databases
@ Mirrored Web sites

@ Web caches (in browsers and proxies)
@ File caching (at server and client)

12/26

Scaling — The Problem

Observation
Applying scaling techniques is easy, except for one thing:

13/26

Scaling — The Problem

Observation
Applying scaling techniques is easy, except for one thing:

@ Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.

13/26

Scaling — The Problem

Observation
Applying scaling techniques is easy, except for one thing:

@ Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.

@ Always keeping copies consistent and in a general way requires
global synchronization on each modification.

13/26

Scaling — The Problem

Observation
Applying scaling techniques is easy, except for one thing:

@ Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.

@ Always keeping copies consistent and in a general way requires
global synchronization on each modification.

@ Global synchronization precludes large-scale solutions.

13/26

Scaling — The Problem

Observation
Applying scaling techniques is easy, except for one thing:

@ Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.

@ Always keeping copies consistent and in a general way requires
global synchronization on each modification.

@ Global synchronization precludes large-scale solutions.

Observation

If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application
dependent.

13/26

Introduction 1.2 Goals

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

14/26

Introduction 1.2 Goals

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:
@ The network is reliable

14/26

Introduction 1.2 Goals

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

14/26

Introduction 1.2 Goals

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous

14/26

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable
@ The network is secure
@ The network is homogeneous
@ The topology does not change

14/26

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous
@ The topology does not change
@ Latency is zero

14/26

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous
@ The topology does not change
@ Latency is zero

@ Bandwidth is infinite

14/26

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous
@ The topology does not change
@ Latency is zero

@ Bandwidth is infinite

@ Transport cost is zero

14/26

Developing Distributed Systems: Pitfalls

Observation

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous
@ The topology does not change
@ Latency is zero

@ Bandwidth is infinite

@ Transport cost is zero

@ There is one administrator

14/26

1.3 Types of Distributed Systems
Types of Distributed Systems

@ Distributed Computing Systems
@ Distributed Information Systems
@ Distributed Pervasive Systems

15/26

1.3 Types of Distributed Systems
Distributed Computing Systems

Observation

Many distributed systems are configured for High-Performance
Computing

Cluster Computing
Essentially a group of high-end systems connected through a LAN:

@ Homogeneous: same OS, near-identical hardware
@ Single managing node

16/26

1.3 Types of Distributed Systems
Distributed Computing Systems

Master node Compute node Compute node Compute node
Management Component Component Component
application of of of
parallel parallel o000 parallel
Parallel libs application application application

l Local OS ‘ l Local OS ‘ l Local OS ‘

[1 L1 N I

Remote access r r Standard network
network e
High-speed network

17/26

1.3 Types of Distributed Systems
Distributed Computing Systems

Grid Computing
The next step: lots of nodes from everywhere:

@ Heterogeneous
@ Dispersed across several organizations
@ Can easily span a wide-area network

Note

To allow for collaborations, grids generally use virtual organizations. In
essence, this is a grouping of users (or better: their IDs) that will allow
for authorization on resource allocation.

18/26

1.3 Types of Distributed Systems
Distributed Information Systems

Observation

The vast amount of distributed systems in use today are forms of
traditional information systems, that now integrate legacy systems.
Example: Transaction processing systems.

BEGIN_TRANSACTION (server, transaction)

READ (transaction, file-1, data)

WRITE (transaction, file-2, data)

newData := MODIFIED (data)

IF WRONG (newData) THEN
ABORT_TRANSACTION (transaction)

ELSE
WRITE (transaction, file-2, newData)
END_TRANSACTION (transaction)

END IF

19/26

1.3 Types of Distributed Systems
Distributed Information Systems

Observation

The vast amount of distributed systems in use today are forms of
traditional information systems, that now integrate legacy systems.
Example: Transaction processing systems.

BEGIN_TRANSACTION (server, transaction)

READ (transaction, file-1, data)

WRITE (transaction, file-2, data)

newData := MODIFIED (data)

IF WRONG (newData) THEN
ABORT_TRANSACTION (transaction)

ELSE
WRITE (transaction, file-2, newData)
END_TRANSACTION (transaction)

END IF

Note
Transactions form an atomic operation. J

19/26

Distributed Information Systems: Transactions

Model

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

20/26

1.3 Types of Distributed Systems
Distributed Information Systems: Transactions

Model

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

20/26

1.3 Types of Distributed Systems
Distributed Information Systems: Transactions

Model

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

20/26

1.3 Types of Distributed Systems
Distributed Information Systems: Transactions

Model

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T, or
after T, but never both.

20/26

1.3 Types of Distributed Systems
Distributed Information Systems: Transactions

Model

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T, or
after T, but never both.

Durability: After the execution of a transaction, its effects are made
permanent: changes to the state survive failures.

20/26

1.3 Types of Distributed Systems
Transaction Processing Monitor

Observation

In many cases, the data involved in a transaction is distributed across
several servers. A TP Monitor is responsible for coordinating the
execution of a transaction

—a

I

Server
Reply
Transaction Request
Requests
Client N\ Request
o () TP monitor Server
application o
Reply
Repl
Py Request
Reply Server

o

21/26

Distr. Info. Systems: Enterprise Application Integration
Problem

A TP monitor doesn’t separate apps from their databases. Also
needed are facilities for direct communication between apps.

Client Client
application application

[[
l Communication middleware ‘
[[[
Server-side Server-side
application application

Server-side
application

= = =

@ Remote Procedure Call (RPC)
@ Message-Oriented Middleware (MOM)

22/26

1.3 Types of Distributed Systems
Distributed Pervasive Systems

Observation

Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system.

Some requirements
@ Contextual change: The system is part of an environment in which
changes should be immediately accounted for.

@ Ad hoc composition: Each node may be used in a very different ways by
different users. Requires ease-of-configuration.

@ Sharing is the default: Nodes come and go, providing sharable services
and information. Calls again for simplicity.

23/26

1.3 Types of Distributed Systems
Distributed Pervasive Systems

Observation

Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system.

Some requirements
@ Contextual change: The system is part of an environment in which
changes should be immediately accounted for.

@ Ad hoc composition: Each node may be used in a very different ways by
different users. Requires ease-of-configuration.

@ Sharing is the default: Nodes come and go, providing sharable services
and information. Calls again for simplicity.

Note
Pervasiveness and distribution transparency: a good match?

23/26

1.3 Types of Distributed Systems
Pervasive Systems: Examples

Home Systems
Should be completely self-organizing:

@ There should be no system administrator
@ Provide a personal space for each of its users
@ Simplest solution: a centralized home box?

24/26

1.3 Types of Distributed Systems
Pervasive Systems: Examples

Home Systems
Should be completely self-organizing:

@ There should be no system administrator
@ Provide a personal space for each of its users
@ Simplest solution: a centralized home box?

Electronic health systems
Devices are physically close to a person:

@ Where and how should monitored data be stored?
@ How can we prevent loss of crucial data?

@ What is needed to generate and propagate alerts?
@ How can security be enforced?

@ How can physicians provide online feedback?

24/26

Sensor networks

Characteristics
The nodes to which sensors are attached are:
@ Many (10s-1000s)

@ Simple (small memory/compute/communication capacity)
@ Often battery-powered (or even battery-less)

25/26

Introduction 1.3 Types of Distributed Systems

Sensor networks as distributed systems

Sensor network

Operator's site

@ Sensor data :

is sent directly
to operator

(@)

Each sensor
can process and Sensor network
store data

Operator's site

Query

—_—
Sensors E

send only
answers

(b) 26/26

	Introduction
	1.1 Definition
	1.2 Goals
	1.3 Types of Distributed Systems

