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ABSTRACT
Randomized node selection is widely used in large-scale,
distributed storage systems to both load balance chunks
of data across the cluster and select replica nodes to pro-
vide data durability. We argue that while randomized
node selection is great for load balancing, it fails to pro-
tect data under a common failure scenario. We present
MinCopysets, a simple, general-purpose and scalable
replication technique to improve data durability while re-
taining the benefits of randomized load balancing. Our
contribution is to decouple the mechanisms used for
load balancing from data replication: we use randomized
node selection for load balancing but derandomize node
selection for data replication. We show that MinCopy-
sets provides significant improvements in data durability.
For example in a 1000 node cluster under a power out-
age that kills 1% of the nodes, it reduces the probability
of data loss from 99.7% to 0.02% compared to random
replica selection. We implemented MinCopysets on two
open source distributed storage systems, RAMCloud and
HDFS, and demonstrate that MinCopysets causes negli-
gible overhead on normal storage operations.

1. INTRODUCTION
Randomization is used as a common technique by

large-scale distributed storage systems for load balancing
and replication. These systems typically partition their
data into chunks that are randomly distributed across
hundreds or thousands of storage nodes, in order to sup-
port parallel access. To provide durability in the face of
failures, these chunks are replicated on random nodes.
Prominent systems that use randomized data distribu-
tion and replication are Hadoop Distributed File System
(HDFS) [21], RAMCloud [19] and Windows Azure [9].

Unfortunately, cluster-wide power outages, a common
type of data center failure scenario [10, 11, 15, 21], are
handled poorly by randomization. This scenario stresses
the durability of the system because a certain percentage
of machines (0.5%-1%) [10, 21] do not come back to life
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Figure 1: Computed probability of data loss when 1%
of the nodes do not survive a restart after a power out-
age. The node and chunk sizes are based on publicly
available sources [9, 10, 19] (see Table 1).

after power has been restored. Figure 1 shows that once
the size of the cluster scales beyond 300 nodes, three
well-known distributed storage systems are nearly guar-
anteed to lose data in this scenario (for more information
on this problem see Section 2). This problem has been
documented in practice by Yahoo! [21], LinkedIn [10]
and Facebook [8], and it theoretically affects systems
that use Chord’s replication scheme [22], such as Dy-
namo [13], Project Voldemort [4] and Apache Cassan-
dra [1].

The key insight of this paper is that while randomiza-
tion is an effective technique for spreading data across
the cluster for load balancing, it is a poor mechanism
for increasing durability. That is, randomization signifi-
cantly increases the probability of data loss. The way to
provide both load balancing and durability is todecouple
data distribution and data replication. Data distribution
should be random, while data replication should be de-
terministic.

We present MinCopysets, a simple, general-purpose
replication scheme that decouples data distribution and
replication. MinCopysets statically splits the nodes into
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replication groups. Unlike the current scheme which
randomly selects a node to store each chunk’s replica,
MinCopysets only randomly selects the node for the first
replica. The other replicas are deterministically placed
on the same replication group as the first replica’s node.

Placing the first replica on a random node allows Min-
Copysets to distribute data widely across the cluster,
while deterministically placing all replicas on a fixed
replication group reduces the probability of data loss.

As shown in Figure 1, MinCopysets has a very low
probability of data loss on large clusters. On a 1000 node
cluster under a power outage, MinCopysets reduces the
probability of data loss from 99.7% to 0.02%. If we de-
ploy MinCopysets with 3 replicas, it achieves a lower
data loss probability than the random replication scheme
does with 5 replicas. Furthermore, we will later show
that MinCopysets continues to have a very low data loss
probability with 3 replicas on clusters of up to 100,000
nodes when 1% of the nodes in the cluster fail simulta-
neously.

MinCopysets does not change the long-term rate of
data loss, but it changes the profile of data loss events
in a way that most data center operators and applica-
tions will find attractive. With a randomized approach
to replication, data loss events occur frequently (during
every power failure), and several chunks of data are lost
in each event. For example, a 5000-node RAMCloud
cluster would lose about 344 MB in each power outage.
With MinCopysets data loss events are extremely rare:
assuming a power outage occurs once a year, a 5000-
node RAMCloud cluster would lose data once every 625
years. The system would lose an entire server’s worth of
data in this rare event. Since the cost of losing data is rel-
atively independent of the amount of lost data (e.g., read-
ing a backup tape), we argue that MinCopysets creates a
superior profile. In this paper we use the term “durabil-
ity” to refer to the frequency of data loss events, not the
amount of data lost.

To show the generality of MinCopysets, we imple-
mented it on two open source distributed storage sys-
tems: RAMCloud and HDFS. Our experience shows that
adding support for MinCopysets is a relatively small im-
plementation change that causes negligible overhead on
normal operations. In addition, MinCopysets comple-
ments data locality preferences, failure domains, and net-
work topologies of different storage systems.

The paper is split into the following sections. Sec-
tion 2 provides the intuition for the paper and the
problem. Section 3 discusses the design of MinCopy-
sets. Section 4 provides details on our implementation
of MinCopysets on RAMCloud and HDFS and its
performance overhead. We discuss other data placement
schemes related to MinCopysets, including the replica-
tion scheme of DHT systems, Facebook’s data placement

policy, and data coding schemes in Section 5. Section 6
includes related work, and Section 7 concludes the paper.

2. INTUITION
Cloud applications store and access their data on large-

scale distributed storage systems that span thousands of
machines [9, 16, 19, 21]. The common architecture of
these systems is to partition their data into chunks and
distribute the chunks across hundreds and thousands of
machines, so that many chunks can be simultaneously
read and written.

In addition, this architecture uses some form of ran-
dom replication to protect against data loss when node
failures inevitably happen. The basic idea is to replicate
each data chunk on several (typically three) randomly
chosen machines that reside on different racks [7, 16, 19]
or failure domains [9]. Random replication is simple and
fast, since unlike various coding schemes, it does not re-
quire any manipulation of the data for reading and writ-
ing the replicas.

Random replication provides strong protection against
independent node failures [15, 21]. These failures hap-
pen independently and frequently (thousands of times a
year on a large cluster [10, 11, 15]), and are caused by
a variety of reasons, including software, hardware and
disk failures. Random replication across racks or failure
domains protects against correlated failures that happen
within a certain set of nodes [15]. Such correlated fail-
ures are also common [10, 11, 15] and typically occur
dozens of times a year due to rack and network failures.

However, random replication fails to protect against
cluster-wide failures such as power outages. In these
events, the entire cluster loses power, and typically 0.5-
1% of the nodes fail to reboot [10, 21]. Such failures are
not uncommon; they commonly occur once or twice per
year in a given data center [10, 11, 15, 21].

Multiple groups, including researchers from Yahoo!
and LinkedIn, have observed that when clusters lose
power, the cluster loses several chunks of data [10, 21].
Some companies have deployed ad-hoc solutions to ad-
dress this problem. For example, the Facebook HDFS
team has modified their proprietary HDFS replication
implementation to limit replication to constrained groups
of nodes [3, 8]. However, their implementation is spe-
cific to their own HDFS cluster setup and size. In ad-
dition, researchers from Google [15] propose to geo-
replicate data across data-centers in order to mitigate this
problem. Unfortunately, geo-replication incurs a high la-
tency and bandwidth overhead, because data needs to be
written to a different location.

If we consider each chunk individually, random repli-
cation provides high durability even in the face of a
power outage. For example, suppose we are trying to
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System Node
Size

Chunk
Size

Nodes
in
Cluster

Replication Scheme

Windows
Azure

75TB 1GB 200-
400

Random replication
within a small cluster

LinkedIn’s
HDFS

4TB 128MB 1000-
4000

First replica on first
rack, other replicas to-
gether on second rack

RAMCloud 192GB 8MB 100-
100,000

Random replication

Table 1: Parameters of different large scale storage
systems. These parameters are estimated based on
publicly available details [9, 10, 19].

replicate a single chunk three times. We randomly select
three different machines to store our replicas. If a power
outage causes 1% of the nodes in the data center to fail,
the probability that the crash caused the exact three ma-
chines that store our chunk to fail is only 0.0001%.

However, assume now that instead of replicating just
one chunk, we replicate 10,000 chunks, and we want to
ensure that every single one of these chunks will survive
the massive failure. Even though each individual chunk
is fairly safe, in aggregate across the entire cluster, some
chunk is expected to be at risk. That is, the probability of
losing all the copies of at least one of the chunks is much
higher.

To understand this problem quantitatively, consider
the following analysis. In a random replication scheme,
each chunk is replicated ontoR machines chosen ran-
domly from a cluster withN machines. In the case of
F simultaneous machine failures, a chunk that has been
replicated on one of these machines will be completely
lost if its other replicas are also among thoseF failed
machines. The probability of losing a single chunk is:

(

F

R

)

(

N

R

)

Where
(

F

R

)

is the number of combinations of failed repli-
cas and

(

N

R

)

is the maximum number of combinations of
replicas. Therefore, the probability of losing at least one
chunk in the cluster in the case ofF simultaneous fail-
ures is given by:

1−

(

1−

(

F

R

)

(

N

R

)

)N ·C

WhereN ·C is the total number of chunks in the cluster.
Figure 1 plots the equation above as a function ofN , as-
suming 1% of the nodes have failed (F = 0.01N ), with
R = 3. Unless stated otherwise, Table 1 contains the
node and chunk sizes, which we used for all the graphs
presented in the paper1. For simplicity’s sake, through-
1Windows Azure is currently intended to support only about

out the paper we use the random replication scheme
for all three systems, even though the systems’ actual
schemes are slightly different (e.g., HDFS replicates the
second and third replicas on the same rack [21]), since
we found very little difference in terms of data loss prob-
ability between the different schemes. We also assume
the systems do not use any data coding (we will show in
Section 5.4 that coding doesn’t affect the data loss prob-
ability in these scenarios).

As we saw in Figure 1 data loss is nearly guaranteed
if at least three nodes fail. The reason is that the random
replication scheme creates a large number ofcopysets. A
copyset is defined as a set of nodes that contain the repli-
cas of a particular data chunk. In other words,a copyset
is a single unit of failure, i.e., when a copyset fails at
least one data chunk is irretrievably lost. With random
replication, every new chunk with a very high probabil-
ity creates a distinct copyset, up to a certain point. This
point is determined by the maximum number of copy-
sets possible in a cluster:

(

N

R

)

. This number is the total
number of possible sets of replicas of nodes. Hence, as
the number of chunks in a system grows larger and ap-
proaches

(

N

R

)

, under large-scale failures at least a few
data chunks’ copysets will fail, leading to data loss.

The intuition above is the reason why simply changing
the parameters of the random replication scheme will not
fully protect against simultaneous node failures. In the
next two subsections we discuss the effects of such pa-
rameter changes.

2.1 Alternative I: Increase the Replication
Factor

The first possible parameter change is to increase the
number of replicas per chunk. The benefit of this change
is that the maximum number of copysets possible in a
cluster grows with the replication factorR as

(

N

R

)

. How-
ever, this is a losing battle, since the amount of data
stored in distributed storage systems continues to grow,
as clusters become larger and store more chunks. As the
number of chunks increases and inevitably approaches
(

N

R

)

, the probability of data loss will increase.
Using the same computation from before, we varied

the replication factor from 3 to 6 on a RAMCloud clus-
ter. The results of this simulation are shown in Figure 2.
As we would expect, increasing the replication factor
does indeed increase the durability of the system against
simultaneous failures. However, simply increasing the
replication factor from 3 to 4, does not seem to provide
the necessary resiliency against simultaneous failures on
large clusters with thousands of nodes. As a reference,
Table 1 shows that HDFS is usually run on clusters with

200-400 nodes in a cluster (or “stamp”). Figure 1 projects
the data loss if Azure continues to use its current replication
scheme.
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Figure 2: Simulation of the data loss probabilities of a
RAMCloud cluster with 8000 chunks per node, vary-
ing the number of replicas per chunk.
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16MB Chunks, 4096 Chunks/Node
32MB Chunks, 2048 Chunks/Node
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128MB Chunks, 512 Chunks/Node
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64GB Chunks, 1 Chunks/Node

Figure 3: Data loss probabilities of a RAMCloud
cluster, varying the number of chunks generated per
node.

thousands of nodes [21], while RAMCloud is intended to
support clusters of ten thousand nodes or more [19]. In
order to support thousands of nodes reliably for current
systems, the replication factor would have to be at least
5.

Increasing the replication factor to 5 significantly hurts
the system’s performance. For each write operation, the
system needs to write out more replicas. This increases
the network latency and disk bandwidth of write opera-
tions.

2.2 Alternative II: Increase the Chunk Size
Instead of increasing the replication factor, we can re-

duce the number of distinct copysets. A straightforward
way is to increase the chunk size, so that for a fixed
amount of total data, the total number of chunks in the
system and consequently the number of copysets is re-
duced.

Using the same model as before, we plotted the data
loss probability of a RAMCloud cluster with varying
chunk sizes in Figure 3. The figure shows that increasing
the size of chunks increases the durability of the system.
However, we would reach the desired durability of the
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Figure 4: Illustration of the MinCopysets replication
scheme. The first replica (primary replica) is chosen
at random from the entire cluster. The other repli-
cas (secondary replicas) are replicated on the stati-
cally defined replication group of the first replica.

system only if we increase the chunk size by 3-4 orders
of magnitude. If we take this scheme to the extreme,
we can make the size of the chunk equal to the size of
an entire node. This is in fact the same as implement-
ing disk mirroring (i.e., RAID 1 [20]). In disk mirroring,
every storage node has identical backup copies that are
used for recovery. Therefore, the number of copysets

with disk mirroring is equal to
N

R
. As we can see from

Figure 3, disk mirroring significantly reduces the proba-
bility of data loss in case of simultaneous failures.

Increasing the size of chunks incurs a significant cost,
since it has the undesirable property that data objects
are distributed to much fewer nodes. This compromises
the parallel operation and load balancing of data center
applications. For instance, if we have 10 GBs of data
and we use 1 GB chunks, a data center application like
MapReduce [12] could operate only across10 ∗ R ma-
chines, while if we use 64 MB chunks, MapReduce could
run in parallel on160∗R machines. Similarly, this would
significantly degrade the performance of a system like
RAMCloud, which relies on distributing its data widely
for fast crash recovery [19].

Our goal is therefore to design a replication scheme
that reduces the probability of any data loss to a negligi-
ble value (i.e., close to zero), while retaining the ben-
efits of uniformly distributing chunks across the clus-
ter for parallelization. In the following section, we de-
scribe MinCopysets, a scheme that possesses both of
these properties.

3. DESIGN
In this section we describe the design of MinCopy-

sets, a replication technique that retains the paralleliza-
tion benefits of uniformly distributing chunks across the
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Figure 5: MinCopysets compared with random repli-
cation, using different numbers of replicas with 8000
chunks per node.

entire cluster, while ensuring low data loss probabilities
even in the presence of cluster-wide failures. Previous
random replication schemes randomly select a node for
each one of their chunks’ replicas. Random replication
causes these systems to have a large number of copysets
and become vulnerable to simultaneous node failures.
MinCopysets’s key insight is to decouple the placement
of the first replica, which provides uniform data distribu-
tion, from the placement of the other replicas, which pro-
vide durability, without increasing the number of copy-
sets.

The idea behind MinCopysets is simple. The servers
are divided statically into replication groups (each server
belongs to a single group). When a chunk has to be
replicated, a primary node is selected randomly for its
first replica, and the other replicas are stored determinis-
tically on secondary nodes, which are the other nodes of
the primary node’s replication group. Figure 4 illustrates
the design of our new replication scheme. The primary
node is chosen at random, while the secondary nodes are
always the members of the primary node’s replication
group.

MinCopysets decouples data distribution from chunk
replication. Similar to the random replication scheme,
it enables data center applications to operate in parallel
on large amounts of data, because it distributes chunks
uniformly across the data center. In addition, similar to
disk mirroring, it limits the number of copysets gener-
ated by the cluster, because each node is only a member
of a single replication group. Therefore, the number of

copysets remains constant and is equal to
N

R
. Unlike

random replication, the number of copysets does not in-
crease with the number of chunks in the system.

In the next few subsections, we will go into further
detail about the properties of MinCopysets.

3.1 Durability of MinCopysets
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Figure 6: Probability of data loss, when we vary the
percentage of simultaneously failed nodes beyond the
reported 1% of typical simultaneous failures. Each
node has 8000 chunks per node.

Figure 5 is the central figure of this paper. It compares
the durability of the MinCopysets and random replica-
tion with different replication factors. We can make sev-
eral interesting observations from the graph. First, on
a 1000 node cluster under a power outage, MinCopysets
reduces the probability of data loss from 99.7% to 0.02%.
Second, if a system uses MinCopysets with 3 replicas,
it has lower data loss probabilities than a system using
random replication with 5 replicas, and a system using
MinCopysets with 2 replicas has lower probabilities than
random replication with 4 replicas. In other words, Min-
Copysets has significantly lower data loss probabilities
than random replication with more replicas. Third, Min-
Copysets with 3 replicas can scale up to 100,000 nodes,
which means that MinCopysets can support the cluster
sizes of all widely used large-scale distributed storage
systems (see Table 1).

The typical number of simultaneous failures observed
in commercial data centers is 0.5-1% of the nodes in the
cluster [21]. Figure 6 depicts the probability of data loss
as we increase the percentage of simultaneous failures
much beyond the reported 1%. Note that commercial
storage systems commonly operate in the range of 200-
4000 nodes per cluster (e.g., see Table 1 and GFS [16]).
For these cluster sizes MinCopysets prevents data loss
with a high probability, even in the very unlikely and hy-
pothetical scenario where 4% of the nodes fail simulta-
neously.

3.2 Compatibility with Existing Systems
An important property of MinCopysets is that it does

not require changing the architecture of the storage sys-
tem. Unlike the alternative solutions that we discussed in
Section 2, MinCopysets frees the storage system to use
chunks of any size with any replication factor.

In addition, MinCopysets provides the storage system
with the freedom to decide how to split the nodes into
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replication groups. For example, groups can be formed
from nodes that belong to different failure domains, in or-
der to prevent simultaneous failures when an entire fail-
ure domain (e.g. rack, part of the network) fails.

Furthermore, large scale storage systems have addi-
tional constraints when choosing their primary replica.
For instance, in HDFS, if the local machine has enough
capacity, it stores the primary replica locally, while
RAMCloud uses a semi-randomized approach for select-
ing its primary replica, based on Mitzenmacher’s ran-
domized load balancing algorithms [18]. MinCopysets
can support any primary replica selection scheme, as
long as the secondary replicas are always part of the same
replication group as the primary.

The new scheme can be implemented as a modifica-
tion of the random replication scheme. In order to en-
able MinCopysets, we need to add support for a cen-
tralized function that will split the nodes into groups,
and modify the existing replication scheme to adhere
to these groups. Fortunately, most large scale storage
systems have a highly available centralized server that
is in charge of managing the nodes in the cluster (e.g.,
Windows Azure’s Stream Manager, HDFS’ NameNode,
RAMCloud’s Coordinator). As we will demonstrate in
Section 4, it was relatively straightforward to modify
the RAMCloud and HDFS random replication scheme
to support MinCopysets.

3.3 Node Recovery Overhead
For each chunk, random replication independently

chooses nodes for each of its replicas. In contrast, Min-
Copysets chooses an entire replication group, which con-
sists of a fixed set of nodes. In case of a node failure, the
entire replication group is impacted. This slightly com-
plicates node recovery.

There are several ways to solve this problem. For ex-
ample, the coordinator does not have to assign replica-
tion groups to all backups, and keep a small number of
backups as ‘reserve’ nodes. Another alternative is to al-
low nodes to be members of several replication groups
(e.g. 2 or 3). In the latter scheme, when a node fails,
its group’s remaining nodes can form a new replication
group with a node that may already be a member of an-
other replication group.

The brute force alternative, which is the one we im-
plemented, is to re-replicate the entire replication group
when one of the nodes in the group fails. The nodes that
didn’t fail and belonged to the original replication group
can be then reassigned to a new replication group once
enough unassigned nodes are available.

This approach increases the network and disk band-
width during backup recovery. In addition, the backup
nodes that were part of the failed replication group have
to clean up their old data after it has been re-replicated.

This would consume additional CPU and disk band-
width. Note that this overhead is a result of a conscious
design choice to simplify the management of replicas at
the expense of added recovery bandwidth, and is not an
inherent overhead of MinCopysets.

3.4 Supporting Multiple Replication Fac-
tors

GFS, Azure and HDFS allow users to define differ-
ent replication factors for each chunk. MinCopysets sup-
ports multiple replication factors by maintaining multi-
ple lists of replication groups for each replication factor.
When it makes its replica placement decisions, the sys-
tem simply uses the list that matches the chunk’s replica-
tion factor.

Since MinCopysets significantly reduces the probabil-
ity of data loss in case of simultaneous failures, it is prob-
ably unnecessary, in most cases, to replicate chunks us-
ing a replication factor larger than 3.

4. EVALUATION
MinCopysets is a general-purpose, scalable replica-

tion scheme that can be implemented on a wide range
of distributed storage systems that distribute chunks ran-
domly across the data center. In this section, we describe
our implementation of MinCopysets in RAMCloud and
HDFS. We also provide the results of our experiments
on the impact of MinCopysets on RAMCloud’s perfor-
mance.

We found that it was simple to add support for Min-
Copysets to RAMCloud and HDFS. Not including unit
tests, the change to the original RAMCloud source code
amounted to about 600 lines of C++ and the HDFS
change was about 200 lines of Java.

4.1 Implementation of MinCopysets in
RAMCloud

RAMCloud is a memory-based persistent distributed
storage system. The main goal of RAMCloud is to pro-
vide low latency access; a read RPC of a 100 byte object
can be serviced in approximately 5 microseconds, end-
to-end.

In order to keep data persistent, RAMCloud stores one
copy of each data object in memory, while saving addi-
tional copies on three disk-based backup nodes. Due to
the low latency requirements of RAMCloud, one of the
main challenges of the system is to provide fast crash re-
covery, in case the main memory copy of the data is lost.
To this end, RAMCloud splits its data into small 8MB
chunks, which are scattered uniformly across the entire
data center. When one of the in-memory nodes is lost, the
data is recovered from the entire cluster in parallel [19].

4.1.1 Architecture
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Assign 

Replication 

Group RPC
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Group ID

Server 0 5
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Figure 7: Illustration of the MinCopysets implemen-
tation on RAMCloud. The coordinator assigns each
backup to a single replication group. When the mas-
ter creates a new chunk, the backup informs the mas-
ter of the members of its replication group.

Figure 7 illustrates the architecture of our implementa-
tion. We implemented MinCopysets on the RAMCloud
coordinator, master and backup.

The RAMCloud coordinator is a highly available
server that is in charge of managing the cluster. It keeps
an up-to-date list of all the servers in the cluster and their
addresses. It also controls the registration of new servers,
decides whether a node has failed and coordinates node
recoveries.

The RAMCloud master services client requests from
the in-memory copy of the data. The master is also in
charge of selecting the backup servers to store the persis-
tent disk based copies of the data.

The RAMCloud backups are in charge of storing data
persistently. They are largely passive: in normal oper-
ation, their only function is to receive write RPCs from
masters and write the data to disk. Backups read data
only when a master server needs to be recovered.

In our implementation, the coordinator is in charge of
assigning the backups to replication groups. The master
then replicates its chunks on replication groups.

The coordinator controls the assignment of backup
nodes to replication groups because it has the full au-
thority to decide which nodes are part of the cluster. In
order to support MinCopysets, we added a new field to
each entry of the coordinator’s server list, which contains
the replication group ID.

When a new backup joins the cluster, the coordina-
tor iterates through the server list, to see whether there
are three backups on three different racks that are not as-
signed to a replication group. The coordinator assigns
these three backups a replication group, by sending them

an RPC, which informs them of their group.
When a RAMCloud master tries to create a new

chunk, it first selects a primary backup as it did in
the original random replication scheme using Mitzen-
macher’s randomized load balancing algorithm [18]. If
the backup has been assigned a replication group, it will
accept the master’s write request and respond with the
other members in its replication group. The master will
then replicate the other two copies of the chunk to the two
remaining members of the group. If the backup did not
accept the master’s write request, the master will retry its
write RPC on a new primary backup.

We describe several additional issues we had to solve
in our implementation below.

4.1.2 Backup Recovery

MinCopysets introduces some changes to backup re-
covery. For the simplicity of the implementation, every
time a backup node fails, we re-replicate its entire repli-
cation group. This approach increases the disk and net-
work bandwidth during recovery.

After a node fails, the coordinator changes the repli-
cation group ID of all the nodes in its replication group
to limbo. Limbo backups can still service read requests
for the purpose of master recovery but cannot accept new
chunks. Therefore, when a master tries to create a new
chunk on a limbo backup, the backup will refuse its write
request. Limbo backups are treated by the coordinator
as new backups that have not yet been assigned a repli-
cation group ID. Once there are enough unassigned or
limbo nodes to form a new group, the coordinator will
assign them a new replication group ID, and they can be-
gin servicing write requests again, even if they still store
leftover data from the old replication group.

In addition, all RAMCloud masters are notified of
the node’s failure. As a result, any RAMCloud mas-
ter that had data stored on the node’s group tries to re-
replicate its data on a new replication group. If a backup
has data remaining from its old replication group, it
won’t garbage collect the data until the masters have re-
replicated it entirely on a new group.

The backup recovery is not part of the critical path of
RAMCloud. Therefore, the extra time it takes to fully re-
replicate the replicas on the new replication group does
not affect the system’s performance. The only overhead
is the extra consumed bandwidth. Note that backup re-
covery tasks can be de-prioritized in comparison to more
important real-time operations like client read and write
requests and operations related to master recovery. In ad-
dition, we assume that failures are relatively rare events.

4.1.3 Other Issues

In the original random replication scheme, it is
straightforward for a master to create a new chunk on a
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backup. It sends write RPCs in parallel to three backups,
and if one of the RPCs fails for some reason, it retries and
creates the chunk on a different backup. The RPC could
fail due to a node failure or because the backup doesn’t
have enough disk capacity to allocate for the new chunk.
With MinCopysets, if any one of the replication group
nodes cannot write the new chunk, all three RPCs need
to be aborted. Otherwise there may be inconsistencies in
RAMCloud’s log.

A naïve way to tackle this problem is to declare
the node that didn’t accept the RPC as a failed node.
Since backup recovery now operates on entire replica-
tion groups, the data on the failed node’s group would
simply be re-replicated as new chunks on a new repli-
cation group which would solve any outstanding consis-
tency issues.

The problem with this approach is that RPCs can fail
because nodes do not have sufficient disk capacity. If
we treat any node that reaches the limits of its disk ca-
pacity as a failed node, the system would generate false
positive backup recoveries. This could lead to a system-
atic collapse since each crash reduces the total amount of
storage available to the system which, in turn, increases
the likelihood of nodes running out of space.

In order to prevent this problem, we implemented an
unwind algorithm for new chunks. Anytime a master
tries to create a new chunk in one of the backups and
it fails because the backup does not have enough disk
capacity, the master sends an unwind RPC to all of the
backups in the replication group, and retries replication
on a different group. If, for some reason, the unwind
RPC fails on one of the nodes, we treat it as a node fail-
ure and initiate backup recovery on the entire replication
group.

4.2 HDFS Implementation
To demonstrate the general-purpose nature of Min-

Copysets, we describe our implementation of MinCopy-
sets in HDFS.

The implementation of MinCopysets on HDFS is sim-
ilar to RAMCloud’s implementation. The main differ-
ence is that in HDFS the NameNode, which controls
all file system metadata, dictates the placement of every
chunk replica. In contrast, replica placement decisions
are completely decentralized in RAMCloud.

4.2.1 Architecture

The centralized NameNode simplified the implemen-
tation of MinCopysets on HDFS. For normal operations,
we only needed to modify the NameNode to assign new
DataNodes (storage nodes) to replication groups and
choose replica placements based on these group assign-
ments.

The HDFS replication code is well-abstracted. We

added support for assigning DataNodes to replication
groups, choosing replica DataNodes based on replication
groups, and re-replicating blocks to other groups after a
DataNode failure.

4.2.2 Chunk and Network Load Balancing

MinCopysets complicates chunk rebalancing in
HDFS. Rebalancing is the act of migrating replicas to
different storage servers to more evenly spread data
across DataNodes. This is desirable, for instance, when
additional DataNodes are added to the system. With
MinCopysets a single replica of a chunk cannot simply
be moved to another node belonging to a different repli-
cation group. Instead, a new replication group must be
chosen and each replica of the chosen chunk must be
moved to a member of the new set.

Another potential issue in the MinCopysets HDFS im-
plementation is reduced network load balancing caused
by HDFS’ pipelined replication. In HDFS, DataNodes
replicate data on a pipeline from one node to the next,
in an order that minimizes the network distance from the
client to the last DataNode. With the MinCopysets im-
plementation, since replication groups are chosen stat-
ically, the system might over-utilize a relatively small
number of links that connect the replication group’s
nodes which may result in network bottlenecks.

In order to solve the network load balancing issues and
to support MinCopysets on such systems, the NameN-
ode could take the network topology into account when
assigning the nodes to different replication groups. In
addition, since certain network links can become con-
gested, the central node could periodically load balance
certain replication groups (i.e., reassign certain nodes to
different groups). Since we still need to evaluate the net-
work load balancing issue in HDFS, we have not yet im-
plemented these solutions.

4.3 Performance of MinCopysets on RAM-
Cloud

We compared the performance of MinCopysets repli-
cation scheme with the original random replication under
three scenarios: normal RAMCloud client operations, a
single master recovery and a single backup recovery.

As expected, we found that using MinCopysets incurs
almost no overhead on normal RAMCloud operations
and on master recovery, while the overhead of backup
recovery was higher as we expected. We provide the re-
sults below.

4.3.1 Normal Client Operations

In order to determine the overhead of MinCopysets
replication under normal client operations, we ran a per-
formance test suite. The test runs several master servers
along with multiple backup servers. Up to 10 clients try
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System Recovery Data Recovery Time

Without MinCopysets 1256 MB 0.73 s

With MinCopysets 3648 MB 1.10 s

Table 2: Comparison of backup recovery perfor-
mance on RAMCloud with MinCopysets. Recovery
time is measured after the moment of failure detec-
tion.

to write and read objects of various sizes (100 bytes to
1 MB) to and from the masters. We ran these tests 100
times, and found no difference between the performance
of RAMCloud with the MinCopysets and with the ran-
dom replication scheme.

4.3.2 Master Recovery

One of the main goals of RAMCloud is to fully re-
cover a master in about 1-2 seconds so that applications
experience minimal interruptions. In order to test mas-
ter recovery, we ran a cluster with 39 backup nodes and
5 master nodes. We manually crashed one of the mas-
ter servers, and measured the time it took RAMCloud to
recover its data. We ran this test 100 times, both with
the MinCopysets and random replication schemes. As
expected, we didn’t observe any difference in the time it
took to recover the master node in both scheme.

However, when we ran the benchmark again using 10
backups instead of 39, we observed MinCopysets took
11% more time to recover the master node than the ran-
dom replication scheme. Due to the fact that MinCopy-
sets divides backups into groups of three, it only takes
advantage of 9 out of the 10 nodes in the cluster. This
overhead occurs only when we use a number of backups
that is not a multiple of three. As expected, the overhead
gets smaller as the grows larger. Since we assume that
RAMCloud is typically deployed on large scale clusters,
the master recovery overhead is usually negligible.

4.3.3 Backup Recovery

In order to evaluate the overhead of MinCopysets on
backup recovery, we ran an experiment where a single
backup crashes on a RAMCloud cluster with 39 masters
and 72 backups, storing a total of 33 GB of data. Table 2
presents the results. Since masters re-replicate data in
parallel, recovery from a backup failure only takes 51%
longer using MinCopysets, compared to random repli-
cation. As expected, our implementation approximately
triples the amount of data that is re-replicated during re-
covery. Note that this additional overhead is not inherent
to MinCopysets, and results from our design choice to
reduce the complexity of the coordinator at the expense
of higher backup recovery overhead.

5. DISCUSSION
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Figure 8: The expected number of chunks lost in a
1000 node RAMCloud cluster with 8000 chunks per
node, when we vary the number of concurrent fail-
ures.

This section discusses several additional issues related
to MinCopysets. First, we describe the difference be-
tween data loss probability and the actual amount of data
lost. Second, we discuss how the notion of copysets can
be applied to DHT systems. Third, we show some al-
ternative replication schemes that have higher data loss
probabilities than MinCopysets, but can reduce the over-
head of node recovery. Finally, we discuss how coding
schemes relate to the number of copysets.

5.1 Amount of Data Lost
MinCopysets trades off the probability of failure with

the amount of data lost in each failure. In other words,
MinCopysets reduces the probability of losing any data
during simultaneous failures, but increases the amount
lost when data loss does occur. In order to investigate
this property, we ran a monte carlo simulation that com-
pares the expected number of lost chunks with random
replication and MinCopysets under concurrent node fail-
ures.

The results of this simulation are shown in Figure 8.
The graph shows that the expected number of lost chunks
is almost identical in both schemes. Therefore, a system
designer that deploys MinCopysets should expect to ex-
perience much fewer events of data loss. However, each
one of these events will lose a large amount of data (i.e.
at least a whole node’s worth of data). For example, if
we assume a power outage that causes 1% of the nodes
to fail occurs once a year, a 5000 node RAMCloud clus-
ter with random replication will lose about 344 MB every
year. In contrast, MinCopysets will take on average ap-
proximately 625 years to lose data. In the case of this
very rare event, 64 GB of data will be lost.

Since each data loss event can incur certain fixed costs
(e.g. rolling out magnetic tape archives to recover the
lost data), most storage systems would probably prefer a
significantly lower occurrence of data loss at the expense
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Figure 9: The probability of data loss in a cluster of
nodes using Chord’s replication scheme, with a vary-
ing number of virtual nodes per physical node. Each
physical node has 8000 chunks.

of losing a higher amount of data each time.

5.2 Copysets and Distributed Hash Tables
Dynamo [13], Project Voldemort [4] and Apache Cas-

sandra [1] are all key-value storage systems that use hash
key partitioning schemes similar to Distributed Hash Ta-
bles (DHT) such as Chord [22]. These typically assign
each physical node multiple virtual nodes2. Each virtual
node is assigned a range in the hash space. The repli-
cas of the data are stored on a sequence of virtual nodes,
according to their hash space. DHT based systems use
multiple virtual nodes per physical node in order to dis-
tribute the key ranges across multiple nodes to ensure
load balancing. The original Chord paper proposes to
run O(logN) virtual nodes, whereN is the number of
physical nodes.

This presents an interesting trade off with regards to
copysets. As long as the number of virtual nodes per
physical node is small, each node belongs to a relatively
small number of replication groups, because the replicas
are always distributed to the same sequence of virtual
nodes. However, using a small number of virtual nodes
may have a negative impact on load balancing.

Therefore, DHT replication balances between data
distribution and data loss probability, similar to the ran-
dom replication scheme. To demonstrate this effect, we
computed the data loss probabilities under a power out-
age in a cluster using a DHT based replication scheme.
The results are presented in Figure 9.

The takeway from this graph is that increasing the
number of virtual nodes for load balancing increases the
probability of data loss in the face of concurrent node
failures. Therefore, unlike MinCopysets, the DHT repli-
cation scheme couples load balancing and durability.

2Voldemort uses a key partitioning similar to virtual nodes.
Virtual node support is currently being implemented for Cas-
sandra [5].
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Figure 10: Simulation of Facebook’s HDFS repli-
cation scheme, on a cluster with 10,000 chunks per
node.

5.3 Other Alternatives to Contain Ran-
domized Replication

MinCopysets is one of many possible schemes that can
constrain the number of copysets, while still enabling
replicas to be distributed widely in the cluster. For ex-
ample, instead of having only one replication group per
node, we could allow nodes to belong to a larger, fixed
number of replication groups.

If nodes can belong to multiple groups, the overhead
of node recovery can be reduced, as described in Sec-
tion 3.3. In fact, the replication scheme that Facebook
implemented in their HDFS cluster uses a small number
of replication groups per node [3, 8]. In their proprietary
implementation of Hadoop, they constrain the placement
of replicas into smaller groups, by defining a window of 2
racks and 5 machines around the first replica’s machine.
The second and third replica are chosen at random from
this window.

MinCopysets and has a lower probability of data loss
than Facebook’s scheme. To demonstrate this point, we
simulated Facebook’s scheme and compared it with Min-
Copysets, using typical HDFS chunk and node size pa-
rameters. Figure 10 presents the results of the simula-
tion. As we can see, while Facebook’s more relaxed
scheme significantly improves the probabilities of the
original random replication scheme, it is more exposed
to concurrent failures on large clusters than MinCopy-
sets. The advantage of using MinCopysets in compari-
son with schemes like Facebook’s is that MinCopysets
is more general-purpose. With MinCopysets, system de-
signers do not have to worry about optimizing the "repli-
cation window" to match their specific cluster, chunk and
node sizes.

5.4 Copysets and Coding
Some storage systems, such as GFS, Azure and HDFS,

use coding techniques to reduce space usage or tolerate
more failures. We have found that these techniques do
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not impact the probability of data loss when using ran-
dom replication, and the MinCopysets solution can be
applied together with data coding.

Codes are typically designed to allow chunks to be
resilient against failures of two nodes using a reduced
amount of storage, but not against three failures or more.
If the coded data is still distributed on a very large num-
ber of copysets, multiple simultaneous failures will still
cause data loss.

In practice, existing storage system parity code im-
plementations do not significantly affect the number of
copysets. For example, the HDFS-RAID [2, 14] imple-
mentation encodes groups of 5 chunks in a RAID 5 and
mirroring scheme, which reduces the number of non-
distinct copysets by a factor of 5. However, this is exactly
equivalent to increasing the chunk size by a factor of 5,
and we showed before (in Fig 3) that such a reduction
does not significantly decrease the data loss probabilities
of the system.

6. RELATED WORK
The related work is split into two categories. The first

category is large scale storage systems that intentionally
constrain the placement of replicas to prevent data loss
due to concurrent node failures. The second category
is RAID mirroring schemes, which were not originally
designed to support the scale of Big Data applications.

6.1 Different Placement Policies
Similar to MinCopysets, Facebook’s proprietary

HDFS implementation constrains the placement of repli-
cas into smaller groups, to protect against concurrent
failures [3, 8]. As we discussed in the previous section,
while this scheme improves the original random repli-
cation scheme, it is much more exposed to concurrent
failures than MinCopysets and is not general-purpose.

Ford et al. from Google [15] analyze different fail-
ure loss scenarios on GFS clusters, and have proposed
geo-replication as an effective technique to prevent data
loss under large scale concurrent node failures. Geo-
replication is a fail-safe way to ensure data durability
under a power outage. However, geo-replication incurs
high latency and bandwidth costs. In addition, not all
storage providers have the capability to support geo-
replication.

In contrast to geo-replication, MinCopysets can miti-
gate the probability of data loss under concurrent failures
without moving data to a separate location.

6.2 RAID
Another replication scheme that is related to Min-

Copysets is RAID (for a detailed overview of RAID tech-
nology, see IBM’s guide [6]). RAID 1 [20] is the basic
disk mirroring scheme. In RAID 1, each disk is fully

mirrored on a set of additional disks, in order to provide
higher durability. This scheme was originally designed
as a hardware solution for a single machine. In order to
extend RAID 1 to multiple disks, RAID 1+0 or RAID
10 is designed as a stripe of mirrors. In this scheme,
odd numbered chunks are replicated on one mirror, while
even numbered chunks are replicated on the second mir-
ror. This scheme was extended further to RAID 100 and
RAID 1000. In these schemes, chunks are split into even
more mirror groups.

As an extension to standard RAID systems, RAID-
x [17] was designed as a distributed software RAID
scheme for small clusters. Similar to our paper, it also
identifies the need to decouple the distribution and data
loss probability of data, using a combination of striping
and mirroring.

While MinCopysets is inspired by RAID’s concept of
mirroring, in practice the two schemes are very differ-
ent. MinCopysets operates on a data center scale, while
these RAID schemes are designed to serve small clus-
ters of large servers. In addition, the RAID scheme is
rigid. Nodes cannot join or leave mirror groups, and each
chunk is deterministically replicated on a certain mir-
ror group. In contrast, MinCopysets can choose the first
replica at random from the entire cluster, and nodes can
be divided into replication groups using different flexible
policies.

7. CONCLUSION
Conventional wisdom holds that randomization is a

general-purpose technique for solving a variety of prob-
lems in large-scale distributed systems. This paper ques-
tions this assumption, and shows that randomization
leads to poor data durability. In particular, we show
that existing widely deployed systems such as HDFS and
Azure that use random replication can lose data under
common events such as power outages.

This paper presents MinCopysets, a simple general-
purpose scalable replication scheme, that derandomizes
data replication in order to achieve better data durabil-
ity properties. MinCopysets decouples the mechanisms
used for data distribution and durability. It allows system
designers to use randomized node selection for data dis-
tribution to reap the benefits of parallelization and load
balancing, while using deterministic replica selection to
significantly improve data durability. We showed that
with MinCopysets, systems can use only 3 replicas yet
achieve the same data loss probabilities as systems us-
ing random replication with 5 replicas, and can safely
scale up to 100,000 nodes. With relatively straightfor-
ward implementations, we added support for MinCopy-
sets to RAMCloud and HDFS. MinCopysets does not in-
troduce any significant overhead on normal storage op-
erations, and can support any data locality or network
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topology requirements of the underlying storage system.
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