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ABSTRACT Probability of data loss when 1% of the nodes fail concurrently

100% e S S

Randomized node selection is widely used in large-scale

distributed storage systems to both load balance chunk 8 8% + Windows Azure, Chunks/Node=25,000 |
. © ® HDFS, Chunks/Node=10,000

of data across the cluster and select replica nodes to pr¢ ks = RAMCloud, Chunks/Node=8,000

vide data durability. We argue that while randomized X MinCopysets, Chunks/Node=10,000

node selection is great for load balancing, it fails to pro- :

tect data under a common failure scenario. We presen

MinCopysets, a simple, general-purpose and scalabli

replication technique to improve data durability while re-

taining the benefits of randomized load balancing. Our

contribution is to decouple the mechanisms used for

load balancing from data replication: we use randomized-igure 1: Computed probability of data loss when 1%

node selection for load balancing but derandomize nodef the nodes do not survive a restart after a power out-

selection for data replication. We show that MinCopy- age. The node and chunk sizes are based on publicly

sets provides significant improvements in data durability.available sources|[0, 10, 19] (see Tat[@ 1).

For example in a 1000 node cluster under a power out-

age that kills 1% of the nodes, it reduces the probability

of data loss from 99.7% to 0.02% compared to random .

replica selection. We implemented MinCopysets on twoalfter power has been restored. Figidre 1 shows that once

open source distributed storage systems, RAMCloud anffpe size of the cluster scales beyond 300 nodes, three

HDFS, and demonstrate that MinCopysets causes negIY—Vet”'kg?Wln dlsérlt:ut.etir?.torage SYStimS are r_1efa rly g;l_ar-
gible overhead on normal storage operations. anteed to lose data in this scenario (for more information

on this problem see SectiGh 2). Lﬂ_i[s problem h|%_|s been
documented in practice by Yahoao! [21], Linked|n [10]
1. INTRODUCTION and FacebooH:[S], and it theoretically affects systems
Randomization is used as a common technique byhat use Chord's replication schenie![22], such as Dy-
large-scale distributed storage systems for load balgncinnamo ], Project Voldemorﬂ[4] and Apache Cassan-
and replication. These systems typically partition theirdra [i].
data into chunks that are randomly distributed across The key insight of this paper is that while randomiza-
hundreds or thousands of storage nodes, in order to supion is an effective technique for spreading data across
port parallel access. To provide durability in the face ofthe cluster for load balancing, it is a poor mechanism
failures, these chunks are replicated on random nodegor increasing durability. That is, randomization signifi-
Prominent systems that use randomized data distribusantly increases the probability of data loss. The way to
tion and replication are Hadoop Distributed File Systemprovide both load balancing and durability isdecouple
(HDFS) [21], RAMCloud IL_lb] and Windows AzurE|[9]. data distribution and data replication. Data distribution
Unfortunately, cluster-wide power outages, a commonshould be random, while data replication should be de-
type of data center failure scenarﬂ[ﬁl ﬁ 15, 21], argerministic.
handled poorly by randomization. This scenario stresses We present MinCopysets, a simple, general-purpose
the durability of the system because a certain percentageplication scheme that decouples data distribution and
of machines (0.5%—1%@@1] do not come back to lifereplication. MinCopysets statically splits the nodes into
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replication groups. Unlike the current scheme whichpolicy, and data coding schemes in Secfibn 5. Segfion 6
randomly selects a node to store each chunk’s replicancludes related work, and Sect{dn 7 concludes the paper.
MinCopysets only randomly selects the node for the first

replica. The other replicas are deterministically placed

on the same replication group as the first replica’s node.2. INTUITION

Placing the first replica on a random node allows Min- 5, applications store and access their data on large-
Copysets to distribute data widely across the cluster,

' oo i ’ : scale distributed storage systems that span thousands of

while deterministically placing all replicas on a fixed machines|__[|9ﬂd:i@1]. The common architecture of

replication group reduces the probability of data l0ss. g6 ystems is to partition their data into chunks and
As shown in Figuréll, MinCopysets has a very low distribute the chunks across hundreds and thousands of

probability of data loss on large clusters. On a 1000 nOd‘?nachines, so that many chunks can be simultaneously
cluster under a power outage, MinCopysets reduces thleead and written

probability of data loss from 99.7% to 0.02%. If we de- ' 4 qgition, this architecture uses some form of ran-

ploy MinCopysets with 3 replicas, it achieves a lower 4,y repjication to protect against data loss when node
data loss probability than the random replication schemey;;, o5 inevitably happen. The basic idea is to replicate
does Wlth 5 replicas. _Furthermore, we will later ShOWeaCh data chunk on several (typically three) randomly
that Manopysets con'tlnues to have a very low data 10S§,qsen machines that reside on different radks [7. 16, 19]
probability with 3 replicas on clusters of up to 100,000 or failure domainsﬂQ]. Random replication is simple and

nodes when 1% of the nodes in the cluster fail simulta-yg¢ gjnce unlike various coding schemes, it does not re-
neon_Jst. quire any manipulation of the data for reading and writ-

MinCopysets does not change the long-term rate ofng the replicas.

data loss, but it changes the profile of data loss events g, 4om replication provides strong protection against
in a way that most data center operators and applicagenendent node failures [15,21]. These failures hap-
tions will find attractive. With a randomized approach pen independently and fr%uently (thousands of times a

to replication, (_jata loss events occur frequently (durin ear on a large clust 15]), and are caused by
every power failure), and several chunks of data are los variety of reasons, including software, hardware and

IrI] each evelntl. For example, a §OOO-nr(])de RAMCloudyiqy failures. Random replication across racks or failure
cluster would lose about 344 MB in each power outage o mnains protects against correlated failures that happen

With MinCopysets data loss events are extremely raréy inin 4 certain set of node5s [15]. Such correlated fail-
assuming a power outage occurs once a year, a 500(2I

d loud ¢l dl q ires are also commoh_10,] 15] and typically occur
hode RAr']v'C oudce USteL;NIOU ose data once every ?125 ozens of times a year due to rack and network failures.
years. T € system wou 0 10S€ an entire SErvers Wo,rt OT However, random replication fails to protect against
data in this rare event. Since the cost of losing data is rel

velv tth l cluster-wide failures such as power outages. In these
atively independent of the amount of lost data (e.g., readévemS’ the entire cluster loses Eower, and typically 0.5-

ing a backup tape), we argue that MinCopysets creates gy, of the nodes fail to rebo 21]. Such failures are

superior profile. In this paper we use the term “durabll—not uncommon; they commonly occur once or twice per

ity” to refer to the frequency of data loss events, not theyear in a given data cent 15 21]

amounLof dak:a lost. ity of Mi 1. Multiple groups, including researchers from Yahoo!
To show the generality of MinCopysets, we imple- 54 | inkedin, have observed that when clusters lose

mented it on two open source distribu_ted storage sys: ower, the cluster loses several chunks of ﬁb@o 21].
tems: RAMCloud and HDFS. Our experience shows thagome companies have deployed ad-hoc solutions to ad-

adding support for MinCopysets is a relatively small im- dress this problem. For example, the Facebook HDFS

plementation ghange that causes n_egligible overhead Yeam has modified their proprietary HDFS replication
normal operations. In addition, MinCopysets comple-j,ementation to limit replication to constrained groups
ments data locality preferences, failure domains, and nets; nodeslIBDS] However, their implementation is spe-
work topologies of different storage systems. cific to their own HDFS cluster setup and size. In ad-
_ The paper is split mto _the following sections. Sec'dition, researchers from GooglE[lS] propose to geo-
tlonIIZ prowde_s the |.ntum0n for: the _pape; and the replicate data across data-centers in order to mitigage thi
problem. Sectiofl]3 discusses the design of MinCopy+,,hiem. Unfortunately, geo-replication incurs a high la-

sets. Sectiof]4 provides details on our implementationg . and handwidth overhead, because data needs to be
of MinCopysets on RAMCloud and HDFS and its written to a different location.

performance overhead. We discuss other data placement If we consider each chunk individually,

. . . . random repli-
schemes related to MinCopysets, including the repllca-(:atiOn provides high durability even in the face of a

tion scheme of DHT systems, Facebook’s data pIacemerBOWer outage. For example, suppose we are trying to



System Node | Chunk| Nodes | Replication Scheme out the paper we use the random replication scheme
Size | Size | in for all three systems, even though the systems’ actual

, Cluster — schemes are slightly different (e.g., HDFS replicates the
jandows | 75T8 | 168 ) 200- | Random repicalion  second and third replicas on the same rack [21]), since
Linkedin's | 4TB | 128MB| 1000- | First replica on first we found very little difference in terms of data loss prob-
HDFS 4000 | rack, other replicas to ability between the different schemes. We also assume

gether onsecond rack  the systems do not use any data coding (we will show in
RAMCloud| 192GH 8MB 188-000 Random replication Sectior 5.4 that coding doesn't affect the data loss prob-

ability in these scenarios).

Table 1: Parameters of different large scale storage _ AS We saw in Figuréll data loss is nearly guaranteed
systems. These parameters are estimated based on if at least three nodes fail. The reason is that the random

publicly available details B,]- replicatiqn scheme creates a large numb@opygets. A .
copyset is defined as a set of nodes that contain the repli-
cas of a particular data chunk. In other wordgppyset

replicate a single chunk three times. We randomly selecfs a single unit of failure, i.e., when a copyset fails at

three different machines to store our replicas. If a powelleast one data chunk is irretrievably lost. With random
outage causes 1% of the nodes in the data center to fa“epﬁcaﬁon’ every new chunk with a very h|gh probab"_
the probability that the crash caused the exact three maty creates a distinct copyset, up to a certain point. This

chines that store our chunk to fail is onIy 0.0001%. point is determined by the maximum number of copy-
However, assume now that instead of replicating jusisets possible in a cluste(Z;). This number is the total

one chunk, we replicate 10,000 chunks, and we want tqumber of possible sets of replicas of nodes. Hence, as
ensure that every single one of these chunks will survivehe number of chunks in a system grows larger and ap-
the massive failure. Even though each individual Chunkproacheg(%), under |arge_sca|e failures at least a few
is fairly safe, in aggregate across the entire cluster, somgata chunks’ copysets will fail, leading to data loss.
chunk is expected to be at risk. That is, the probability of = The intuition above is the reason why simply changing
losing all the copies of at least one of the chunks is muchhe parameters of the random replication scheme will not
higher. fully protect against simultaneous node failures. In the

To understand this problem quantitatively, considernext two subsections we discuss the effects of such pa-
the following analysis. In a random replication scheme,rameter changes.

each chunk is replicated ont® machines chosen ran-

domly from a cluster withV machines. In the case of 2.1 Alternative I. Increase the Replication

F simultaneous machine failures, a chunk that has been Factor

replicated on one of these machines will be completely 1 first possible parameter change is to increase the

lost if its other replicas are also among thasdailed 1, mper of replicas per chunk. The benefit of this change
machines. The probability of losing a single chunkis: g that the maximum number of copysets possible in a

(F) cluster grows with the replication fact@ as(";). How-

R .. . .

7(1\7) ever, this is a losing battle, since the amount of data
R

stored in distributed storage systems continues to grow,
Where(g) is the number of combinations of failed repli- as clusters become larger and store more chunks. As the
cas and ) is the maximum number of combinations of number of chunks increases and inevitably approaches
replicas. Therefore, the probability of losing at least onel ) the probability of data loss will increase.

chunk in the cluster in the case 6fsimultaneous fail- ~ Using the same computation from before, we varied
ures is given by: the replication factor from 3 to 6 on a RAMCloud clus-
O ter. The results of this simulation are shown in Fidure 2.
(g) As we would expect, increasing the replication factor
1—{1- @ does indeed increase the durability of the system against

simultaneous failures. However, simply increasing the
WhereN - C'is the total number of chunks in the cluster. replication factor from 3 to 4, does not seem to provide
Figure[l plots the equation above as a functioWofs-  the necessary resiliency against simultaneous failures on
suming 1% of the nodes have failel & 0.01N), with  |arge clusters with thousands of nodes. As a reference,

R = 3. Unless stated otherwise, Taljle 1 contains theTable[d shows that HDFS is usually run on clusters with
node and chunk sizes, which we used for all the graphs

. . e _ 200-400 nodes in a cluster (or “stamp”). Figlie 1 projects
presented in the papér For simplicity's sake, through the data loss if Azure continues to use its current replication

windows Azure is currently intended to support only about scheme.
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Figure 2: Simulation of the data loss probabilities of a
RAMCIoud cluster with 8000 chunks per node, vary-
ing the number of replicas per chunk.
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Figure 3: Data loss probabilities of a RAMCloud
cluster, varying the number of chunks generated per
node.

thousands of node@Zl], while RAMCloud is intended to
support clusters of ten thousand nodes or mlore [19]. |
order to support thousands of nodes reliably for curren

systems, the replication factor would have to be at leas

5.
Increasing the replication factor to 5 significantly hurts
the system'’s performance. For each write operation, th

system needs to write out more replicas. This increase
the network latency and disk bandwidth of write opera-

tions.

2.2 Alternative II: Increase the Chunk Size
Instead of increasing the replication factor, we can re

duce the number of distinct copysets. A straightforward

oy

way is to increase the chunk size, so that for a fixe

amount of total data, the total number of chunks in the

system and consequently the number of copysets is
duced.

Using the same model as before, we plotted the dat

loss probability of a RAMCloud cluster with varying
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Figure 4: lllustration of the MinCopysets replication
scheme. The first replica (primary replica) is chosen
at random from the entire cluster. The other repli-
cas (secondary replicas) are replicated on the stati-
cally defined replication group of the first replica.

system only if we increase the chunk size by 3-4 orders
of magnitude. If we take this scheme to the extreme,
we can make the size of the chunk equal to the size of
an entire node. This is in fact the same as implement-
ing disk mirroring (i.e., RAID 1|L_2b]). In disk mirroring,
every storage node has identical backup copies that are
used for recovery. Therefore, the number of copysets

L Lo N
with disk mirroring is equal to—. As we can see from

Figure[3, disk mirroring significantly reduces the proba-
bility of data loss in case of simultaneous failures.

Increasing the size of chunks incurs a significant cost,
since it has the undesirable property that data objects
are distributed to much fewer nodes. This compromises
he parallel operation and load balancing of data center
§pplications. For instance, if we have 10 GBs of data
and we use 1 GB chunks, a data center application like
MapReduce@Z] could operate only acrd$sx R ma-
ghines, while if we use 64 MB chunks, MapReduce could
run in parallel onl 60« R machines. Similarly, this would
S . .
Significantly degrade the performance of a system like
RAMCIloud, which relies on distributing its data widely
for fast crash recoverL_[_lLQ].

Our goal is therefore to design a replication scheme
that reduces the probability of any data loss to a negligi-

ble value (i.e., close to zero), while retaining the ben-
fits of uniformly distributing chunks across the clus-
er for parallelization. In the following section, we de-
scribe MinCopysets, a scheme that possesses both of

1

Shese properties.

3. DESIGN

chunk sizes in Figuild 3. The figure shows that increasing In this section we describe the design of MinCopy-
the size of chunks increases the durability of the systemsets, a replication technique that retains the paralleliza
However, we would reach the desired durability of thetion benefits of uniformly distributing chunks across the
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Figure 5: MinCopysets compared with random repli- ~ Figure 6: Probability of data loss, when we vary the

cation, using different numbers of replicas with 8000 percentage of simultaneously failed nodes beyond the

chunks per node. reported 1% of typical simultaneous failures. Each
node has 8000 chunks per node.

entire cluster, while ensuring low data loss probabilities
even in the presence of cluster-wide failures. Previous Figurel$ is the central figure of this paper. It compares
random replication schemes randomly select a node fothe durability of the MinCopysets and random replica-
each one of their chunks’ rep"cas_ Random rep”cationtion with different replication factors. We can make sev-
causes these systems to have a large number of copys&&l interesting observations from the graph. First, on
and become vulnerable to simultaneous node failures? 1000 node cluster under a power outage, MinCopysets
MinCOpysets’s key |n5|ght is to decoup|e the p|acemen]reduces the prObab”lty of data loss from 99.7% to 0.02%.
of the first replica, which provides uniform data distribu- Second, if a system uses MinCopysets with 3 replicas,
tion, from the placement of the other replicas, which pro-it has lower data loss probabilities than a system using
vide durability, without increasing the number of copy- random replication with 5 replicas, and a system using
sets. MinCopysets with 2 replicas has lower probabilities than
The idea behind MinCopysets is simple. The serverdandom replication with 4 replicas. In other words, Min-
are divided statically into replication groups (each serve Copysets has significantly lower data loss probabilities
belongs to a single group). When a chunk has to pdhan random replication with more replicas. Third, Min-
replicated, a primary node is selected randomly for itsCOpysets with 3 replicas can scale up to 100,000 nodes,
first replica, and the other replicas are stored determiniswhich means that MinCopysets can support the cluster
tically on secondary nodes, which are the other nodes ofizes of all widely used large-scale distributed storage
the primary node’s replication group. Figlifle 4 illustratessystems (see Tatlé 1).
the design of our new replication scheme. The primary The typlcal number of simultaneous failures observed
node is chosen at random, while the secondary nodes a8 commercial data centers is 0.5-1% of the nodes in the
always the members of the primary node’s replicationcluster [21]. Figurél depicts the probability of data loss
group. as we increase the percentage of simultaneous failures
MinCopysets decouples data distribution from chunkmuch beyond the reported 1%. Note that commercial
replication. Similar to the random replication scheme,storage systems commonly operate in the range of 200-
it enables data center applications to operate in parall¢#000 nodes per cluster (e.g., see Table 1 and GES [16]).
on large amounts of data, because it distributes chunksor these cluster sizes MinCopysets prevents data loss
uniformly across the data center. In addition, similar towith a high probability, even in the very unlikely and hy-
disk mirroring, it limits the number of Copysets gener- pothetical scenario where 4% of the nodes fail simulta-
ated by the cluster, because each node is only a memb@eously.
of a single replication group. Therefore, the number of3-2 Compatibility with Existing Systems
o _Animportant property of MinCopysets is that it does
random replication, the number of copysets does not in, ¢ require changing the architecture of the storage sys-

copysets remains constant and is equa&o Unlike

crease with the number of chunks in the system. tem. Unlike the alternative solutions that we discussed in
In.the next few subs_ecnons,_ we will go into further Section®, MinCopysets frees the storage system to use
detail about the properties of MinCopysets. chunks of any size with any replication factor.
. . In addition, MinCopysets provides the storage system
3.1 Durability of MinCopysets with the freedom to decide how to split the nodes into



replication groups. For example, groups can be formedhis would consume additional CPU and disk band-

from nodes that belong to different failure domains, in or-width. Note that this overhead is a result of a conscious

der to prevent simultaneous failures when an entire fail-design choice to simplify the management of replicas at

ure domain (e.qg. rack, part of the network) fails. the expense of added recovery bandwidth, and is not an
Furthermore, large scale storage systems have addirherent overhead of MinCopysets.

tional constraints when choosing their primary replica. . . ..

For instance, in HDFS, if the Iocgl machr?ne hays er?ough3'4 Supporting Multiple Replication Fac-

capacity, it stores the primary replica locally, while tors

RAMCloud uses a semi-randomized approach for select- GFS, Azure and HDFS allow users to define differ-

ing its primary replica, based on Mitzenmacher’s ran-ent replication factors for each chunk. MinCopysets sup-

domized load balancing algorithrﬂﬂw]. MinCopysetsports multiple replication factors by maintaining multi-

can support any primary replica selection scheme, agple lists of replication groups for each replication factor

long as the secondary replicas are always part of the sam&hen it makes its replica placement decisions, the sys-

replication group as the primary. tem simply uses the list that matches the chunk’s replica-
The new scheme can be implemented as a modification factor.

tion of the random replication scheme. In order to en- Since MinCopysets significantly reduces the probabil-

able MinCopysets, we need to add support for a cenity of data loss in case of simultaneous failures, it is prob-

tralized function that will split the nodes into groups, ably unnecessary, in most cases, to replicate chunks us-

and modify the existing replication scheme to adhereng a replication factor larger than 3.

to these groups. Fortunately, most large scale storage

systems have a highly available centralized server thad. EVALUATION

is.in charge of managing the nodes in the cluster (e.g., MinCopysets is a general-purpose, scalable replica-
Windows Azure’s Stream Manager, HDFS' NameNode. i, scheme that can be implemented on a wide range

RAMCloud's Coordinator). As we will demonstrate in ¢ yistripyted storage systems that distribute chunks ran-
Section[#, it was relatively straightforward to modify 4oy across the data center. In this section, we describe

the RAMCloud and HDFS random replication scheme g, jnjementation of MinCopysets in RAMCloud and

to support MinCopysets. HDFS. We also provide the results of our experiments
3.3 Node Recovery Overhead ;)nnatnhceellmpact of MinCopysets on RAMCloud’s perfor
For each chunk, random replication independently We found that it was simple to add support for Min-
chooses nodes for each of its replicas. In contrast, MinCopysets to RAMCloud and HDFS. Not including unit
Copysets chooses an entire replication group, which contests, the change to the original RAMCloud source code
sists of a fixed set of nodes. In case of a node failure, themounted to about 600 lines of C++ and the HDFS
entire replication group is impacted. This slightly com- change was about 200 lines of Java.
plicates node recovery. . . .
There are several ways to solve this problem. For ex-4'1 Implementation of MinCopysets in
ample, the coordinator does not have to assign replica- RAMCloud
tion groups to all backups, and keep a small number of RAMCIloud is a memory-based persistent distributed
backups as ‘reserve’ nodes. Another alternative is to alstorage system. The main goal of RAMCloud is to pro-
low nodes to be members of several replication groupwvide low latency access; a read RPC of a 100 byte object
(e.g. 2 or 3). In the latter scheme, when a node failscan be serviced in approximately 5 microseconds, end-
its group’s remaining nodes can form a new replicationto-end.
group with a node that may already be a member of an- In order to keep data persistent, RAMCloud stores one
other replication group. copy of each data object in memory, while saving addi-
The brute force alternative, which is the one we im-tional copies on three disk-based backup nodes. Due to
plemented, is to re-replicate the entire replication grougthe low latency requirements of RAMCloud, one of the
when one of the nodes in the group fails. The nodes thatain challenges of the system is to provide fast crash re-
didn't fail and belonged to the original replication group covery, in case the main memory copy of the data is lost.
can be then reassigned to a new replication group oncéo this end, RAMCloud splits its data into small 8MB
enough unassigned nodes are available. chunks, which are scattered uniformly across the entire
This approach increases the network and disk banddata center. When one of the in-memory nodes is lost, the
width during backup recovery. In addition, the backupdata is recovered from the entire cluster in parallel [19].
nodes that were part of the failed replication group have )
to clean up their old data after it has been re-replicated #-1-1 Architecture



RAMCloud Server ID | Replication an RPC, which informs them of their group.
Coordinator Group ID When a RAMCloud master tries to create a new
Server0 |5 chunk, it first selects a primary backup as it did in
Server1 |0 the original random replication scheme using Mitzen-
Server2 |5 macher’s randomized load balancing algorithni [18]. If
Request: Server3 |7 the backup has been assigned a replication group, it will
Assign accept the master’s write request and respond with the
Replication Coordinator Server List other members in its replication group. The master will
Group RPC Request: then replicate the other two copies of the chunk to the two
Open New remaining members of the group. If the backup did not
< chunk RPC accept the master’s write request, the master will retry its
RAMCloud [ RAMCloud write RPC on a new primary backup.
Backup TV Master We describe several additional issues we had to solve
Replication Group in our implementation below.

Figure 7: lllustration of the MinCopysets implemen- 4.1.2 Backup Recovery

tation on RAMCloud. The coordinator assigns each MinCopysets introduces some changes to backup re-
backup to a single replication group._When the mas- covery. For the simplicity of the implementation, every
ter creates a new chunk, the backup informs the mas-  time a backup node fails, we re-replicate its entire repli-
ter of the members of its replication group. cation group. This approach increases the disk and net-
work bandwidth during recovery.
After a node fails, the coordinator changes the repli-

Figure[T illustrates the architecture of our implementa-cation group ID of all the nodes in its replication group

tion. We implemented MinCopysets on the RAMCloud to limbo. Limbo backups can still service read requests
coordinator, master and backup. for the purpose of master recovery but cannot accept new

The RAMCloud coordinator is a highly available chunks. Therefore, when a master tries to create a new

server that is in charge of managing the cluster. It keep§hunk on alimbo backup, the backup will refuse its write
an up-to-date list of all the servers in the cluster and theiféquest. Limbo backups are treated by the coordinator
addresses. It also controls the registration of new server@s new backups that have not yet been assigned a repli-
decides whether a node has failed and coordinates nod&tion group ID. Once there are enough unassigned or
recoveries. limbo nodes to form a new group, the coordinator will
The RAMCloud master services client requests fromassign them a new replication group ID, and they can be-
the in-memory copy of the data. The master is also indin servicing write requests again, even if they still store
charge of selecting the backup servers to store the persiftover data from the old replication group.
tent disk based copies of the data. In addition, all RAMCloud masters are notified of
The RAMCloud backups are in charge of storing datathe node’s failure. As a result, any RAMCloud mas-
persistenﬂy. They are |arge|y passive: in normal Oper.ter that had data stored on the node’s group tries to re-
ation, their only function is to receive write RPCs from replicate its data on a new replication group. If a backup
masters and write the data to disk. Backups read datBas data remaining from its old replication group, it
0n|y when a master server needs to be recovered. won't garbage collect the data until the masters have re-
In our implementation, the coordinator is in charge of replicated it entirely on a new group.
assigning the backups to replication groups. The master The backup recovery is not part of the critical path of
then rep"cates its chunks on rep”cation groups. RAMCloud. Therefore, the extra time it takes to fU”y re-
The coordinator controls the assignment of backup'eplicate the replicas on the new replication group does
nodes to replication groups because it has the full aunot affect the system’s performance. The only overhead
thority to decide which nodes are part of the cluster. Inis the extra consumed bandwidth. Note that backup re-
order to support MinCopysets, we added a new field tocovery tasks can be de-prioritized in comparison to more

each entry of the coordinator’s server list, which containdmportant real-time operations like client read and write
the replication group ID. requests and operations related to master recovery. In ad-

When a new backup joins the cluster, the coordinadition, we assume that failures are relatively rare events.

tor iterates through the server list, to see whether there h
are three backups on three different racks that are not as#1-3 ~ Other Issues
signed to a replication group. The coordinator assigns In the original random replication scheme, it is

these three backups a replication group, by sending therstraightforward for a master to create a new chunk on a



backup. It sends write RPCs in parallel to three backupsadded support for assigning DataNodes to replication
and if one of the RPCs fails for some reason, it retries andjroups, choosing replica DataNodes based on replication
creates the chunk on a different backup. The RPC couldroups, and re-replicating blocks to other groups after a
fail due to a node failure or because the backup doesnDataNode failure.

have enough disk capacity to allocate for the new chunk. ]

with MinCopysets, if any one of the replication group 4-2.2 Chunk and Network Load Balancing

nodes cannot write the new chunk, all three RPCs need MinCopysets complicates chunk rebalancing in
to be aborted. Otherwise there may be inconsistencies iRIDFS. Rebalancing is the act of migrating replicas to
RAMCloud’s log. different storage servers to more evenly spread data

A naive way to tackle this problem is to declare across DataNodes. This is desirable, for instance, when
the node that didn’t accept the RPC as a failed nodeadditional DataNodes are added to the system. With
Since backup recovery now operates on entire replicaMinCopysets a single replica of a chunk cannot simply
tion groups, the data on the failed node’s group wouldhe moved to another node belonging to a different repli-
simply be re-replicated as new chunks on a new replication group. Instead, a new replication group must be
cation group which would solve any outstanding consischosen and each replica of the chosen chunk must be
tency issues. moved to a member of the new set.

The problem with this approach is that RPCs can fail  Another potential issue in the MinCopysets HDFS im-
because nodes do not have sufficient disk capacity. Iplementation is reduced network load balancing caused
we treat any node that reaches the limits of its disk caby HDFS’ pipelined replication. In HDFS, DataNodes
pacity as a failed node, the system would generate falsgeplicate data on a pipeline from one node to the next,
positive backup recoveries. This could lead to a systemin an order that minimizes the network distance from the
atic collapse since each crash reduces the total amount efient to the last DataNode. With the MinCopysets im-
storage available to the system which, in turn, increaseplementation, since replication groups are chosen stat-
the likelihood of nodes running out of space. ically, the system might over-utilize a relatively small

In order to prevent this problem, we implemented annumber of links that connect the replication group’s
unwind algorithm for new chunks. Anytime a master nodes which may result in network bottlenecks.
tries to create a new chunk in one of the backups and |n order to solve the network load balancing issues and
it fails because the backup does not have enough disto support MinCopysets on such systems, the NameN-
capacity, the master sends an unwind RPC to all of thede could take the network topology into account when
backups in the replication group, and retries replicationassigning the nodes to different replication groups. In
on a different group. If, for some reason, the unwindaddition, since certain network links can become con-
RPC fails on one of the nodes, we treat it as a node failgested, the central node could periodically load balance
ure and initiate backup recovery on the entire replicationcertain replication groups (i.e., reassign certain nodes t

group. different groups). Since we still need to evaluate the net-
. work load balancing issue in HDFS, we have not yet im-
4.2 HDFS Implementation plemented these solutions.

To demonstrate the general-purpose nature of Min- i
Copysets, we describe our implementation of MinCopy-4-3 ~ Performance of MinCopysets on RAM-
sets in HDFS. Cloud

The implementation of MinCopysets on HDFS is sim-  We compared the performance of MinCopysets repli-
ilar to RAMCloud’s implementation. The main differ- cation scheme with the original random replication under
ence is that in HDFS the NameNode, which controlsthree scenarios: normal RAMCloud client operations, a
all file system metadata, dictates the placement of evergingle master recovery and a single backup recovery.
chunk replica. In contrast, replica placement decisions As expected, we found that using MinCopysets incurs

are completely decentralized in RAMCloud. almost no overhead on normal RAMCloud operations
) and on master recovery, while the overhead of backup
421 Architecture recovery was higher as we expected. We provide the re-

The centralized NameNode simplified the implemen-sults below.
tation of MinCopysets on HDFS. For normal operations, ) )
we only needed to modify the NameNode to assign new#3-1  Normal Client Operations
DataNodes (storage nodes) to replication groups and In order to determine the overhead of MinCopysets
choose replica placements based on these group assigmplication under normal client operations, we ran a per-
ments. formance test suite. The test runs several master servers
The HDFS replication code is well-abstracted. Wealong with multiple backup servers. Up to 10 clients try



System Recovery Data Recovery Time Expected lost chunks under concurrent failures

Without MinCopysets| 1256 MB 0.73s
With MinCopysets 3648 MB 1.10s

. -+ 1000 Nodes, R=3, MinCopysets
Table 2: Comparison of backup recovery perfor- © 1000 Nodes, R=3, Random Replication
mance on RAMCloud with MinCopysets. Recovery
time is measured after the moment of failure detec-

tion.

Expected lost chunks [108]
= N w N wn (2] ~ o]

" ‘ ‘ .
% " 20w 40% 60% 80% 100%

. . . . 2
to write and read objects of various sizes (100 byte: Percentage of RAMCloud nodes that fail concurrently

1 MB) to and from the masters. We ran these tests 100

times, and found no difference between the performanceigure 8: The expected number of chunks lost in a
of RAMCloud with the MinCopysets and with the ran- 1000 node RAMCloud cluster with 8000 chunks per
dom replication scheme. node, when we vary the number of concurrent fail-

4.3.2 Master Recovery ures.

One of the main goals of RAMCloud is to fully re-
cover a master in about 1-2 seconds so that applications This section discusses several additional issues related
experience minimal interruptions. In order to test mas-to MinCopysets. First, we describe the difference be-
ter recovery, we ran a cluster with 39 backup nodes andween data loss probability and the actual amount of data
5 master nodes. We manually crashed one of the madost. Second, we discuss how the notion of copysets can
ter servers, and measured the time it took RAMCloud tobe applied to DHT systems. Third, we show some al-
recover its data. We ran this test 100 times, both withternative replication schemes that have higher data loss
the MinCopysets and random replication schemes. Agrobabilities than MinCopysets, but can reduce the over-
expected, we didn’t observe any difference in the time ithead of node recovery. Finally, we discuss how coding
took to recover the master node in both scheme. schemes relate to the number of copysets.

However, when we ran the benchmark again using 10
backups instead of 39, we observed MinCopysets toolb.1 Amount of Data Lost

11% more time to recover the master node than the ran- \jincopysets trades off the probability of failure with
dom replication scheme. Due to the fact that MinCopy-the amount of data lost in each failure. In other words,
sets divides backups into groups of _three, it only take_SMincopysets reduces the probability of losing any data
advantage of 9 out of the 10 nodes in the cluster. Thigjyring simultaneous failures, but increases the amount
overhead occurs only when we use a number of backupgysi when data loss does occur. In order to investigate
that is not a multiple of three. As expected, the overheagg property, we ran a monte carlo simulation that com-

gets smaller as the grows larger. Since we assume thabes the expected number of lost chunks with random
RAMCloud is typically deployed on large scale clusters, rgpjication and MinCopysets under concurrent node fail-
the master recovery overhead is usually negligible. ures.

433 Backup Recovery The results of this simulation are shown in Fig[ite 8.
) The graph shows that the expected number of lost chunks
In order to evaluate the overhead of MinCopysets offg gimost identical in both schemes. Therefore, a system
backup recovery, we ran an experiment where a singl@jesigner that deploys MinCopysets should expect to ex-

backup crashes on a RAMCloud cluster with 39 masmr%erience much fewer events of data loss. However, each
and 72 backups, storing a total of 33 GB of data. TBble Zyne of these events will lose a large amount of data (i.e.

presents the results. Since masters re-replicate data iy |east a whole node’s worth of data). For example, if
parallel, recovery from a backup failure only takes 51%,ye assume a power outage that causes 1% of the nodes
longer using MinCopysets, compared to random repliq | occurs once a year, a 5000 node RAMCloud clus-

cation. As expected, our implementation approximatelyier vyith random replication will lose about 344 MB every
triples the amount of data that is re-replicated during re-

. - : - ear. In contrast, MinCopysets will take on average ap-
covery. Note that this additional overhead is not '”herengroximately 625 years to lose data. In the case of this

to MinCopysets, and results from our design choice to\/ery rare event, 64 GB of data will be lost.

reduce the complexity of the coordinator at the expense  gince each data loss event can incur certain fixed costs
of higher backup recovery overhead. (e.g. rolling out magnetic tape archives to recover the
lost data), most storage systems would probably prefer a

5. DISCUSSION significantly lower occurrence of data loss at the expense
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Figure 9: The probability of data loss in a cluster of  Figure 10: Simulation of Facebook’s HDFS repli-
nodes using Chord’s replication scheme, with a vary-  cation scheme, on a cluster with 10,000 chunks per
ing number of virtual nodes per physical node. Each  node.

physical node has 8000 chunks.

5.3 Other Alternatives to Contain Ran-
of losing a higher amount of data each time. domized Replication

5.2 Copysets and Distributed Hash Tables ~_NCOPYSetsis one of many possible schemes that can
constrain the number of copysets, while still enabling
Dynamo [13], Project Voldemort|[4] and Apache Cas- replicas to be distributed widely in the cluster. For ex-
sandral[1] are all key-value storage systems that use hasfinple, instead of having only one replication group per
key partitioning schemes similar to Distributed Hash Ta-node, we could allow nodes to belong to a larger, fixed
bles (DHT) such as ChorEIZZ]. These typically assignnumber of replication groups.
each physical node multiple virtual nodesEach virtual If nodes can belong to multiple groups, the overhead
node is assigned a range in the hash space. The replif node recovery can be reduced, as described in Sec-
cas of the data are stored on a sequence of virtual nodegon [33. In fact, the replication scheme that Facebook
according to their hash space. DHT based systems usgplemented in their HDFS cluster uses a small number
multiple virtual nodes per physical node in order to dis- of replication groups per node B 8]. In their proprietary
tribute the key ranges across multiple nodes to ensurmplementation of Hadoop, they constrain the placement
load balancing. The original Chord paper proposes tof replicas into smaller groups, by defining a window of 2
run O(logN) virtual nodes, whereV is the number of  racks and 5 machines around the first replica’s machine.
physical nodes. The second and third replica are chosen at random from
This presents an interesting trade off with regards tahis window.
copysets. As long as the number of virtual nodes per MinCopysets and has a lower probability of data loss
physical node is small, each node belongs to a relativelyhan Facebook’s scheme. To demonstrate this point, we
small number of replication groups, because the replicagimulated Facebook’s scheme and compared it with Min-
are always distributed to the same sequence of virtuatopysets, using typical HDFS chunk and node size pa-
nodes. However, using a small number of virtual nodesameters. FigurE_10 presents the results of the simula-
may have a negative impact on load balancing. tion. As we can see, while Facebook’s more relaxed
Therefore, DHT replication balances between datascheme significantly improves the probabilities of the
distribution and data loss probability, similar to the ran- original random replication scheme, it is more exposed
dom replication scheme. To demonstrate this effect, wao concurrent failures on large clusters than MinCopy-
computed the data loss probabilities under a power outsets. The advantage of using MinCopysets in compari-
age in a cluster using a DHT based replication schemeson with schemes like Facebook’s is that MinCopysets
The results are presented in Figlife 9. is more general-purpose. With MinCopysets, system de-
The takeway from this graph is that increasing thesigners do not have to worry about optimizing the "repli-
number of virtual nodes for load balancing increases theation window" to match their specific cluster, chunk and
probability of data loss in the face of concurrent nodenode sizes.
failures. Therefore, unlike MinCopysets, the DHT repli-
cation scheme couples load balancing and durability. 5.4 Copysets and Coding

2\oldemort uses a key partitioning similar to virtual nodes. Some storage systems, such as GFS, Azure and HDFS,

Virtual node support is currently being implemented for Cas-US€ coding techniques to reduce space usage or tolerate
sandral[5]. more failures. We have found that these techniques do

10



not impact the probability of data loss when using ran-mirrored on a set of additional disks, in order to provide
dom replication, and the MinCopysets solution can behigher durability. This scheme was originally designed
applied together with data coding. as a hardware solution for a single machine. In order to
Codes are typically designed to allow chunks to beextend RAID 1 to multiple disks, RAID 1+0 or RAID
resilient against failures of two nodes using a reducedlO is designed as a stripe of mirrors. In this scheme,
amount of storage, but not against three failures or moreodd numbered chunks are replicated on one mirror, while
If the coded data is still distributed on a very large num-even numbered chunks are replicated on the second mir-
ber of copysets, multiple simultaneous failures will still ror. This scheme was extended further to RAID 100 and
cause data loss. RAID 1000. In these schemes, chunks are split into even
In practice, existing storage system parity code im-more mirror groups.
plementations do not significantly affect the number of As an extension to standard RAID systems, RAID-
copysets. For example, the HDFS-RAID 14] imple- x ] was designed as a distributed software RAID
mentation encodes groups of 5 chunks in a RAID 5 andscheme for small clusters. Similar to our paper, it also
mirroring scheme, which reduces the number of non4dentifies the need to decouple the distribution and data
distinct copysets by a factor of 5. However, this is exactlyloss probability of data, using a combination of striping
equivalent to increasing the chunk size by a factor of 5and mirroring.
and we showed before (in Fig 3) that such a reduction While MinCopysets is inspired by RAID's concept of
does not significantly decrease the data loss probabilitiesirroring, in practice the two schemes are very differ-

of the system. ent. MinCopysets operates on a data center scale, while
these RAID schemes are designed to serve small clus-
6. RELATED WORK ters of large servers. In addition, the RAID scheme is

rigid. Nodes cannot join or leave mirror groups, and each
9hunk is deterministically replicated on a certain mir-
for group. In contrast, MinCopysets can choose the first
plica at random from the entire cluster, and nodes can
e divided into replication groups using different flexible
policies.

The related work is split into two categories. The first
category is large scale storage systems that intentionall
constrain the placement of replicas to prevent data los
due to concurrent node failures. The second categor
is RAID mirroring schemes, which were not originally
designed to support the scale of Big Data applications.

6.1 Different Placement Policies 7. CONCLUSION

Similar to MinCopysets, Facebook’s proprietary Conventional wisdom holds that randomization is a
HDFS implementation constrains the placement of repli-general-purpose technique for solving a variety of prob-
cas into smaller groups, to protect against concurrentems in large-scale distributed systems. This paper ques-
failures [3/8]. As we discussed in the previous sectiontions this assumption, and shows that randomization
while this scheme improves the original random repli-leads to poor data durability. In particular, we show
cation scheme, it is much more exposed to concurrenthat existing widely deployed systems such as HDFS and
failures than MinCopysets and is not general-purpose. Azure that use random replication can lose data under

Ford et al. from GooglelIiS] analyze different fail- common events such as power outages.
ure loss scenarios on GFS clusters, and have proposedThis paper presents MinCopysets, a simple general-
geo-replication as an effective technique to prevent datpurpose scalable replication scheme, that derandomizes
loss under large scale concurrent node failures. Geodata replication in order to achieve better data durabil-
replication is a fail-safe way to ensure data durabilityity properties. MinCopysets decouples the mechanisms
under a power outage. However, geo-replication incursised for data distribution and durability. It allows system
high latency and bandwidth costs. In addition, not alldesigners to use randomized node selection for data dis-
storage providers have the capability to support geotribution to reap the benefits of parallelization and load
replication. balancing, while using deterministic replica selection to

In contrast to geo-replication, MinCopysets can miti- significantly improve data durability. We showed that
gate the probability of data loss under concurrent failuresvith MinCopysets, systems can use only 3 replicas yet
without moving data to a separate location. achieve the same data loss probabilities as systems us-

ing random replication with 5 replicas, and can safely
6.2 RAID scale up to 100,000 nodes. With relatively straightfor-

Another replication scheme that is related to Min- ward implementations, we added support for MinCopy-
Copysets is RAID (for a detailed overview of RAID tech- sets to RAMCloud and HDFS. MinCopysets does not in-
nology, see IBM’s guide|:[6]). RAID 1@0] is the basic troduce any significant overhead on normal storage op-
disk mirroring scheme. In RAID 1, each disk is fully erations, and can support any data locality or network
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topology requirements of the underlying storage system[17] K. Hwang, H. Jin, and R. S. Ho. Orthogonal striping and-mir
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