
Short Article

3,000,000 Queens in Less Than One Minute 1

Rok Sosic
D e p a r t m e n t of Compu te r Science

Universi ty of U tah
Salt Lake City, U T 84112

sosic@cs.utah.edu

Summary
The n - queens problem is a classical combinatorial search prob-
lem. In this paper we give a linear time algorithm for this prob-
lem. The algorithm is an extension of one of our previous local
search algorithms [3, 4, 6]. On an IBM RS 6000 computer, this
algorithm is capable of solving problems with 3,000,000 queens in
approximately 55 seconds.

Keywords: Gradient-based conflict minimization heuristic, local
search, the n - queens problem, probabilistic search algorithms.

Jun G u
D e p a r t m e n t of Electrical Eng inee r ing

Univers i ty of Calgary
Calgary, Canada T2N 1N4

gu@enel.ucalgary.ca
Another fast algorithm based on the same conflict minimization
heuristic and the same local search idea for solving the n - queens
problem was presented in [7]. This algorithm solves the 1,000,000
queens problem in approximately the same time as our previous
QS3 algorithm.

1 Introduction
The n - queens problem is a classical combinatorial search prob-
lem. The problem is to place n queens on an n x n chessboard so
that no two queens attack each other. That is, no two queens are
allowed to be placed on the same row, the same column, or the
same diagonal line.

One method for solving the n - queens problem which systemati-
cally generates all possible solutions is known as backtracking
search. Due to the exponential growth of the search load in back-
tracking, this type of search is not able to solve large size n -
queens problems. Even very efficient AI search algorithms can
only find a solution for the n - queens problem with n less than
100 [1, 2, 8, 9]. Recently we gave a polynomial time local search
algorithm that employs a gradient-based conflict minimization
heuristic. [3, 4, 6]. This algorithm can find a solution for very large
size n - queens problems. In [5], we have compared the real-time
running results of this algorithm with constraint-based back-
tracking search. To distinguish the original algorithm from the
new algorithm, we call it the Queen Search 1 (QS1) algorithm.

We present a linear time Queen Search 4 (QS4) algorithm, which
is derived from the QS1. This algorithm runs in linear time and
uses the same conflict minimization heuristic as in QS1. The run-
ning time of QS4 is much faster than the approximately O(17 log
17) execution time of the QS1, and is much faster than two of our
previous near linear QS2 and QS3 algorithms. On an IBM RS
6000/530, for example, QS4 solves 1,000,000 queens, 2,000,000
queens, and 3,000,000 queens problems in 17 seconds, 36 sec-
onds, and 55 seconds, respectively. In this paper, we describe the
QS4 algorithm only.

2 The QS1 Algorithm

The QS1 algorithm and its execution statistics were presented in
detail in [3, 4, 6]. Here we briefly outline the QS1 algorithm.

Let n be the size of the board and let each queen be placed in one
row only. When n queens are arranged on the board, their col-
umn positions are stored in arrayqueen of length n. The t ~h queen
is placed on the board at row i and column queen[i]. We require
that at any moment the array queen contains a permutation of in-
tegers 1 , . . . , n. This guarantees that no two queens attack each
other on the same rowor the same column. The problem remains
to resolve any collisions among queens possibly occurring on the
diagonal lines.

At the beginning of QS1, a random permutation is generated.
Collisions on the diagonal lines are eliminated simply by testing
all possible pairs of queens. If the swap of queens in a pair reduces
the number of collisions on the diagonal lines, then the swap is
performed, otherwise no action is taken. The process is repeated
until all collisions among queens are eliminated. This efficient
gradient-based conflict minimization heuristic is used in QS1,
QS2, QS3, and QS4 algorithms.

In our past several years of experimental experience with QS1, we
found that this simple local search algorithm with a conflict mini-
mization heuristic is able to find a solution within a small number
of random permutations. It always found a solution in the first
random permutation for a problem size greater than or equal to
1000. The real execution time of the QS1 algorithm, pro-
grammed in C and run on an IBM RS 6000/530 computer is illus-
trated in Table 1. z

1. This research had been supported in part by the University of Utah research fellowships, in part by the Research Council of
Slovenia, and in part by the ACM/IEEE academic scholarship awards.

2. Numbers in Table 1 are 3.5 times smaller than numbers in our previous paper [6], because IBM RS 6000 is about 3.5 times
faster than NeXT which was used in our previous measurements.

S I G A R T Bul le t in , Vol. 2, No. 2 22

3 The QS4 Algori thm

The initial permutation in the QS1 algorithm is completely ran-
dom. It was observed in [3, 4, 6] that a random permutation ofn
integers generates approximately n x 0.53 collisions on the diago-
nal lines. For example, a random permutation of 500,000 num-
bers generates approximately 265,000 collisions among queens.

The QS1 algorithm can be made more efficient if the collisions in
the initial permutation can be minimized. This is the basic idea
behind the QS4 algorithm.

In the QS4 algorithm, an initial random permutation is gener-
ated such that the number of collisions among queens is mini-
mized. Queens are placed on successive rows. The position for a
new queen to be placed on the board is randomly generated from
columns that are not occupied until a conflict free place is found
for this queen. After a certain number of queens have been
placed in a conflict free manner the remaining queens are placed
randomly on free columns regardless of conflicts on diagonal
lines. The number of queens with a possible conflict is denoted as
c. This process of generating the initial permutation does not re-
quire backtracking.

The number of queens placed in a conflict free manner n - c
needs to be chosen carefully. If this number is too small the QS4

algorithm shows no improvement over the QS1 algorithm. If this
number is too large the initialization either takes too long or does
not terminate. The number of queens with a conflict c that we
have chosen in our real time runs varies with n. Number c is
shown together with n and the real execution time of the QS4 al-
gorithm in Table 2. It can be observed from experiments that c
does not increase with increasing n. Although c could be set to
100 for all values of n, its value is optimized for smaller values ofn.

After the initial permutation is generated, at most c queens need
to be moved to find a solution. A search step for the QS4 algo-
rithm is similar to that of the QS1 algorithm. The same gradient-
based conflict minimization heuristic of QS1 algorithm is applied
here. Two queens are chosen. The first queen is systematically
chosen from the c queens with a conflict, the second queen is cho-
sen completely at random. If n is less than 1000, then the second
queen is also chosen systematically. If the swap of the queens' col-
umn positions reduces the number of conflicts, the swap is per-
formed, otherwise no action is taken. Search steps are performed
until a solution is found.

Execution results of the QS4 algorithm are shown in Table 2.
Compared to our previous results of the QS1 (see Table 1), the
execution speed of the QS4 is approximately 300 times faster for
problem size 100,000. Numbers in the table are the total running
time including initialization.

N u m b e r o f Q u e e n s n 10 I 100 I 1 ,000 I 10 ,000

T i m e o f t h e 1st r u n 0.0 0.1 0.4 7.4

T i m e o f t h e 2nd r u n 0.0 0.0 0.3 8.6

T i m e o f t h e 3 rd r u n 0.0 0.1 0.5 5.9

T i m e o f t h e 4 t h r u n 0.0 0.1 0.4 11.9

T i m e o f t h e 5 t h r u n 0.0 0.1 0.3 19.0

T i m e o f t h e 6 t h r u n 0.0 0.0 0.5 7.7
T i m e o f t h e 7 t h r u n 0.0 0.0 0.5 5.8

T i m e o f t h e 8 t h r u n 0.0 0.0 0.4 7.6

T i m e o f t h e 9 t h r u n 0.0 0.1 0.5 10.5

T i m e o f t h e 10 th r u n 0.0 0.0 0.4 8.9

A v g . T i m e t o F i n d a S o l u t i o n 0.0] 0.1 [0.4 [9.3

Table 1: The Execution Time of the QS1 Algorithm on an IBM RS 6000/530 Computer (Average

100,000

340
371
327
355
320
264
298
472
278
261

327

of 10 Runs; Time Unit: seconds)

N u m b e r o f Q u e e n s n

Q u e e n s w i t h Conf l i c t c

T i m e o f t h e 1st r u n 0.0

T i m e o f t h e 2nd r u n 0.0

T i m e o f t h e 3 rd r u n 0.0

T i m e o f t h e 4 t h r u n 0.0

T i m e o f t h e 5 t h r u n 0.0

T i m e o f t h e 6 t h r u n 0.0

T i m e o f t h e 7 t h r u n 0.0

T i m e o f t h e 8 t h r u n 0.0

T i m e o f t h e 9 t h r u n 0.0

T i m e o f t h e 10 th r u n 0.0

A v g . T i m e t o F i n d a S o l u t i o n 0.0

1 0 2 1 : : 1 0 4 1 : : 106

30 50 100

0.0 0.0 0.1 1.1 16.9

0.0 0.0 0.1 1.1 17.0

0.0 0.0 0.1 1.1 17.1

0.0 0.1 0.1 1.1 17.0

0.0 0.0 0.1 1.1 17.0

0.0 0.0 0.1 1.1 17.0

0.1 0.1 0.1 1.1 17.0

0.0 0.1 0.1 1.1 17.0

0.0 0.1 0.1 1.1 17.0

0.0 0.0 0.1 1.1 17.0

0.0 0.0 0 . i 1.1 17.0

2 x 106 3 × 106

100 100

35.7 54.8

35.8 54.8

35.8 54.6 i
35.9 54.8

35.8 54.7

35.8 54.6

35.8 54.7

35.8 54.7

35.8 54.7

35.8 54.7

35.8 I 54.7

Table 2: The Execution Time of the QS4 Algorithm on an IBM RS 6000/530 Computer (Average of 10 Runs; Time Unit: seconds)

23 S I G A R T Bulletin, Vol. 2, No. 2

Recently, Minton et al. [7] reported a fast algorithm for the n -
queens problem. For a million queens problem, on a SUN SPARC
Station 1, it took 90 to 240 seconds to find a solution, depending
on algorithm optimization. In Figure 2 of their paper, they
showed that it took their algorithm on average approximately 240
seconds to find a solution. We have run the same size problem on
a SUN SPARC Station, it took QS4 steadily 38 seconds to find a
solution, which is significantly faster than Minton's results.

The QS4 algorithm spends most of its time in the initialization.
The search process takes a negligible amount of time and is con-
stant for all n greater than or equal to 1000. The effort in initial-
ization increases linearly. For example, approximately 3,060,000
queen positions are tried for n equal to 1,000,000; approximately
9,180,000 queen positions are tried for n equal to 3,000,000. In
summary, for each queen only three positions are tested on aver-
age before a conflict free position is found.

4 Conclusion

A linear time probabilistic local search algorithm that employs a
gradient-based conflict minimization heuristic is presented. This
algorithm is significantly faster than any presently known algo-
rithm and is able to find a solution for extremely large size n -
queens problems.

5 Acknowledgement

J. Mostow pointed out a reference of [7]. We gratefully acknowl-
edge IBM for providing access to IBM RS 6000 for data collection.
Comments from SIGART editor and reviewers are greatly appre-
ciated.

6 References
[1] J. Gaschnig. Performance Measurements and Analysis of Cer-
tain Search Algorithams. PhD thesis, Carnigie-Mellon Universi-
ty, Dept. of Computer Science, May 1979.

[2] R. M. Haralick and G. Elliot. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelligence,
14:263-313, 1980.

[3] R. Sosic and J. Gu. Fast n - queen search on VAX and Bobcat
machines. Unpublished CS 547 AI Class Student Project Report,
Winter Quarter1988.

[4] R. Sosic and J. Gu. How to search for million queens. Techni-
cal Report UUCS-TR-88-008, Dept. of Computer Science,
Univ. of Utah, Feb. 1988 (also available from authors).

[5] J. Gu. Parallel Algorithms and Architectures for Very Fast AI
Search (PhD Thesis). Technical Report UUCS-TR-88-005,
Univ. of Utah, Dept. of Computer Science, Jul.. 1988.

[6] R. Sosic and J. Gu. A polynomial time algorithm for the n -
queens problem. SIGART Bulletin, 1(3):7-11, Oct. 1990.

[7] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Solving
large-scale constraint satisfaction and scheduling problems using
a heuristic repair method. In Proceedings of AAAI90, pages
17-24, Aug. 1990.

[8] H.S. Stone and P. Sipala. The average complexity of depth-
first search with backtracking and cutoff. IBM J.. Res. Develop.,
30(3):242-258, May 1986.

[9] H.S. Stone and J.M. Stone. Effecient search techniques - an
empirical study of the n - queens problem. IBMJ. Res. Develop.,
31(4):464--474, July 1987.

S I G A R T Bul le t in , Vol. 2, No. 2 24

