
Bayes Rule

• The product rule gives us two ways to factor a joint 

probability:

• Therefore,

• Why is this useful?

– Key tool for probabilistic inference: can get diagnostic probability 

from causal probability

• E.g., P(Cavity | Toothache) from P(Toothache | Cavity)

– Can update our beliefs based on evidence
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Source:

http://www.cs.illinois.edu/%7Eslazebni/fall13/lec13_bayesian_inference.pptx



Bayes Rule example
• Marie is getting married tomorrow, at an outdoor ceremony 

in the desert. In recent years, it has rained only 5 days each 

year (5/365 = 0.014). Unfortunately, the weatherman has 

predicted rain for tomorrow. When it actually rains, the 

weatherman correctly forecasts rain 90% of the time. When 

it doesn't rain, he incorrectly forecasts rain 10% of the time. 

What is the probability that it will rain on Marie's wedding? 
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Bayes rule: Another example

• 1% of women at age forty who participate in routine 

screening have breast cancer. 80% of women with 

breast cancer will get positive mammographies.

9.6% of women without breast cancer will also get 

positive mammographies. A woman in this age 

group had a positive mammography in a routine 

screening. What is the probability that she actually 

has breast cancer?
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Actual Example



Probabilities

• File rede_genie_dne.dne



Probabilistic inference

• Suppose the agent has to make a decision about 

the value of an unobserved query variable X given 

some observed evidence variable(s) E = e

– Partially observable, stochastic, episodic environment

– Examples: X = {spam, not spam}, e = email message

X = {zebra, giraffe, hippo}, e = image features



Bayesian decision theory

• Let x be the value predicted by the agent and x* be 

the true value of X. 

• The agent has a loss function, which is 0 if x = x* 

and 1 otherwise (0/1 loss)

• Expected loss:

• What is the estimate of X that minimizes the 

expected loss?

– The one that has the greatest posterior probability P(x|e)

– This is called the Maximum a Posteriori (MAP) decision
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MAP decision

• Value x of X that has the highest posterior 

probability given the evidence E = e:

• Maximum likelihood (ML) decision:
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Naïve Bayes model

• Suppose we have many different types of observations 

(symptoms, features) E1, …, En that we want to use to 

obtain evidence about an underlying hypothesis X

• MAP decision involves estimating

– If each feature Ei can take on k values, how many entries are in 

the (conditional) joint probability table P(E1, …, En |X = x)?
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Naïve Bayes model

• Suppose we have many different types of observations 

(symptoms, features) E1, …, En that we want to use to 

obtain evidence about an underlying hypothesis X

• MAP decision involves estimating

• We can make the simplifying assumption that the 

different features are conditionally independent 

given the hypothesis:

– If each feature can take on k values, what is the complexity of 

storing the resulting distributions?
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Naïve Bayes model

• Posterior:

• MAP decision:
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Case study: Spam filter

• MAP decision: to minimize the probability of error, we should 

classify a message as spam if 

P(spam | message) > P(¬spam | message)



Case study: Spam filter

• MAP decision: to minimize the probability of error, we should 

classify a message as spam if 

P(spam | message) > P(¬spam | message)

• We have  P(spam | message)   P(message | spam)P(spam)

and ¬P(spam | message)  P(message | ¬spam)P(¬spam)

• To enable classification, we need to be able to estimate the 

likelihoods P(message | spam) and P(message | ¬spam) and

priors P(spam) and P(¬spam)



Naïve Bayes Representation
• Goal: estimate likelihoods P(message | spam) and

P(message | ¬spam) and priors P(spam) and P(¬spam)

• Likelihood: bag of words representation

– The message is a sequence of words (w1, …, wn) 

– The order of the words in the message is not important

– Each word is conditionally independent of the others given 

message class (spam or not spam)
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Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

http://chir.ag/projects/preztags/


Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

http://chir.ag/projects/preztags/


Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

http://chir.ag/projects/preztags/


Naïve Bayes Representation
• Goal: estimate likelihoods P(message | spam) and

P(message | ¬spam) and priors P(spam) and P(¬spam)

• Likelihood: bag of words representation

– The message is a sequence of words (w1, …, wn) 

– The order of the words in the message is not important

– Each word is conditionally independent of the others given 

message class (spam or not spam)

– Thus, the problem is reduced to estimating marginal likelihoods 

of individual words P(wi | spam) and P(wi | ¬spam) 
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• General MAP rule for Naïve Bayes:

• Thus, the filter should classify the message as 

spam if

Summary: Decision rule
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Parameter estimation
• Model parameters: feature likelihoods P(word | spam) and

P(word | ¬spam) and priors P(spam) and P(¬spam)

– How do we obtain the values of these parameters?

spam:  0.33

¬spam:  0.67 

P(word | ¬spam)P(word | spam)prior



Parameter estimation
• Model parameters: feature likelihoods P(word | spam) and

P(word | ¬spam) and priors P(spam) and P(¬spam)

– How do we obtain the values of these parameters?

– Need training set of labeled samples from both classes

– This is the maximum likelihood (ML) estimate, or estimate 

that maximizes the likelihood of the training data:

P(word | spam) =

# of word occurrences in spam messages

total # of words in spam messages
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Parameter estimation
• Parameter estimate:

• Parameter smoothing: dealing with words that were never 

seen or seen too few times

– Laplacian smoothing: pretend you have seen every vocabulary word 

one more time than you actually did

P(word | spam) =

# of word occurrences in spam messages

total # of words in spam messages

P(word | spam) =

# of word occurrences in spam messages + 1

total # of words in spam messages + V

(V: total number of unique words)



Summary of model and parameters

• Naïve Bayes model:

• Model parameters:
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Bag-of-word models for images

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)



Bag-of-word models for images

1. Extract image features
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1. Extract image features

2. Learn “visual vocabulary”

Bag-of-word models for images



1. Extract image features

2. Learn “visual vocabulary”

3. Map image features to visual words

Bag-of-word models for images



Bayesian decision making: 

Summary
• Suppose the agent has to make decisions about 

the value of an unobserved query variable X

based on the values of an observed evidence 

variable E 

• Inference problem: given some evidence E = e, 

what is P(X | e)?

• Learning problem: estimate the parameters of 

the probabilistic model P(X | E) given a training 

sample {(x1,e1), …, (xn,en)}


