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Abstract

Cross validation allows models to be tested using the
full training set by means of repeated resampling; thus,
maximizing the total number of points used for testing
and potentially, helping to protect against overfitting.
Improvements in computational power, recent reduc-
tions in the (computational) cost of classification algo-
rithms, and the development of closed-form solutions
(for performing cross validation in certain classes of
learning algorithms) makes it possible to test thousand
or millions of variants of learning models on the data.
Thus, it is now possible to calculate cross validation per-
formance on a much larger number of tuned models than
would have been possible otherwise. However, we em-
pirically show how under such large number of models
the risk for overfitting increases and the performance
estimated by cross validation is no longer an effective
estimate of generalization; hence, this paper provides
an empirical reminder of the dangers of cross valida-
tion. We use a closed-form solution that makes this
evaluation possible for the cross validation problem of
interest. In addition, through extensive experiments we
expose and discuss the effects of the overuse/misuse of
cross validation in various aspects, including model se-
lection, feature selection, and data dimensionality. This
is illustrated on synthetic, benchmark, and real-world
data sets.

1 Introduction

In a general classification problem, the goal is to learn a
classifier that performs well on unseen data drawn from
the same distribution as the available data 1; in other
words, to learn classifiers with good generalization. One
common way to estimate generalization capabilities is
to measure the performance of the learned classifier on
test data that has not been used to train the classifier.
When a large test data set cannot be held out or easily

1We concentrate on performance on data drawn from the same
distribution but performance on a different distribution is also a
(less explored) problem of interest.

acquired, resampling methods, such as cross validation,
are commonly used to estimate the generalization er-
ror. The resulting estimates of generalization can also
be used for model selection by choosing from various
possible classification algorithms (models) the one that
has the lowest cross validation error (and hence the low-
est expected generalization error).

A strong argument in favor of using cross validation
is the potential of using the entire training set for
testing (albeit not at once), creating the largest possible
test set for a fixed training data set. Essentially,
the classifier is trained on a subset of the training
data set, and tested on the remainder. This process
is repeated systematically so that all the points in
the training set are tested. There has been much
study on the empirical behavior of cross-validation for
error estimation and model selection, and more recently
theoretical bounds on the error in the leave-one-out
cross-validation (loocv) estimate. Much of the focus
has been on the expected value of this error over all
training sets of a given sample size and the asymptotic
behavior as the sample size increases. In this paper we
empirically address the pitfalls of using cross validation
error to select among a large number of classification
algorithms.

Resampling methods, such as bootstrapping or
cross validation (Stone, 1977; Kohavi, 1995a; Weiss &
Kulikowski, 1991; Efron & Tibshirani, 1993) have typ-
ically been used to measure the generalization perfor-
mance of a chosen algorithm, or possibly to select be-
tween a limited set of algorithms. Until the last decade,
cross validation experiments could reasonable be per-
formed only on a small set of algorithms or possible
models; a k-fold or loocv run for a single algorithm,
even on a small dataset, typically ran for several hours,
if not days. As computers have become more power-
ful and due to recent advances regarding the compu-
tational efficiency of popular classification algorithms
and techniques (for example: linear training time for
SVMs (Joachims, 2006) and n log(n) kernel computa-
tion (Raykar & Duraiswami, 2005)), cross validation



performance can be quickly computed on several thou-
sands or even millions of algorithms. Recent develop-
ments in grid computing now allow computers distrib-
uted in a large geographic area to be harnessed for a spe-
cific task, exponentially increasing the computing power
at hand.

It is a commonly held believe that cross validation,
like any other tool or metric, can be abused (Ng,
1997). Some basic heuristic procedures have been
employed to avoid these problems. For example, when
possible a sequestered test set is kept aside. This
set is finally used only after training to verify that
the chosen classifier indeed has superior generalization.
Any modeling decisions based upon experiments on the
training set, even cross validation estimates, are suspect,
until independently verified.

Despite certain general knowledge about the draw-
backs attached to cross validation, there has not been a
sufficiently clear experimental (practical) investigation
on the behavior of the estimate of generalization error
for a fixed data set.

In this paper we provide an empirical reminder
of a fact that is known but usually underestimated:
when the set of algorithms to be considered becomes
large, cross validation is no longer a good measure
of generalization performance, and accordingly can no
longer be used for algorithm or feature selection. In
addition we experimentally show the impact of cross
validation as the data dimensionality increases and
for feature selection. We provide experimental results
on synthetic, standardized benchmark (from the UCI
repository), and a real-world dataset related to clinical
diagnosis in virtual colonoscopy.

2 Related Research

A fundamental issue in machine learning is to obtain
an accurate estimate of the generalization error of a
model trained on a finite data set. Precisely estimating
the accuracy of a model is not only important to ex-
amine the generalization performance of an algorithm,
but also for choosing an algorithm from a variety of
learning algorithms. Empirical estimators based upon
resampling, which include bootstrap (Efron & Tibshi-
rani, 1993), cross validation (Stone, 1977) estimates are
popular, and Holdout estimates where a test set is se-
questered until the model is frozen are also used.

A fair amount of research has focused on the
empirical performance of leave-one-out cross validation
(loocv) and k-fold CV on synthetic and benchmark
data sets. Experiments by (Breiman & Spector, 1992)
show that k-fold CV has better empirical performance
than loocv for feature selection for linear regression.
(Kohavi, 1995b) also obtains results in favor of 10-

fold cross validation using decision trees and Naive
Bayes, and demonstrates the bias-variance trade-off for
different values of k on multiple benchmark data sets.
(Kohavi & Wolpert, 1996) discuss the bias-variance
trade-off for classifiers using a misclassification loss
function. Our work, while not directly related to the
bias-variance trade-off is closely related to the notion of
variance.

From a theoretical perspective, the most general
theoretical results for training error estimates are pro-
vided by (Vapnik, 1982) who proved that the training
error estimate is less than O(

√

V C/n) away from the
true test error where V C is the VC dimension of a hy-
pothesis space. More recently, the task of developing
upper bounds on the loocv error for a specific method-
ology has drawn the attention in the learning theory
community. For example, (Zhang, 2003) has derived
upper bounds on the expected loocv error to show con-
sistency for a set of kernel methods. These consistency
bounds focus on examining the uniform convergence to
the infimum error risk for a given data distribution and
a given methodology (Vapnik, 1998). Thus, they cannot
help us investigate how close the leave-one-out estimate
is to the true error when a large number of algorithms
are trained on a fixed finite data set. Perhaps the the-
oretical work, closest to the empirical focus of this pa-
per is proposed in (Kearns & Ron, 1997), where PAC-
style bounds are provided on the difference between the
loocv estimate and the true error; these bounds hold
for any given deterministic algorithm and any sample
of size n with relatively week assumption on error sta-
bility. However, it turns out that these kinds of bounds
are not tight enough to guide our examination of the
accuracy of the loocv estimate in practice.

3 Methodology

We begin by stating some needed preliminaries and
defining the quantity, Ω(A), the cross validation under-
estimate of true error for a specific algorithm A (in the
context of a fixed training set, S).

We then describe our methodology for randomly
generating a large (potentially infinite) number of clas-
sification algorithms. To further speed up our exper-
iments, we make use a closed-form solution for effi-
ciently evaluating the cross-validation error for regular-
ized least-squares methods for classification similar to
the one proposed in (Cawley & Talbot, 2003) for kernel
Fisher discriminants; this covers a very large family of
commonly-used classification algorithms.

3.1 Definitions Let f be a target function from
domain X to range Y, and let D be a distribution over
X. Let S =< x1, y1 >, . . . , < xn, yn > be a training



data set of n samples, where each xi is a vector in ℜd

drawn randomly and independently according to D, and
yi = f(xi) + σ, where σ represents additive noise. For
any index i ∈ [n], denote by Si the training set S with
the ith sample < xi, yi > removed.

For the classification problems we discuss here,
y is the classification label taking values in {1,−1},
but many of the results in this section hold for both
classification and regression problems, and also when y

is a vector. Let B={A1, . . . ,AM} be a collection of M
learning models or algorithms for classification.

In leave-one-out cross validation, a classification
algorithm A is trained on Si to produce a hypothesis
hi = A(Si) and the prediction hi(xi) is compared with
yi. This process is repeated n times for all Si. Then,
ǫ̂Acv(S), the cross validation estimate of the error of
the hypothesis h = A(S), is simply the fraction of
samples in S that have been misclassified during the
cross validation experiments. We are interested in Ω,
the cross validation underestimate of the true error :

Ω(A) = true err − CV err = ǫ(A(S)) − ǫ̂Acv(S)(3.1)

where ǫ(A(S)) is the true generalization error of the
hypothesis h = A(S) over D.

In addition to estimating generalization error, cross
validation is used to select from a set of algorithms. Let
A⋆(S) ∈B be the algorithm that minimizes the cross
validation error on S. Then:

Ω⋆ = Ω(A⋆)(3.2)

is the under-estimate of the cross validation error of the
selected algorithm, i.e., the amount that the cross vali-
dation error of the selected algorithm, under-estimates
the true error.

The above discussion can equally apply to k-fold
cross validation. (For k-fold CV, the training data is
randomly split into k mutually exclusive subsets, and
each fold uses one of the k subsets as test and the
remaining data for training. loocv is k-fold with
k = n.) Note that whereas the loocv error, ǫAcv(S),
is dependent only on S and A, the k-fold CV error,
ǫAk−cv(S) depends also upon the specific partitioning of
S into k subsets.

3.2 Regularized least-squares for classification

We now describe the methods we use for generating a
large number of classification algorithms, and state an
extremely efficient closed-form solution for computing
loocv, and in general for k-fold CV.

The experiments described in this paper use a fam-
ily of regularized least squares methods (Ridge regres-

sion) for classification. Least squares methods are tra-
ditionally used for solving classification and regression
problems (Johnson & Wichern, 2002). In the recent
past, much research has been devoted to incorporating
the concept of kernels and new forms of regularization
in these methods (Saunders et al., 1998; Mika et al.,
1999; Suykens & Vandewalle, 1999; Fung & Mangasar-
ian, 2001).

Let A ∈ ℜn×d be the data matrix representing the
training samples, S. Each row represents a sample and
each column represents a feature. Notice that if we
use the kernel extension of least squares methods, the
features in A may either be original features in x or
columns introduced by kernel matrices. We construct
linear models f using the features a contained in A,
i.e., f = aT w + b where w is the weight vector of the
linear function, and b is the offset. In some context, b
can be incorporated into kernels and may not explicitly
appear in the model.

Typically, in regularized least squares methods, we
optimize an unconstrained quadratic program. For in-
stance, in kernel ridge regression, the following objective
function is minimized:

1

2
(y − Aw − b1)

T
(y − Aw − b1) + λwT w.(3.3)

where the first term calculates the least squares training
error, and the second term is a regularization factor for
capacity control and λ is called regularization parameter
that needs to be tuned in training.

The optimal solution of a least squares method of
the form in Equation (3.3) can be analytically calcu-
lated. In (Xu et al., 2001) it was shown that the optimal
solution for a variety of least squares methods can be
obtained by solving a set of linear equations as follows :

(

AAT + λI A1

(A1)T n

) (

w

b

)

=

(

AT y

1T y

)

(3.4)

where I is an identity matrix of appropriate dimension,
and 1 is the n-dimensional vector of ones. Now, in order
to obtain Equation (3.3), we denote Z = (A 1), and
D = diag([λI 0]), then we have:

(

w

b

)

=
(

D + ZT Z
)−1

ZT y.(3.5)

In our experiments, we adopted RBF kernels

exp(− ||x−c||
σ2 ) where x is a feature vector in the original

distribution, D. For each given c which we call the cen-
ter of a RBF function, a feature vector can be generated
by calculating the RBF function over all training points
x. The RBF kernel matrix of dimensionality n × n is
typically calculated for each pair of training examples.



However, for the experiments in this paper, we need
to generate a large number of learning algorithms. We
do so by randomly assigning Kdim RBF centers, and
generate the matrix A, an n × Kdim kernel matrix.

As discussed in Section 1, we evaluate our classifi-
cation algorithms via loocv and k-fold CV. loocv is
a special case of k-fold CV where k = n. Let Zi be
the test sub-matrix in the ith fold of the cross valida-
tion containing ni rows of matrix Z, and let Z−i be the
training matrix formed by omitting Zi from Z. We de-
rive a closed-form solution for each fold given the inverse
of matrix D + ZT Z by employing the following lemma
(Golub & Loan, 1996):

Lemma 1 [A Sherman-Morrison-Woodbury For-
mula] Given the inverse matrix of A ∈ Rn×n and
U ∈ Rn×k,

(

A + UUT
)−1

=

A−1 − A−1U
(

I + UT A−1U
)−1

UT A−1.

In each fold, the solution depends on all training
examples except the ni test examples. Hence the
solution in the ith fold is

(

wi

bi

)

=
(

D + ZT
−iZ−i

)−1

ZT
−iy−i.(3.6)

and D + ZT
−iZ−i = D + ZT Z − ZT

i Zi. Denote C =
D + ZT Z, and applying Lemma 1 yields

(D + ZT
−iZ−i)

−1 =

C−1 + C−1ZT
i

(

I + ZiC
−1ZT

i

)−1

ZiC
−1.

(3.7)

Notice that in (3.7), we need to compute the
inverse of an ni × ni matrix. In contrast, the inverse
takes place on a d × d matrix as shown in equation
(3.6). Hence when d is much larger than ni, we gain
a lot computational efficiency by using the closed-form
formula. Especially in the loocv where ni = 1, the
closed form solution becomes

(D + ZT
−iZ−i)

−1 = C−1 +
C−1ZT

i ZiC
−1

1 + ZiC−1ZT
i

,(3.8)

so there is no need to calculate any inverse in the closed-
form formula of Equation (3.8) for loocv.

Figure 1 shows the distribution of cross validation
accuracy for 1,000,000 distinct learning algorithms. For
each of these 106 runs, we verified that the error as mea-
sured by the traditional iterative loocv computation is
exactly equal to the error computed via Equation (3.8).

4 Experiments on Synthetic Data

4.1 Synthetic data for experiments Let ∇ be a
distribution over ℜd, specifically in [−1, 1]d. Create
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Figure 1: loocv accuracy distribution for 106 algo-
rithms.

training set S by drawing n training samples randomly
and independently according to ∇. Let y, the class label
be independent of the sample and be assigned randomly
to 1 or −1 with probability 1

2
. Therefore, the true error

for every hypothesis on ∇ is precisely 0.5. In other
words, the under-estimate of the cross-validation error,
Ω, depends only on the cross validation estimate, and
we can modify Equation (3.1) to write

Ω∇(A) = 0.5 − ǫ̂Acv(S) = âcccv − 0.5(4.9)

where, âcccv = 1 − CV error is the cross validation
accuracy. Similarly, Ω⋆

∇ is the corresponding value for
the algorithm with the lowest cross validation error..

4.2 Cross validation as an estimate for general-

ization We use the simple methodology shown below
for the experiments in this sub-section.

• Given n,d, and r do:

1. Sample n examples from synthetic distribu-
tion ∇ to create data set S of dimension d

2. Compute loocv error for all M algorithms

3. determine A∗ with the minimum loocv error
and the corresponding Ω∗(= loocv error +
0.5)

• Repeat steps (1-3) r times, and average Ω∗ over r
runs

• Report accuracy = 0.5+Ω∗ = 1 - loocv error



Table 1: Variation of best loocv accuracy as the M
the number of learning algorithms is increased.

M 101 102 103 104 105 106

Best CV 61.9 69.0 74.8 79.6 83.2 85.6

Expected 50 50 50 50 50 50

These experiments examine how good the cross valida-
tion estimate is of the true error when a large number
of algorithms are executed on a single data set. As
described in Section 3, we randomly generate centers
for RBF kernels which allows us to quickly generate a
virtually unlimited number of learning models. Essen-
tially, we would hope that Ω⋆

∇ would be close to 0, and
the cross validation accuracy of the selected algorithm
would be fairly close to 0.5, the true error. Note that,
Ω, the CV under-estimate of true error is identical to
the CV over-estimate of true accuracy.

Impact of number of learning algorithms

Figure 1 displays the distribution of CV accuracy
for 1,000,000 distinct algorithms on a 100-sample 16-
dimension synthetic data set. It is important to note
the following surprisingly extreme disturbing result: the
maximum CV accuracy achieved is in excess of 85%.
(For this experiment, Ω⋆

∇= 0.35, corresponds to the
amount that the CV accuracy of the chosen algorithm
over-estimates the true accuracy.)

Table 1 reports the best cross validation accuracy
(corresponding to Ω⋆

∇) as we systematically increase
the number of algorithms we try on a single data set.
Accuracy values shown are the average of r = 500 trials
of M algorithms, except for M = 105 (r = 10) and
M = 106 (r = 1). The CV over-estimate for much
smaller numbers of learning algorithms is a caution
for blindly executing a relatively large number (e.g.
M = 1000) of algorithms and simply selecting the best.

Impact of data size and dimensionality Fig-
ure 2 displays the best cross validation accuracy as the
dimensionality, d, of the training set is increased. The
4 curves correspond to executing M = 1000 algorithms
each of training sets of size 100 and 1000 respectively,
and with using a fixed (Kdim = 20) or varying kernel
(Kdim = d) dimensionality. As expected, the CV over-
estimate of accuracy is most pronounced for small data
sets with large dimensionality. This phenomenon has
been widely studied and it is usually referred to as the
“curse of dimensionality”.

It is generally accepted that increasing model com-
plexity increases the likelihood of overfitting the data;
it is interesting to note that the same applies to over-
fitting, as it were in the ”cross validation space”. Note
that for the varying kernel dimensionality curves, the
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Figure 2: Variation of best CV accuracy for M = 1000
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kernel dimensionality is less than the fixed amount (20)
for d = 4, 8. All estimates are averaged over r = 10
trials.

4.3 Cross validation for feature selection For
much the same reasons that cross validation is a good
estimate of generalization performance, it is also be-
lieved to be a good method for selecting a subset of
features (Breiman & Spector, 1992). In these series of
experiments, we demonstrate that feature selection is
also unreliable when a large number of features are se-
lected using cross validation. These results empirically
confirm and relate to statements made by previous work
(Ng, 1998; Reunanen, 2003; Reunanen, 2004).

Our experimental methodology is completely dif-
ferent from that described in Section 4.2. Since we are
interested in feature selection, it makes no sense to use
random kernels; instead we use linear models (Fisher’s
linear discriminant (Mika et al., 1999)) for classifica-
tion. As advocated in (Kohavi & John, 1997), we use
the widely used greedy “wrapper” method for feature
selection, wherein the learning algorithm is run itera-
tively on the training data to select the feature that
minimizes the loocv error, ǫ̂cv. This greedy feature
selection continues until the ǫ̂cv converges. Therefore,
with “wrapper” feature selection, the classifier itself de-
termines the relevant features.

In our experiments, we wish to draw n samples from
∇ with dimensionality d, and evaluate the impact on Ω



when we select exactly δ out of d features. Thus, instead
of continuing until convergence as suggested above, we
either stop after precisely δ ≤ d features are selected,
or if ǫ̂cv has already converged, force the selection of
the feature that least increases ǫ̂cv. We repeat this r
times with a different data set each time, and report
the average value of Ω.

Note that M = 1 for these experiments. However,
we could think of every linear model depending on every
possible subset of the original features as a different
model. Unlike the previous experiments where we were
observing the behavior of Ω⋆

∇, here we evaluate the
behavior of Ω∇ itself. The average value of Ω∇ that we
obtain gives some intuition into exactly how much we
can under-estimate the true error in feature selection.

Impact of number of features selected In
these experiments, we randomly draw n samples with
dimensionality d = 256 from ∇ and select exactly δ
features out of these 256. Table 2 shows that for a
small data set, cross validation accuracy (0.5 + Ω∇)
continues to increase even after selecting 32 redundant
(by definition) features. However, for large sample sizes
(n = 10000) forcing the classifier to use additional
features makes very little difference after a very small
number of features have been selected.

Impact of number of features to select from

One of the standard defenses against overfitting is to
permit only a small number of features in our model
– this is the basic motivation for feature selection.
In these experiments, we select only the best δ = 4
features, but allow the greedy feature selection access
to an increasingly large pool of features to select from.
Table 3 shows that allowing access to more and more
features, dramatically overfits the training set for small
sample sizes (n = 100), even when cross validation is
used for feature selection and the classifier is restricted
to a very small number of features. See Section 7 for a
discussion about our experiences with a real-world data
set where we had similar experiences.

5 Experimental Results on Benchmark data

sets

For synthetic data sets, we can usually compute the
true error, ǫ(h) of a hypothesis h, either analytically (as
shown above) or accurately estimate ǫ(h) by generating
a large test dataset). Thus, for synthetic data, we can
compute the value of Ω from Equation (3.1) for any
Ai and Sn, (and accordingly determine, A⋆, Amax and
compute the values of Ω⋆ and Ωmax).

Unfortunately, the distribution is unknown for real-

world data sets, and all we observe is ǫ̂
Aj

cv (Sn) (and so
can determine A⋆ and ǫ̂A

⋆

cv (Sn)). However, if we can
draw m additional samples randomly and independently

Table 2: Variation of acccv = 0.5 + Ω∇ with n and
greedy selection of δ =4, 8, 16, 32 features from d = 128
features. For each experiment, the mean (upper) and
standard deviation (lower) of acccv. For n = 100, Ω∇ is
averaged over r = 1000 trials, and for all other n’s over
r = 100 trials. Note that M = 1.

N/δ 4 8 16 32

100 70.5 72.2 72.7 76
2.9 4.9 5.4 6.4

1000 60.7 61.2 59.6 56.3
5 4 3 3.6

10000 59.7 60.1 60.1 59.5
1.3 1.5 1.5 1.7

Table 3: Variation of acccv = 0.5+Ω∇ with n and greedy
selection of δ = 4 features from d =8,16,32, 64, and 128
features. For each experiment, the mean (upper) and
standard deviation (lower) of acccv. For n = 100, Ω∇ is
averaged over r = 1000 trials, and for all other n’s over
r = 100 trials. Note that M = 1.

N/δ 8 16 32 64 128

100 59.2 63.3 66.5 68.8 70.6
4.6 3.9 3.7 3.6 2.8

1000 53.3 54.7 56.2 57.8 60.3
1.7 1.6 2.5 3.2 4.5

10000 51.9 53.3 55.5 57.1 59.3
1.8 2.6 2.5 2.2 1.4

from D to create a hold out test set, Tm, then we can
estimate the value of Ω (from Equation (3.1)) as:

Ω̂(A|) = ǫ̂Aj (Sn)(Tm) − ǫAj

cv (Sn)(5.10)

where ǫ̂h(T ) is the misclassification error of the hypoth-
esis h on a data set T (i.e., number of incorrect predic-
tions by h on T ). We can also modify Equations (3.2)
and (3.2) accordingly:

Ω̂⋆ = Ω̂(Â⋆)(5.11)

where, Â⋆ = argmin . . . .

Ω̂max = Ω̂(Âmax) = max Ω̂(Aj)(5.12)

We investigate the efficacy of cross validation as
an estimate for generalization when a large number of
algorithms are tried on a single data set, but this time on
real instead of synthetic data; on 5 benchmark data sets
from the UCI repository (Newman & Merz, 1998). We
split each benchmark data set Q into a training set Sn,
and a test data set Tm, such that n = m = N/2, where
N is the number of samples in Q; we do a stratified split,



Table 4: Ω̂⋆ is the estimate of Ω for the algorithms
with the best ǫ̂cv for M algorithms. The first two
rows provide the sample size and dimensionality for
the 5 benchmark data sets. The first column (or the
remaining rows) provides M and r. are for different
values of M/r In each cell, the top number is Ω̂⋆ and
the bottom number is Ω̂max (averaged over the r runs).

data Bupa Cleve Boston Pima wpbc60
n 345 297 506 728 110
d 6 13 13 8 32

5.0 4.5 3.5 10.0 13.0
2000/1 9.7 12.7 7.4 13.6 20.4

4.98 4.02 3.4 9.8 13.0
1000/5 9.7 11.7 7.4 13.4 22.4

4.97 3.94 3.21 9.9 12.2
500/5 9.67 11.5 6.8 14.1 22.3

4.87 3.48 2.98 9.37 9.89
100/10 10.7 9.13 6.48 14.6 23.2

so that the ratio of positive and negative examples is the
same in Sn and Tm. For Aj ∈B (generated as described
in Section 3), we compute ǫ̂cv on Sn, and the error of
hypothesis h = Aj(Sn) on Tm to compute Ω̂(A|) (from

Equation (5.10)); compute Ω̂⋆ from Equation (5.11).
We repeat these experiments r = 10 times, and report
the value of Ω̂⋆ averaged over these r trials.

Table 4 shows the value of Ω̂⋆, the estimated under-
estimate of the CV error for A⋆ ∈B that minimizes
ǫ̂cv. This value is of particular significance, because is
represents our estimate of Ω for the algorithm we would
pick, if Sn were our training set. We also show the value
of Ω̂max (also averaged over r trials) which shows how
badly the worst estimates of Ω can be off (the highest
values of Ω̂max we achieved were about 1.5 to 2 times
higher than the average Ω̂max values shown in Table 4).
This is of academic interest only, as in real life we would
have no interest in Amax, only in A⋆.

6 Experimental Results on a real world data

set: The ColonCAD dataset

These results also match our experiences on a real-
world data set. Recently, we developed classifiers to
detect colon polyps from computed tomography images
of the colon (also called virtual colonoscopy) (Fung
et al., 2006). For the system to be deemed clinically
useful (both in a clinical trial and also in the opinions of
physicians), high sensitivity is critical while maintaining
a low number of false positives per patient (usually
no more than 3 or 4 is clinically acceptable). We
used a simple shape filter to identify candidates, from

which we extracted 66 features in all based on moments
of tissue intensity, volumetric and surface shape and
texture characteristics. It is important to note that
all features were based (at least loosely) on visual
characteristics of colon polyps based on the advice
of experts. Using a variety of techniques to prevent
overfitting, including loocv, we achieved acceptable
loocv performance (94% sensitivity, 4 false positives
/ image) with a classifier that used just 14/66 features;
more importantly, experiments on newly collected data
sets showed virtually identical performance.

In an attempt to further boost performance, we ex-
tracted an additional 20 features (66 in all), which per-
haps were not quite as motivated by medical factors, but
on extracting certain statistics from the candidates. Us-
ing these features in feature selection to build a new clas-
sifier that also coincidentally had 14 features, we dra-
matically improved loocv performance, now obtaining
100% sensitivity with similar false positive rate; this was
particularly significant, because we had never before at-
tained perfect sensitivity with any classifier without a
huge false positive rate. However, performance on test
sets was significantly poorer. Essentially, adding those
20 new features into the training set, resulted in the
same overfitting shown on synthetic data in Table 3.

7 Discussion

We have demonstrated, using controlled numerical ex-
periments, that when the number of algorithms is large,
loocv ceases to be an effective estimate of general-
ization for the algorithm that has the best cross val-
idation performance. This is because running a large
number of algorithms effectively overfits in cross vali-
dation space. Experiments on synthetic data demon-
strate, as expected, that this behavior worsens as the
sample size decreases, and the dimensionality and num-
ber of algorithms increase. The phenomenon of under-
estimating cross validation error is also demonstrated
on some benchmark data sets, and is seen to be worse
for datasets with the higher dimensionality. In addi-
tion, we analyzed a real clinical dataset and observed
consistent behavior.

We also investigated the use of loocv for feature se-
lection. As expected, as we select more features, loocv
grossly underestimates true error and could lead to se-
lecting unnecessary features; this phenomenon is well
known, and many researchers guard against this by us-
ing a test set and limiting the number of selected fea-
tures. The other experiments on feature selection show
that as we increase the number of available features, re-
stricting the number of features to a very small number
(4 in the experiments shown in Table 3) does not guard
against overfitting.



While the general problems with cross validation
have been noticed in the past, we believe this paper
offers, through a careful numerical evaluation, a much
needed guidance on how this happens in synthetic and
real data and on the severity of the problem in general
(including tasks like feature selection)

Several reasons can be attached to the behavior
demonstrated in this paper. In general, one inherent
limitation of the various resampling approaches is that
not all data can be used for training at once. The
amount of available training data is in general an im-
portant factor affecting the performance of the learned
classifier; having more data available for training is in
general beneficial. Similarly, the amount of data used
for testing (data not used for training) can have a major
effect on the accuracy of our estimates of the general-
ization error. Small amounts of test data will generally
result in a higher variance in the estimate. In the case
of loocv, while the amount of training data used to
obtain each algorithm is large relative to the total data,
only one data point is used for testing at a time. This in
general will imply a large variance in the cross validation
error; as a consequence generating unreliable estimates.

Although, this requires much further study, we offer
a few heuristics to guide the user. Whenever possible
use a sequestered test set that is only used when the
classifier has been frozen. Ideally, the performance on
the test set will be very similar to the cross validation
error, i.e., Ω̂ → 0. Some foresight should be used, par-
ticularly in selecting models that perform extraordinar-
ily well (even when measured by cross validation) on
the training set. Furthermore, when using cross valida-
tion for feature selection, the number of original features
should be limited, and new features should be added
with care. This is particularly important for small data
sets. Similarly, it is important to be aware of the dan-
gers of fitting a very large number of algorithms on a
single data set.

A final note of warning: experienced machine learn-
ing researchers know not to tune a classifier by contin-
uously observing the classifier performance on the test
data until a desirable performance is achieved. When a
classifier is tuned according to its performance on the
test data, then the test results lose all their credibility
since the classifier may no longer simulate real-world
settings. More importantly, such a classifier loses its
ability to generalize on new data, which is the key rea-
sons to use cross validation in the first place.
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