Constraint Logic Programming (CLP): a short tutorial

- What is CLP?
 - the use of a rich and powerful language to model optimization problems
 - modelling based on variables, domains and constraints
CLP

Motivation:

1. to offer a declarative way of modelling constraint satisfaction problems (CSP)

2. to solve 2 limitations in Prolog:
 - Each term in Prolog needs to be explicitly evaluated and is not interpreted (evaluated):
 - $x + 1$ is a term that is not evaluated in Prolog. It is only a syntactic representation.
 - a variable can assume one single value.
 - Uniform computation, but not that powerful: depth-first search, “generate-and-test”.

3. to integrate Artificial Intelligence (AI) and Operations Research (OR)
CLP can use Artificial Intelligence (AI) techniques to improve the search: propagation, data-driven computation, “forward checking” and “lookahead”.

Applications: planning, scheduling, resource allocation, computer graphics, digital circuit design, fault diagnosis etc.

Clients: Michelin and Dassault, French railway SNCF, Swissair, SAS and Cathay Pacific, HK International terminals, Eriksson, British Telecom etc.
CLP joins 2 research areas:

- Introduction of richer and powerful data structures to Logic Programming (e.g.: replace unification by efficient manipulation of constraints and domains).

- Consistency techniques:
 “generate-and-test” x “constrain-and-generate”
CLP

- Systems:
 - CHIP, Dincbas and Van Hentenryck (ECRC)
 - OPL, Van Hentenryck
 - Xpress
 - CLP(R), Jaffar, Michaylov, Stuckey and Yap (Monash)
 - Prolog III, Colmerauer
 - ECLiPSe, Wallace (IC Parc)
 - Oz, Smolka (DFKI)
 - clp(FD), Diaz and Codognet (INRIA, France)

- The CLP(X) scheme:
 - “constraint solver”: replaces simple unification.
 - 2 popular domains: arithmetic and boolean.
Arithmetic domain: linear constraints

- Prolog cannot solve $x - 3 = y + 5$.
- CLP(R): first language to introduce arithmetic constraints.
- Linear arithmetic expressions composed by: numbers, variables and operators (negation, addition, subtraction, multiplication and division).
- Example: $t_1 \ R \ t_2$, with $R = \{ >, \geq, =, \leq, <, = \}$
- Popular decision procedures:
 - Gauss elimination.
 - Simplex (most popular):
 - Average good behavior
 - Popular
 - Incremental
Arithmetic Domain: Linear Constraints

- Example:
 - A meal consists of starter, main course and dessert
 - database with various kinds of food and their caloric values
 - Problem: produce a menu with light meals (caloric value < 10Kcal)
Arithmetic Domain: Linear Constraints

light_meal(A,M,D) :-
 I > 0, J > 0, K > 0,
 I + J + K =< 10,
 starter(A,I),
 main_course(M,J),
 dessert(D,K).

main_course(M,I) :-
 meat(M,I).

main_course(M,I) :-
 fish(M,I).

starter(salad,1).

starter(soup,6).

meat(steak,5).

meat(pork,7).

fish(sole,2).

fish(tuna,4).

dessert(fruit,2).

dessert(icecream,6).
Arithmetic Domain: Linear Constraints

- Intermediate results = compute states.
- 2 components: constraint store and continuation of objectives.

Query: \diamond light_meal(A,M,D).

I + J + K ≤ 10, I > 0, J > 0, K > 0 \diamond starter(A,I),
main_course(M,J), dessert(D,K).

A = salad, I = 1, 1 + J + K ≤ 10, J>0, K>0 \diamond
main_course(M,J), dessert(D,K).

A = salad, I = 1, M=M1, J=I1, 1 + J + K ≤ 10, J>0, K>0 \diamond
meat(M1,I1), dessert(D,K).

A = salad, I = 1, M=steak, J=5, M1=steak, I1 = 5, 1 + 5 + K
≤ 10, I>0, 5>0, K>0 \diamond dessert(D,K).

A = salad, I = 1, M=steak, J=5, M1=steak, I1 = 5, D=fruit, K
= 2, 1 + 5 + 2 ≤ 10, I>0, 5>0, 2>0 \diamond.
Arithmetic Domain: Linear Constraints

Inconsistent derivation:

- A = pasta, I = 6, M = steak, J = 5, M1 = steak, I1 = 5, 6 + 5 + K
 <= 10, 5 > 0, 6 > 0, K > 0 ∙ dessert(D,K).
Arithmetic Domain: non-linear Constraints

Example: multiply 2 complex numbers: \((R_1 + I_1 I) \times (R_2 + I_2 I)\).

\[
\text{zmul}(R_1, I_1, R_2, I_2, R_3, I_3) :- \\
R_3 = R_1 \times R_2 + I_1 \times I_2, \\
I_3 = R_1 \times I_2 + R_2 \times I_1.
\]

Query: \(\diamond \text{zmul}(1, 2, 3, 4, R_3, I_3)\)

Equations become linear.

Solution: \(R_3 = -5, I_3 = 10\) (definite solution)

Query: \(\diamond \text{zmul}(1, 2, R_2, I_2, R_3, I_3)\)

Solution:

\[
\begin{align*}
I_2 &= 0.2 I_3 - 0.4 R_3 \\
R_2 &= 0.4 I_3 + 0.2 R_3
\end{align*}
\]

yes (undefined solution)
Arithmetic Domain: non-linear Constraints

- Same example: multiply 2 complex numbers:
 \[(R1 + I*I1) * (R2 + I*I2)\]
- Query: \[\text{zmul}(R1,2,R2,4,-5,10), R2 < 3.\]
- CLP(R): (do not solve non-linear equations)

 \[R1 = -0.5*R2 + 2.5\]
 \[3 = R1*R2\]
 \[R2 < 3\]
 \[Maybe\]

- applications of non-linear equations: computational geometry and financial applications (various algorithms used).
Boolean domain

- Main Application: digital circuit design (hardware verification) and theorem proof.
- Boolean terms: truth values (F or T), variables, logical operators, one single constraint: equality.
- Various unification algorithms for boolean constraints.
- Solution: provides a decision procedure for propositional calculus (NP-complete).
Boolean domain

Example: full adder (operators # (xor), * (and), + (or))

\[
\text{add}(I_1, I_2, I_3, O_1, O_2) :- \\
\quad X_1 = I_1 \# I_2, \\
\quad A_1 = I_1 \ast I_2, \\
\quad O_1 = X_1 \# I_3, \\
\quad A_2 = I_3 \ast X_1, \\
\quad O_2 = A_1 + A_2.
\]

Query: \(\diamond \text{add}(a, b, c, O_1, O_2) \)

Solution: \(O_1 = a + b + c, \quad O_2 = (a \ast b) + (a \ast c) \# (b \ast c) \)
Consistency techniques

- Eliminate inconsistent 'labellings' by constraint propagation information about the values of variables.
- Examples: arc-consistency, forward checking, generalized propagation.
- Example: task scheduling.

```
T2                      before(T1,T2).
/                      before(T1,T3).
/                      before(T2,T6).
T1                      before(T3,T5).
\     T6               before(T4,T5).
\    /                  before(T5,T6).
T3  ---  T5            notequal(T2,T3).
\                     /
T4
```
Consistency Techniques

Example: \(T_1 \in \{1, 2, 3, 4, 5\} \), \(T_2 \in \{1, 2, 3, 4, 5\} \).

Before \((T_1, T_2)\) \(\rightarrow\) apply consistency:

- \(T_1 \in \{1, 2, 3, 4\} \)
- \(T_2 \in \{2, 3, 4, 5\} \)

Value 5 removed from \(T_1 \), because there is no other value in \(T_2 \) that can satisfy \(T_1 < T_2 \).

Value 1 removed from \(T_2 \), for the same reason.
Arc Consistency

- $T_1 \in \{1, 2\}$, $T_2 \in \{2, 3, 4\}$, $T_3 \in \{2, 3\}$, $T_4 \in \{1, 2, 3\}$, $T_5 \in \{3, 4\}$, $T_6 \in \{4, 5\}$.
- Value 2 from T_1 is chosen (T1 is “labelled” with value 2).
- Using propagation: $T_2 \in \{3, 4\}$ and $T_3 \in \{3\}$
- $T_2 \in \{4\}$ from notequal(T2,T3).
- Finally: $T_1 \in \{2\}, T_2 \in \{4\}, T_3 \in \{3\}, T_4 \in \{1, 2, 3\}, T_5 \in \{4\}$, $T_6 \in \{5\}$
Infinite Domains

Utilization of maximum and minimum values to solve constraints in the linear domain.

E.g.: \(x, y, z\) with domains \([1..10]\) with constraint \(2x + 3y + 2 < z\)

Removing inconsistent values:

- 10 is the largest value for \(z\), then: \(2x + 3y < 8\)
- 1 is the smallest possible value for \(y\), therefore: \(2x < 5\)
- \(x\) can only assume values \(\{1,2\}\)
- \(3y < 6, y < 2, y \in \{1\}\)
- \(z > 7, z \in \{8,9,10\}\)
Basic programming techniques

- Define problem variables and their domains.
- Establish the constraints between variables.
- Search for solution.

?- [X,Y,Z]::1..10,
 2 * X + 3 * Y + 2 #< Z,
 indomain(X), indomain(Y), indomain(Z).
Algorithms and other examples

Forward Checking:

\[
\begin{align*}
n &= 8 \\
(1) \text{V1} &= 1 \implies V2 &= \{3,4,5,6,7,8\} \\
&\quad V3 &= \{2,4,5,6,7,8\} \\
&\quad V4 &= \{2,3,5,6,7,8\} \\
&\quad V5 &= \{2,3,4,6,7,8\} \\
&\quad V6 &= \{2,3,4,5,7,8\} \\
&\quad V7 &= \{2,3,4,5,6,8\} \\
&\quad V8 &= \{2,3,4,5,6,7\}
\end{align*}
\]

\[
\begin{align*}
(2) \text{V2} &= 3 \implies V3 &= \{5,6,7,8\} \\
&\quad V4 &= \{2,6,7,8\} \\
&\quad V5 &= \{2,4,7,8\} \\
&\quad V6 &= \{2,4,5,8\} \\
&\quad V7 &= \{2,4,5,6\} \\
&\quad V8 &= \{2,4,5,6,7\}
\end{align*}
\]
Forward Checking: Example

```
+--------+--------+--------+--------+--------+--------+--------+--------+
|   X    |        |        |        |        |        |        |        |
+--------+--------+--------+--------+--------+--------+--------+--------+
|        |        |        |        |        |        |        |        |
+--------+--------+--------+--------+--------+--------+--------+--------+
```

n-queens
n=8

```
+--------+--------+--------+--------+--------+--------+--------+--------+
|        |        |        |        |        |        |        |        |
+--------+--------+--------+--------+--------+--------+--------+--------+
|        |        |        |        |        |        |        |        |
+--------+--------+--------+--------+--------+--------+--------+--------+
```

after V1=1
V2=3

```
+--------+--------+--------+--------+--------+--------+--------+--------+
|        |        |        |        |        |        |        |        |
+--------+--------+--------+--------+--------+--------+--------+--------+
|        |        |        |        |        |        |        |        |
+--------+--------+--------+--------+--------+--------+--------+--------+
```

DCC/FCUP Inês Dutra 2016-2017, PL
Algorithms

- Infinite domains: linear programming, simplex, revised simplex, convex hull, Gauss elimination.
- Finite domains: forward checking, lookahead, arc-consistency.

For finite domains, 2 problems:

- Choice of variable:
 - *Most-constrained*: smallest domain
 - *Most constraining*: mostly constrains domains of other variables

- Choice of a value for a variable:
 - *First-fail principle*.
 - *Least constraining*: value that constrains less sets of values of other variables
Map Colouring

Map Coloring: 3 colours

blue	green	red
+-----+	+-----+	+-----+
B	A	C
+-----+	+-----+	+-----+
E	+-----+	
F	+-----+	
+-----+	+-----+	

DCC/FCUP Inês Dutra 2016-2017, PL
Heuristics

- most-constrained variable: allows to solve the n-queens problem with n equals 100
- pure forward checking: only solves for n = 30
- least-constraining: solves for n = 1000
References

- A comparative study of eight constraint programming languages, by Antonio Fernandez and Pat Hill, 2000
- Constraint logic programming: A survey J. Jaffar, M. J. Maher, 1994