
Programming in Prolog – List of Exercises #4

1. Consider a graph with costs associated with each arc. Write a Prolog program that can
find a path of minimum cost between node A and node B. (You can invent your own graph
or use some actual example: map of cities with their distances).

2. Define the predicate height(BinaryTree,Height) that can return the height of a binary
tree. The height of an empty tree is zero and the height of a tree with one element is 1.

3. Define a predicate that can recognize if a Prolog term is a list.

4. Predicates sub1, sub2 e sub3, below, implement a relation over lists. The sub1 predicate
has a more procedural definition than sub2 and sub3. These last two are written in a
more declarative way. Observe the behavior of these predicates with respect to efficiency.
Two of them have similar efficiency. Which ones? Why one of them is inefficient?

sub1(List,Sublist) :- prefix(List,Sublist).

sub1([_|Tail],Sublist) :- sub1(Tail,Sublist).

prefix(_,[]).

prefix([X|List1],[X|List2]) :- prefix(List1,List2).

sub2(List,Sublist) :- conc(List1,List2,List),

conc(List3,Sublist,List1).

sub3(List,Sublist) :- conc(List1,List2,List),

conc(Sublist,_,List2).

5. Define the relation reverse(List,RevList), where the arguments are represented as list
differences.

6. Use the bagof/3 predicate to define the relation powerset(Set,Subsets) that compute
the set of all sets. (represent the sets as lists)

7. Define the relation alv(Tree) to test if a binary tree is AVL, i.e., all subtrees can not
differ in depth more than 1 level. Represent the binary tree using the Prolog term:
t(Left,Root,Right) or nil if the subtree is empty.

8. How the search programs given in class could be modified to perform the search starting
from multiple initial states instead of just one?

