
Programming in Prolog Programming in Prolog

Logic Programming, 16-17

Inês Dutra
DCC-FCUP

ines@dcc.fc.up.pt (room: 1.31)

October 6, 2016

Programming in Prolog Programming in Prolog

Using Definite Clause Grammars

� DCG: Definite Clause Grammar is a formal language used
to define other languages. Based on Horn clauses.

� Example:

program --> rule; fact.

� Mostly used to define grammars and for natural language
processing.

� A DCG usually evaluates a sentence written in the
structure defined by the user and tells if the sentence is
syntactically correct.

Programming in Prolog Programming in Prolog

Using Definite Clause Grammars

� DCGs are internally converted to Prolog: two arguments
are added to each DCG literal. Ex:

DCG: sent --> noun_phrase, verbal_phrase, complement.

Prolog: sent(S0,S) :- noun_phrase(S0,S1),

verbal_phrase(S1,S2),

complement(S2,S).

Programming in Prolog Programming in Prolog

Using Definite Clause Grammars

� Internal representation of a DCG terminal symbol: Prolog
fact. Prolog classifies the term, removes it from the ist as
correctly evaluated, and returns the remaining list to be
evaluated. Ex:

DCG: determiner --> [a].

Prolog: determiner([a|R],R).

� Semantic actions can be added to DCGs in Prolog syntax.
This is a way of mixing DCG with pure Prolog code.
Semantic actions need to be added in Prolog syntax
surrounded by curly brackest. These actions are not part of
the grammar being defined. They are actions that need to
be taken whenever Prolog finds a given term.

Programming in Prolog Programming in Prolog

Using Definite Clause Grammars

� Example:

DCG: constant(Dic,I) --> [monday],

{lookup(monday,Dic,I)}.

Prolog: constant(Dic,I,[monday|R],R) :-

lookup(monday,Dic,I).

� In this program, after finding the term ’monday’, Prolog
inserts it in a symbol table and returns an index to that
entry in the table. The example shows the syntax in DCG
and the syntax in Prolog.

Programming in Prolog Programming in Prolog

Using DCGs to define a subset of the English syntax

sentence(sentence(NP,VP)) -->

noun_phrase(NP),

verb_phrase(VP).

noun_phrase(np(D,N,C)) -->

determiner(D),

noun(N),

rel_clause(C).

noun_phrase(np(PN)) -->

proper_noun(PN).

Programming in Prolog Programming in Prolog

Using DCGs to define a subset of the English syntax

verb_phrase(vp(TV,NP)) -->

trans_verb(TV),

noun_phrase(NP).

verb_phrase(vp(IT)) -->

intrans_verb(IT).

rel_clause(rc(that,VP)) -->

[that],

verb_phrase(VP).

rel_clause(rc([])) --> [].

Programming in Prolog Programming in Prolog

Using DCGs to define a subset of the English syntax

determiner(det(every)) --> [every].

determiner(det(a)) --> [a].

noun(noun(man)) --> [man].

noun(noun(woman)) --> [woman].

proper_noun(pn(john)) --> [john].

trans_verb(tv(loves)) --> [loves].

intrans_verb(iv(lives)) --> [lives].

Programming in Prolog Programming in Prolog

Using DCGs to define a subset of the English syntax,
and convert the sentence to logic

:-op(500,xfy,&).

:-op(600,xfy,’->’).

sentence(P) -->

noun_phrase(X,P1,P),

verb_phrase(X,P1).

noun_phrase(X,P1,P) -->

determiner(X,P2,P1,P),

noun(X,P3),

rel_clause(X,P3,P2).

noun_phrase(X,P,P) -->

proper_noun(X).

Programming in Prolog Programming in Prolog

Using DCGs to define a subset of the English syntax,
and convert the sentence to logic

verb_phrase(X,P) -->

trans_verb(X,Y,P1),

noun_phrase(Y,P1,P).

verb_phrase(X,P) -->

intrans_verb(X,P).

rel_clause(X,P1,(P1&P2)) -->

[that],

verb_phrase(X,P2).

rel_clause(_,P,P) --> [].

Programming in Prolog Programming in Prolog

Using DCGs to define a subset of the English syntax,
and convert the sentence to logic

determiner(X,P1,P2,all(X,(P1->P2))) --> [every].

determiner(X,P1,P2,exists(X,(P1&P2))) --> [a].

noun(X,man(X)) --> [man].

noun(X,woman(X)) --> [woman].

proper_noun(john) --> [john].

trans_verb(X,Y,loves(X,Y)) --> [loves].

intrans_verb(X,lives(X)) --> [lives].

Programming in Prolog Programming in Prolog

Programming in Prolog: trees

� a+b*c, +(a,*(b,c))

+

/ \

a *

/ \

b c

� sentence(noun(john),verb phrase(verb(likes),noun(mary)))

sentence

/ \

noun verb_phrase

/ / \

john verb noun

| |

likes mary

Programming in Prolog Programming in Prolog

Obtaining Multiple Solutions

� a goal can have multiple solutions (reached through
different clauses).

� Backtracking is used in Prolog when a fail occurs or when
we want to obtain multiple solutions.

� When trying to satisfy a goal Prolog annotates that goal as
a “choice-point”.

� If the goal fails, Prolog undo all work done so far till the
last choicepoint created.

� It starts the search again, from this new choicepoint,
looking for a new alternative to the goal.

Programming in Prolog Programming in Prolog

Backtracking – Example

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

parent(jane,charles).

parent(john,mary).

parent(fred,jane).

parent(jane,john).

?- grandparent(jane,mary).

Programming in Prolog Programming in Prolog

Backtracking – Execution tree for the example

Programming in Prolog Programming in Prolog

The cut operator – ! (cut)

� Controlled by the programmer.

� Reduces the search space.

� Implements exceptions.

� In combination with fail.

� Examples:

append([],X,X) :- !.

append([A|B],C,[A|D]) :- append(B,C,D).

not(P) :- call(P),!,fail.

not(P).

Programming in Prolog Programming in Prolog

The cut operator – comments about examples

� In the first example: reduction of the search space (pruning
solutions).

� Used when queries are of the kind:
append(L1,L2,[a,b,c]), where there are multiple
solutions (various values of L1 and L2 can produce the list
[a,b,c]).

� The second example implements a cut-fail combination. It
implements negation as failure. If P is true, i. e., Prolog
satisfies goal P, then not(P) returns a failure (not(P) must
be false) (falso). If Prolog can not satisfy goal P, then
not(P) returns true from the second clause.

Programming in Prolog Programming in Prolog

Builtin Predicates

� Input/Output.
I Opening and Closing disk files (multiple):

open(Fd,name,rwa), close(Fd).
I Reading files (one at a time): see, seeing, seen
I Writing files one at a time): tell, telling, told
I Writing Prolog terms and characters: nl, tab, write,

put, display, format
I Reading terms and chars: get, get0, read, skip
I Consulting (loading) programs: [ListOfFiles], consult,

reconsult (short form for reconsulting: [-FileName]
I Compiling programs: compile(file) (nb. dynamic and

static predicates – :-dynamic pred/n, :- static pred/n)

Programming in Prolog Programming in Prolog

Builtin Predicates

� Defining new operators.
I position
I precedence
I associativity

� Possible operators: (’f’ is the operator’s position - infix,
posfix or prefix, ’y’ represents expressions that can contain
other operators with precedence class greater than or equal
than the operator we are defining, ’x’ represents expressions
that contain operators with precedence class greater than
the precedence of the operator we are defining)

I binary: xfx, xfy, yfx, yfy
I unary: fx, fy, xf, yf

Programming in Prolog Programming in Prolog

Builtin Predicates

� Examples:

:- op(255,xfx,’:-’).

:- op(40,xfx,’=’).

:- op(31,yfx,’-’).

� Need to check the manual of the Prolog system to know
what are the characteristics of the pre-defined operators.
Your own definition may override some already existing
operator.

Programming in Prolog Programming in Prolog

Entering new clauses (not in querying mode)

� Alternative 1: consult some file that was edited offline.

� Alternative 2: [user]. This is the mode for entering new
clauses during your opened Prolog session. Prolog dislays
another prompt ad waits the user to type in new clauses.
To finish and go back to query mode, type Ctrl-D in unix
e Ctrl-Z in Windows. Clauses entered this way will last
only during your current session.

� Alternative 3: using the builtin predicate: assert. Only
allowed for predicates declared as dynamic.

� asserta(p(a,b)) insere no ińıcio do procedimento p, uma
nova cláusula p(a,b)..

� assertz(p(a,b)) insere no final do procedimento p, uma
nova cláusula p(a,b)..

Programming in Prolog Programming in Prolog

Builtin predicates

� Success and failure: true e fail.

� Types of terms: var(X), atom(X), nonvar(X),
integer(X), atomic(X).

� Meta-programming: clause(X,Y), listing(A),
retract(X), abolish(X), setof, bagof, findall.

� More meta-programming: functor(T,F,N), arg(N,T,A),
name(A,L), X =.. L.

� Affecting backtracking: repeat.

� Conjunction, Disjunction and execution of predicates: X,
Y, X; Y, call(X), not(X).

� Debugging programs: trace, notrace, spy, nospy.

Programming in Prolog Programming in Prolog

Lists

� Member relationship: relation member, number of
arguments: 2, the element to be looked for and a list (of
elements, not necessarily a set).

/* X was found, thus it belongs to the list */

member(X,[X|_]).

/* X was not found yet, it may be

in the remaining list */

member(X,[Y|L]) :- member(X,L).

Programming in Prolog Programming in Prolog

Lists

� Concatenation of two lists: relation concat, number of
arguments: 3, two input lists and the resulting list.

/* concatenation of an empty list with any other list

is that list */

concat([],L,L).

/* if one concatenates L1 with L2 and obtain L3, then

if one adds one new element to L1, the result L3

must contain this new element. In other words: if

one knows how to concatenate a list of n-1 elements

with any other list, one knows how to concatenate a

list of n elements with any other list.

*/

concat([H|L1],L2,[H|L3]) :- concat(L1,L2,L3).

Programming in Prolog Programming in Prolog

Lists

� Find the last element of a list: relation last, number of
arguments: 2, the element to be found and the list. Very
similar to the program member.

/* if the list has exactly one element,

this is the last. */

last(X,[X]).

/* if the list has more than one element, the last

is not the first one. The last one can only

be found in the remaining of the list. */

last(X,[_|L]) :- last(X,L).

Programming in Prolog Programming in Prolog

Lists

� Reverse of a list: relation rev, number of arguments: 2, an
input list and the resulting list reversed.

/* reverse of an empty list is the empty list */

rev([],[]).

/* reverse of a list L of length n is the reverse of

the same list L1 of length n-1 (less the first

element H) concatenated with the first element H

*/

rev([H|L1],R) :- rev(L1,L2), concat(L2,[H],R).

Programming in Prolog Programming in Prolog

Lists

� Length of a list: relation length, number of arguments: 2,
a list and the resulting length. Idea: the length of a list n
is defined by the length of a list of length (n-1) plus 1.

/* length of an empty list is zero */

length([],0).

/* length of a non-empty list ([H|L1]) is obtained by

length of L1 + 1.

*/

length([H|L1],N) :- length(L1,N1), N is N1 + 1.

Programming in Prolog Programming in Prolog

Lists

� Removing the first occurrence of element X from a list L:
relation remove, number of arguments: 3, the input list,
the element, and the resulting list.

/* remove X from an empty list returns

the empty list */

remove([],X,[]).

/* if X is found, return the remaining list

*/

remove([X|L],X,L).

/* if X was not found yet, try to remove X from

the remaining list and return a new list,

hopefully without X. Y, different from X, needs to

be in the resulting list */

remove([Y|L],X,[Y|L1]) :- remove(L,X,L1).

Programming in Prolog Programming in Prolog

Lists

� How to modify this program to remove not just the first
occurrence of X but ALL Xs?

� Can you modify the order of the clauses?

Programming in Prolog Programming in Prolog

Binary Search and Insertion

� Sorted binary dictionary:
I relation lookup,
I number of arguments: 3

� a key to be inserted or looked for,
� a dictionary,
� resultant information about the key.

I data structure: bintree(K,E,D,I)

� K: key.
� E: left subtree.
� D: right subtree.
� I: info about K.

Programming in Prolog Programming in Prolog

Sorted binary dictionary

/* key was found or is inserted */

lookup(K,bintree(K,_,_,I),I).

/* key was not found yet. It is either in the

left subtree or in the right subtree.

*/

lookup(K,bintree(K1,E,_,I1),I) :-

K < K1, lookup(K,E,I).

lookup(K,bintree(K1,_,D,I1),I) :-

K > K1, lookup(K,D,I).

Programming in Prolog Programming in Prolog

Meta-interpreter in Prolog for Prolog

� A meta-interpreter is a program that executes other
programs.

� Our example implements an interpreter in Prolog to
executes Prolog programs.

� Relation: interp, number of arguments: 1, Prolog term to
be interpreted (executed).

Programming in Prolog Programming in Prolog

Meta-interpreter in Prolog for Prolog

/* true is always true. */

interp(true).

/* a conjunction is true if each one of the literals is true. */

interp((G1,G2)) :-

interp(G1),

interp(G2).

/* a disjunction is true if one of the literals is true. */

interp((G1;G2)) :-

interp(G1);

interp(G2).

/* the single goal G is true if

it is defined in the program and

its body is true.

*/

interp(G) :-

clause(G,B),

interp(B).

Programming in Prolog Programming in Prolog

Search

� Representing graphs: set of nodes and edges/arcs. Arcs are
generally represented as an ordered pair.

� Examples:

Programming in Prolog Programming in Prolog

Search

� Representing graphs in Prolog:
I Alternative 1:

% non-directed graph % directed graph

connected(a,b). arc(s,t,3).

connected(b,c). arc(t,v,1).

connected(c,d). arc(u,t,2).

... ...

I Alternative 2: (sets of nodes and edges)
graph([a,b,c,d],[e(a,b),e(b,d),e(b,c),e(c,d)])

digraph([s,t,u,v],

[a(s,t,3),a(t,v,1),a(t,u,5),a(u,t,2),a(v,u,2)])
I Alternative 3: (adjacent list)

[a->[b], b->[a,c,d], c->[b,d], d->[b,c]]

[s->[t/3], t->[u/5,v/1], u->[t/2],v->[u/2]]

� Attention to the use of symbols -> e /.

Programming in Prolog Programming in Prolog

Search

� Typical operations in graphs:
I find a path between two nodes in the graph,
I find a subgraph with some given properties.

� Example: find a path between two nodes in a graph.

Programming in Prolog Programming in Prolog

Search

� G: graph represented as in alternative 1.

� A and Z: two nodes in the graph.

� P: acyclic path between A and Z.

� P represents a list of path nodes.

� Relation path, number of arguments: 4, source node (A),
destination node (Z), partial path (L) and complete path
(P).

� a node can only appear once in path (cycles should be
avoided).

Programming in Prolog Programming in Prolog

Search

� Method to find an acyclic path P, between A and Z, in
graph G.

� Find a partial path between A and some node N.

� Use the same method to find a path between N and Z. The
final path goes from A to Z through N. On the way, skip
already visited nodes.

Programming in Prolog Programming in Prolog

Search

/* Find a path from A to Z and return path in P.

Initial path is empty.

*/

path(A,Z,P) :- path1(A,Z,[],P).

/* If destination is reached, stop and return Path, which

must include destnation Z */

path1(Z,Z,L,[Z|L]).

/* If destination not yet reached, find a partial path

from A to Y. If Y has not been visited yet, add it to

the partial path.

Find a path from Y to Z.

*/

path1(A,Z,L,P) :-

(conectado(A,Y); % find partial path

conectado(Y,A)), % from A to Y or from Y to A

\+ member(Y,L), % check if Y has been visited

path1(Y,Z,[Y|L],P). % find path from Y to Z

	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog

