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Search Problems

� General problem: given an initial state Si and a final state
Sf , find a path between these two states making sure each
transition corresponds to a valid move.

� Example: Hanoi
I blocks need to be moved one at a time.
I a block can only be moved if there is nothing on its top.

� To find the solution (sequence of moves), we need to be
able to transform our initial blocks state in the final blocks
state.
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Hanoi example

� Exemplo:

+---+ +---+

| C | | A |

+---+ +---+

| A | ===> | B |

+---+ ?? +---+

| B | | C |

+---+ +---+

///// /////

� what path to follow to transform config 1 in config 2?

� how to find this path?
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Hanoi example

� We will explore alternative paths till finding the solution.

� For example, after placing C in the floor, we have the
alternatives:

I place A in the floor, OR
I place A on top of C, OR
I place C on top of A.

� Two types of concepts:
I situations (states, nodes, configurations).
I possible movements (actions, operators, transformations)

which can transform one state in another state.
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Search Problems

Ex:
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Search Problems

� Summarizing:
I state space.
I initial state.
I final state (goal).
I operator that can transform one state in the next.

� Optimization problem: find the path with minimum cost.
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Search Problems

� Representation of a state space in Prolog: s(X,Y) ou
s(X,Y,C), with C a cost of transitioning from state X to Y.

� s(X,Y) is true is there is a legal/possible movement from X
to Y.

� In the blocks problem (Hanoi), a state can be represented
by a list of stacks. Each stack, byt its turn can be
represented by a list whose first element is the block on the
top of the stack.
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Search Problems: defining a transition from X to Y -
example

� Initial state: [[c,a,b],[],[]]

� Final state: any set of stacks that contains one of the
stacks with the blocks ordered:

I [[a,b,c],[],[]]
I [[],[a,b,c],[]]
I [[],[],[a,b,c]]

� Given a state, to find the next state, we use the following
rule: St2 is the next state after St1, if there are two stacks
Stk1 and Stk2, with the block on top of Stk1 being moved
to Stk2.
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Search Problems: defining a transition from X to Y -
example

% mv Top1 to Stk2 em St2

s(Stacks,[Stk1,[Top1|Stk2]|Otherstacks]) :-

% [Top1|Stk1] is a stack in St1

del([Top1|Stk1],Stacks,Stacks1),

% Stk2 is a stack in St1

del(Stk2,Stacks1,Otherstacks).
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Search Problems: Hanoi

� goal (final state):

goal(Estado) :- member([a,b,c],Estado).

� search predicate (can be implemented using any search
predicate: dfs, bfs etc:

solve(Initial,Final).

� Query: ?- solve([[c,a,b],[],[]],Solution).
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Search Problems

� Depth-first search (dfs):

solve(N,[N]) :- goal(N).

solve(N,[N|Sol1]) :-

s(N,N1), % the implementation of s/2

solve(N1,Sol1).% depends on the problem

� Note: this program does not prevent cycles.
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Search Problems

� Iterative Deepening: (needs extra argument: depth limit)

solve(N,[N],_) :- goal(N).

solve(N,[N|Sol1],ProfMax) :-

ProfMax > 0,

s(N,N1),

NewMax is ProfMax - 1,

solve(N1,Sol1,NewMax).
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Search Problems

� Breadth-first Search (BFS):

bfs(Initial,Final) :- solve([[Initial]],Final).

solve([[N|Path]|_],[N|Path]) :- goal(N).

solve([Path|Paths],Solution) :-

extend(Path,NewPaths),

conc(Paths,NewPaths,Paths1),

solve(Paths1,Solution).

extend([Node|Path],NewPaths) :-

bagof([NewNode,Node|Path],

(s(Node,NewNode), \+ member(NewNode,[Node|Path])),

NewPaths), !.

extend(Path,_). % node has no successor.
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