
Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Logic Programming, 16-17

Inês Dutra
DCC-FCUP

ines@dcc.fc.up.pt (room: 1.31)

October 23, 2016

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems

� General problem: given an initial state Si and a final state
Sf , find a path between these two states making sure each
transition corresponds to a valid move.

� Example: Hanoi
I blocks need to be moved one at a time.
I a block can only be moved if there is nothing on its top.

� To find the solution (sequence of moves), we need to be
able to transform our initial blocks state in the final blocks
state.

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Hanoi example

� Exemplo:

+---+ +---+

| C | | A |

+---+ +---+

| A | ===> | B |

+---+ ?? +---+

| B | | C |

+---+ +---+

///// /////

� what path to follow to transform config 1 in config 2?

� how to find this path?

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Hanoi example

� We will explore alternative paths till finding the solution.

� For example, after placing C in the floor, we have the
alternatives:

I place A in the floor, OR
I place A on top of C, OR
I place C on top of A.

� Two types of concepts:
I situations (states, nodes, configurations).
I possible movements (actions, operators, transformations)

which can transform one state in another state.

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems

Ex:

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems

� Summarizing:
I state space.
I initial state.
I final state (goal).
I operator that can transform one state in the next.

� Optimization problem: find the path with minimum cost.

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems

� Representation of a state space in Prolog: s(X,Y) ou
s(X,Y,C), with C a cost of transitioning from state X to Y.

� s(X,Y) is true is there is a legal/possible movement from X
to Y.

� In the blocks problem (Hanoi), a state can be represented
by a list of stacks. Each stack, byt its turn can be
represented by a list whose first element is the block on the
top of the stack.

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems: defining a transition from X to Y -
example

� Initial state: [[c,a,b],[],[]]

� Final state: any set of stacks that contains one of the
stacks with the blocks ordered:

I [[a,b,c],[],[]]
I [[],[a,b,c],[]]
I [[],[],[a,b,c]]

� Given a state, to find the next state, we use the following
rule: St2 is the next state after St1, if there are two stacks
Stk1 and Stk2, with the block on top of Stk1 being moved
to Stk2.

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems: defining a transition from X to Y -
example

% mv Top1 to Stk2 em St2

s(Stacks,[Stk1,[Top1|Stk2]|Otherstacks]) :-

% [Top1|Stk1] is a stack in St1

del([Top1|Stk1],Stacks,Stacks1),

% Stk2 is a stack in St1

del(Stk2,Stacks1,Otherstacks).

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems: Hanoi

� goal (final state):

goal(Estado) :- member([a,b,c],Estado).

� search predicate (can be implemented using any search
predicate: dfs, bfs etc:

solve(Initial,Final).

� Query: ?- solve([[c,a,b],[],[]],Solution).

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems

� Depth-first search (dfs):

solve(N,[N]) :- goal(N).

solve(N,[N|Sol1]) :-

s(N,N1), % the implementation of s/2

solve(N1,Sol1).% depends on the problem

� Note: this program does not prevent cycles.

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems

� Iterative Deepening: (needs extra argument: depth limit)

solve(N,[N],_) :- goal(N).

solve(N,[N|Sol1],ProfMax) :-

ProfMax > 0,

s(N,N1),

NewMax is ProfMax - 1,

solve(N1,Sol1,NewMax).

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Search Problems

� Breadth-first Search (BFS):

bfs(Initial,Final) :- solve([[Initial]],Final).

solve([[N|Path]|_],[N|Path]) :- goal(N).

solve([Path|Paths],Solution) :-

extend(Path,NewPaths),

conc(Paths,NewPaths,Paths1),

solve(Paths1,Solution).

extend([Node|Path],NewPaths) :-

bagof([NewNode,Node|Path],

(s(Node,NewNode), \+ member(NewNode,[Node|Path])),

NewPaths), !.

extend(Path,_). % node has no successor.

	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog

