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a b s t r a c t

This paper discusses approaches and environments for carrying out analytics on Clouds for Big Data ap-
plications. It revolves around four important areas of analytics and Big Data, namely (i) data management
and supporting architectures; (ii) model development and scoring; (iii) visualisation and user interac-
tion; and (iv) business models. Through a detailed survey, we identify possible gaps in technology and
provide recommendations for the research community on future directions on Cloud-supported Big Data
computing and analytics solutions.
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1. Introduction

Society is becoming increasingly more instrumented and as a
result, organisations are producing and storing vast amounts of
data. Managing and gaining insights from the produced data is a
challenge and key to competitive advantage. Analytics solutions
that mine structured and unstructured data are important as they
can help organisations gain insights not only from their privately
acquired data, but also from large amounts of data publicly avail-
able on the Web [118]. The ability to cross-relate private informa-
tion on consumer preferences and products with information from
tweets, blogs, product evaluations, and data from social networks
opens a wide range of possibilities for organisations to understand
the needs of their customers, predict their wants and demands,
and optimise the use of resources. This paradigm is being popu-
larly termed as Big Data.
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Despite the popularity on analytics and Big Data, putting them
into practice is still a complex and time consuming endeavour. As
Yu [136] points out, Big Data offers substantial value to organisa-
tions willing to adopt it, but at the same time poses a consider-
able number of challenges for the realisation of such added value.
An organisation willing to use analytics technology frequently ac-
quires expensive software licences; employs large computing in-
frastructure; and pays for consulting hours of analysts who work
with the organisation to better understand its business, organise
its data, and integrate it for analytics [120]. This joint effort of or-
ganisation and analysts often aims to help the organisation un-
derstand its customers’ needs, behaviours, and future demands for
newproducts ormarketing strategies. Such effort, however, is gen-
erally costly and often lacks flexibility. Nevertheless, research and
application of Big Data are being extensively explored by govern-
ments, as evidenced by initiatives from USA [20] and UK [106]; by
academics, such as the bigdata@csail initiative fromMIT [19]; and
by companies such as Intel [122].

Cloud computing has been revolutionising the IT industry by
adding flexibility to theway IT is consumed, enabling organisations
to pay only for the resources and services they use. In an effort to
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reduce IT capital and operational expenditures, organisations of all
sizes are using Clouds to provide the resources required to run their
applications. Clouds vary significantly in their specific technologies
and implementation, but often provide infrastructure, platform,
and software resources as services [25,13].

The most often claimed benefits of Clouds include offering re-
sources in a pay-as-you-go fashion, improved availability and elas-
ticity, and cost reduction. Clouds can prevent organisations from
spending money for maintaining peak-provisioned IT infrastruc-
ture that they are unlikely to use most of the time. Whilst at first
glance the value proposition of Clouds as a platform to carry out
analytics is strong, there aremany challenges that need to be over-
come to make Clouds an ideal platform for scalable analytics.

In this article we survey approaches, environments, and tech-
nologies on areas that are key to Big Data analytics capabilities and
discuss how they help building analytics solutions for Clouds. We
focus on the most important technical issues on enabling Cloud
analytics, but also highlight some of the non-technical challenges
faced by organisations that want to provide analytics as a service
in the Cloud. In addition, we describe a set of gaps and recommen-
dations for the research community on future directions on Cloud-
supported Big Data computing.

2. Background and methodology

Organisations are increasingly generating large volumes of data
as result of instrumented business processes, monitoring of user
activity [14,127], web site tracking, sensors, finance, accounting,
among other reasons.With the advent of social networkWeb sites,
users create records of their lives by daily posting details of ac-
tivities they perform, events they attend, places they visit, pic-
tures they take, and things they enjoy and want. This data deluge
is often referred to as Big Data [99,55,17]; a term that conveys the
challenges it poses on existing infrastructure with respect to stor-
age,management, interoperability, governance, and analysis of the
data.

In today’s competitive market, being able to explore data to un-
derstand customer behaviour, segment customer base, offer cus-
tomised services, and gain insights from data provided bymultiple
sources is key to competitive advantage. Although decisionmakers
would like to base their decisions and actions on insights gained
from this data [43], making sense of data, extracting non obvious
patterns, and using these patterns to predict future behaviour are
not new topics. Knowledge Discovery in Data (KDD) [50] aims to
extract non obvious information using careful and detailed anal-
ysis and interpretation. Data mining [133,84], more specifically,
aims to discover previously unknown interrelations among appar-
ently unrelated attributes of data sets by applying methods from
several areas including machine learning, database systems, and
statistics. Analytics comprises techniques of KDD, datamining, text
mining, statistical and quantitative analysis, explanatory and pre-
dictivemodels, and advanced and interactive visualisation to drive
decisions and actions [43,42,63].

Fig. 1 depicts the common phases of a traditional analyt-
ics workflow for Big Data. Data from various sources, including
databases, streams, marts, and data warehouses, are used to build
models. The large volume and different types of the data can de-
mand pre-processing tasks for integrating the data, cleaning it, and
filtering it. The prepared data is used to train a model and to esti-
mate its parameters. Once themodel is estimated, it should be vali-
dated before its consumption. Normally this phase requires the use
of the original input data and specific methods to validate the cre-
ated model. Finally, the model is consumed and applied to data as
it arrives. This phase, calledmodel scoring, is used to generate pre-
dictions, prescriptions, and recommendations. The results are in-
terpreted and evaluated, used to generate newmodels or calibrate
existing ones, or are integrated to pre-processed data.
Analytics solutions can be classified as descriptive, predictive,
or prescriptive as illustrated in Fig. 2. Descriptive analytics
uses historical data to identify patterns and create management
reports; it is concerned with modelling past behaviour. Predictive
analytics attempts to predict the future by analysing current and
historical data. Prescriptive solutions assist analysts in decisions by
determining actions and assessing their impact regarding business
objectives, requirements, and constraints.

Despite the hype about it, using analytics is still a labour inten-
sive endeavour. This is because current solutions for analytics are
often based on proprietary appliances or software systems built for
general purposes. Thus, significant effort is needed to tailor such
solutions to the specific needs of the organisation, which includes
integrating different data sources and deploying the software on
the company’s hardware (or, in the case of appliances, integrat-
ing the appliance hardware with the rest of the company’s sys-
tems) [120]. Such solutions are usually developed and hosted on
the customer’s premises, are generally complex, and their opera-
tions can take hours to execute. Cloud computing provides an in-
teresting model for analytics, where solutions can be hosted on
the Cloud and consumed by customers in a pay-as-you-go fashion.
For this delivery model to become reality, however, several tech-
nical issues must be addressed, such as data management, tuning
of models, privacy, data quality, and data currency.

This work highlights technical issues and surveys existing work
on solutions to provide analytics capabilities for Big Data on the
Cloud. Considering the traditional analytics workflow presented in
Fig. 1, we focus on key issues in the phases of an analytics solution.
With Big Data it is evident that many of the challenges of Cloud
analytics concern data management, integration, and processing.
Previous work has focused on issues such as data formats, data
representation, storage, access, privacy, and data quality. Section 3
presents existing work addressing these challenges on Cloud envi-
ronments. In Section 4, we elaborate on existingmodels to provide
and evaluate data models on the Cloud. Section 5 describes solu-
tions for data visualisation and customer interaction with analyt-
ics solutions provided by a Cloud. We also highlight some of the
business challenges posed by this delivery model whenwe discuss
service structures, service level agreements, and business models.
Security is certainly a key challenge for hosting analytics solutions
on public Clouds. We consider, however, that security is an exten-
sive topic and would hence deserve a study of its own. Therefore,
security and evaluation of data correctness [130] are out of scope
of this survey.

3. Data management

One of the most time-consuming and labour-intensive tasks of
analytics is preparation of data for analysis; a problem often exac-
erbated by Big Data as it stretches existing infrastructure to its lim-
its. Performing analytics on large volumes of data requires efficient
methods to store, filter, transform, and retrieve the data. Some of
the challenges of deploying data management solutions on Cloud
environments have been known for some time [1,113,82], and so-
lutions to perform analytics on the Cloud face similar challenges.
Cloud analytics solutions need to consider the multiple Cloud de-
ployment models adopted by enterprises, where Clouds can be for
instance:

• Private: deployed on a private network, managed by the organ-
isation itself or by a third party. A private Cloud is suitable for
businesses that require the highest level of control of security
and data privacy. In such conditions, this type of Cloud infras-
tructure can be used to share the services and data more effi-
ciently across the different departments of a large enterprise.

• Public: deployed off-site over the Internet and available to the
general public. Public Cloud offers high efficiency and shared
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Fig. 1. Overview of the analytics workflow for Big Data.
Fig. 2. Categories of analytics.

resources with low cost. The analytics services and data man-
agement are handled by the provider and the quality of service
(e.g. privacy, security, and availability) is specified in a contract.
Organisations can leverage these Clouds to carry out analytics
with a reduced cost or share insights of public analytics results.

• Hybrid: combines both Clouds where additional resources from
a public Cloud can be provided as needed to a private Cloud.
Customers can develop and deploy analytics applications using
a private environment, thus reaping benefits from elasticity and
higher degree of security than using only a public Cloud.

Considering the Cloud deployments, the following scenarios are
generally envisioned regarding the availability of data and analyt-
ics models [87]: (i) data and models are private; (ii) data is public,
models are private; (iii) data and models are public; and (iv) data
is private, models are public. Jensen et al. [79] advocate on deploy-
mentmodels for Cloud analytics solutions that vary from solutions
using privately hosted software and infrastructure, to private ana-
lytics hosted on a third party infrastructure, to public model where
the solutions are hosted on a public Cloud.

Different from traditional Cloud services, analytics deals with
high-level capabilities that often demand very specialised re-
sources such as data and domain experts’ analysis skills. For this
reason, we advocate that under certain business models – es-
pecially those where data and models reside on the provider’s
premises – not only ordinary Cloud services, but also the skills of
data experts need to be managed. To achieve economies of scale
and elasticity, Cloud-enabled Big Data analytics needs to explore
means to allocate andutilise these specialised resources in a proper
manner. The rest of this section discusses existing solutions on
data management irrespective of where data experts are physi-
cally located, focusing on storage and retrieval of data for analytics;
data diversity, velocity and integration; and resource scheduling
for data processing tasks.

3.1. Data variety and velocity

Big Data is characterised by what is often referred to as a multi-
V model, as depicted in Fig. 3. Variety represents the data types,
velocity refers to the rate at which the data is produced and pro-
cessed, and volume defines the amount of data. Veracity refers
to how much the data can be trusted given the reliability of its
source [136], whereas value corresponds the monetary worth that
Fig. 3. Some ‘Vs’ of Big Data.

a company can derive from employing Big Data computing. Al-
though the choice of Vs used to explain Big Data is often arbitrary
and varies across reports and articles on the Web – e.g. as of writ-
ing Viability is becoming a new V – variety, velocity, and volume
[112,140] are the items most commonly mentioned.

Regarding Variety, it can be observed that over the years, sub-
stantial amount of data has been made publicly available for
scientific and business uses. Examples include repositories with
government statistics1; historical weather information and fore-
casts; DNA sequencing; information on traffic conditions in large
metropolitan areas; product reviews and comments; demograph-
ics [105]; comments, pictures, and videos posted on social network
Web sites; information gathered using citizen-science plat-
forms [22]; and data collected by amultitude of sensorsmeasuring
various environmental conditions such as temperature, air humid-
ity, air quality, and precipitation.

An example illustrating the need for such a variety within a
single analytics application is the Eco-Intelligence [139] platform.
Eco-Intelligence was designed to analyse large amounts of data
to support city planning and promote more sustainable develop-
ment. The platform aims to efficiently discover and process data
from several sources, including sensors, news,Web sites, television
and radio, and exploit information to help urban stakeholders cope
with the highly dynamics of urban development. In a related sce-
nario, the Mobile Data Challenge (MDC) was created aimed at gen-
erating innovations on smartphone-based research, and to enable
community evaluation ofmobile data analysismethodologies [90].
Data from around 200 users of mobile phones was collected over
a year as part of the Lausanne Data Collection Campaign. Another
related area benefiting from analytics isMassivelyMultiplayer On-
line Game (MMOGs). CAMEO [78] is an architecture for continu-
ous analytics for MMOGs that uses Cloud resources for analysis
of tasks. The architecture provides mechanisms for data collection
and continuous analytics on several factors such as understanding
the needs of the game community.

1 http://www.data.gov.

http://www.data.gov
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Fig. 4. Variety of data.

Fig. 5. Velocity of data.

Data is also often available for sale in the format of research and
technical reports, market segment and financial analyses, among
other means. This data can be used by various applications, for
instance, to improve the living conditions in large cities, to provide
better quality services, to optimise the use of natural resources,2
and to prevent or manage response to unplanned events.

Handling and analysing this data poses several challenges as it
can be of different types (Fig. 4). It is argued that a large part of data
produced today is either unstructured or semi-structured.

Considering data velocity, it is noticed that, to complicate mat-
ters further, data can arrive and require processing at different
speeds, as illustrated in Fig. 5. Whist for some applications, the
arrival and processing of data can be performed in batch, other
analytics applications require continuous and real-time analyses,
sometimes requiring immediate action upon processing of incom-
ing data streams. For instance, to provide active management for
data centres, Wang et al. [131] present an architecture that inte-
grates monitoring and analytics. The proposed architecture relies
on Distributed Computation Graphs (DCG) that are created to im-
plement the desired analytics functions. The motivating use cases
consist in scenarios where information can be collected frommon-
itored equipments and services, and once a potential problem is
identified, the system can instantiate DCGs to collect further infor-
mation for analytics.

Increasingly often, data arriving via streams needs to be anal-
ysed and compared against historical information. Different data
sources may use their own formats, which makes it difficult to in-
tegrate data frommultiple sources in an analytics solution. As high-
lighted in existing work [52], standard formats and interfaces are
crucial so that solution providers can benefit from economies of
scale derived from data integration capabilities that address the
needs of a wide range of customers.

The rest of our discussion on data management for Cloud an-
alytics surrounds these two Vs of Big Data, namely Variety and
Velocity. We survey solutions on how this diverse data is stored,
how it can be integrated and how it is often processed. The dis-
cussion on visualisation also explores Velocity by highlighting fac-
tors such as interactivity and batch based visualisation. Although
the other Vs of Big Data are important, we consider that some of
them, as discussed earlier, deserve a study of their own, such as
data Veracity. Other Vs are subjective; Volume is highly depen-
dent on the scalability of existing hardware infrastructure, which
improves quickly and can render a survey obsolete very rapidly;
Value may depend on how efficient a company employs the ana-
lytics solutions at hand. Besides the V attributes, Big Data analytics
also shares concerns with other data-related disciplines, and thus
can directly benefit from the body of knowledge developed in the
last years on such established subjects. This is the case of issues
such as data quality [110] and data provenance [102].

2 Sense-T laboratory: http://www.sense-t.org.au/about/the-big-picture.
3.2. Data storage

Several solutions were proposed to store and retrieve large
amounts of data demanded by Big Data, some of which are cur-
rently used in Clouds. Internet-scale file systems such as theGoogle
File System (GFS) [57] attempt to provide the robustness, scalabil-
ity, and reliability that certain Internet services need. Other solu-
tions provide object-store capabilitieswhere files can be replicated
across multiple geographical sites to improve redundancy, scal-
ability, and data availability. Examples include Amazon Simple
Storage Service (S3),3 Nirvanix Cloud Storage,4 OpenStack Swift5
andWindows Azure Binary Large Object (Blob) storage.6 Although
these solutions provide the scalability and redundancy that many
Cloud applications require, they sometimes do not meet the con-
currency and performance needs of certain analytics applications.

One key aspect in providing performance for Big Data analytics
applications is the data locality. This is because the volume of data
involved in the analytics makes it prohibitive to transfer the data
to process it. This was the preferred option in typical high perfor-
mance computing systems: in such systems, that typically concern
performing CPU-intensive calculations over amoderate tomedium
volume of data, it is feasible to transfer data to the computing units,
because the ratio of data transfer to processing time is small. Nev-
ertheless, in the context of Big Data, this approach of moving data
to computation nodes would generate large ratio of data transfer
time to processing time. Thus, a different approach is preferred,
where computation is moved to where the data is. The same ap-
proach of exploring data locality was explored previously in scien-
tific workflows [47] and in Data Grids [128].

In the context of Big Data analytics, MapReduce presents an
interesting model where data locality is explored to improve the
performance of applications. Hadoop, an open source MapReduce
implementation, allows for the creation of clusters that use the
Hadoop Distributed File System (HDFS) to partition and replicate
data sets to nodes where they are more likely to be consumed by
mappers. In addition to exploiting concurrency of large numbers of
nodes, HDFS minimises the impact of failures by replicating data
sets to a configurable number of nodes. It has been used by Thu-
soo et al. [125] to develop an analytics platform to process Face-
book’s large data sets. The platform uses Scribe to aggregate logs
from Web servers and then exports them to HDFS files and uses
a Hive–Hadoop cluster to execute analytics jobs. The platform in-
cludes replication and compression techniques and columnar com-
pression of Hive7 to store large amounts of data.

Among the drawbacks of Cloud storage techniques andMapRe-
duce implementations, there is the fact that they require the cus-
tomer to learn a new set of APIs to build analytics solutions for
the Cloud. To minimise this hurdle, previous work has also inves-
tigated POSIX-like file systems for data analytics. As an example,
Ananthanarayanan et al. [6] adapted POSIX-based cluster file sys-
tems to be used as data storage for Cloud analytics applications. By
using the concept of meta-blocks, they demonstrated that IBM’s
General Parallel File System (GPFS) [117] can match the read per-
formance of HDFS. A meta-block is a consecutive set of data blocks
that are allocated in the same disk, thus guaranteeing contiguity.
The proposed approach explores the trade-off between different
block sizes, wheremeta-blocksminimise seek overhead inMapRe-
duce applications, whereas small blocks reduce pre-fetch over-
head and improves cache management for ordinary applications.

3 http://aws.amazon.com/s3/.
4 http://www.nirvanix.com.
5 http://swift.openstack.org.
6 http://www.windowsazure.com/en-US/services/data-management/.
7 http://hive.apache.org.

http://www.sense-t.org.au/about/the-big-picture
http://aws.amazon.com/s3/
http://www.nirvanix.com
http://swift.openstack.org
http://www.windowsazure.com/en-US/services/data-management/
http://hive.apache.org
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Tantisiriroj et al. [124] compared the Parallel Virtual File System
(PVFS) [28] against HDFS, where they observed that PVFS did not
present significant improvement in completion time and through-
put compared to HDFS.

Although a large part of the data produced nowadays is un-
structured, relational databases have been the choice most or-
ganisations have made to store data about their customers, sales,
and products, among other things. As data managed by traditional
DBMS ages, it ismoved to datawarehouses for analysis and for spo-
radic retrieval. Models such as MapReduce are generally not the
most appropriate to analyse such relational data. Attempts have
been made to provide hybrid solutions that incorporate MapRe-
duce to perform some of the queries and data processing required
by DBMS’s [1]. Cohen et al. [39] provide a parallel database design
for analytics that supports SQL andMapReduce scripting on top of a
DBMS to integratemultiple data sources. A fewproviders of analyt-
ics and datamining solutions, by exploringmodels such asMapRe-
duce, are migrating some of the processing tasks closer to where
the data is stored, thus trying to minimise surpluses of siloed data
preparation, storage, and processing [85]. Data processing and ana-
lytics capabilities aremoving towards Enterprise DataWarehouses
(EDWs), or are being deployed in data hubs [79] to facilitate reuse
across various data sets.

With respect to EDW, some Cloud providers offer solutions that
promise to scale to one petabyte of data or more. Amazon Red-
shift [2], for instance, offers columnar storage and data compres-
sion and aims to deliver high query performance by exploring a
series of features, including a massively parallel processing archi-
tecture using high performance hardware, mesh networks, locally
attached storage, and zone maps to reduce the I/O required by
queries. Amazon Data Pipeline [3] allows a customer to move data
across different Amazon Web Services, such as Elastic MapReduce
(EMR) [4] and DynamoDB [46], and hence compose the required
analytics capabilities.

Another distinctive trend in Cloud computing is the increasing
use of NoSQL databases as the preferredmethod for storing and re-
trieving information. NoSQL adopts a non-relationalmodel for data
storage. Leavitt argues that non-relational models have been avail-
able for more than 50 years in forms such as object-oriented, hier-
archical, and graph databases, but recently this paradigm started
to attract more attention with models such as key-store, column-
oriented, and document-based stores [92]. The causes for such
raise in interest, according to Levitt, are better performance, ca-
pacity of handling unstructured data, and suitability for distributed
environments [92].

Han et al. [68] presented a survey of NoSQL databases with em-
phasis on their advantages and limitations for Cloud computing.
The survey classifies NoSQL systems according to their capacity in
addressing different pairs of CAP (consistency, availability, parti-
tioning). The survey also explores the data model that the studied
NoSQL systems support.

Hecht and Jablonski [69] compared different NoSQL systems in
regard to supported data models, types of query supported, and
support for concurrency, consistency, replication, and partitioning.
Hecht and Jablonski concluded that there are big differences
among the features of different technologies, and there is no single
system thatwould be themost suitable for every need. Therefore, it
is important for adopters to understand the requirements of their
applications and the capabilities of different systems so that the
system whose features better match their needs is selected [69].

3.3. Data integration solutions

Forrester Research published a technical report that discusses
some of the problems that traditional Business Intelligence (BI)
faces [85], highlighting that there is often a surplus of siloed data
preparation, storage, and processing. Authors of the report envi-
sion some data processing and Big Data analytics capabilities being
migrated to the EDW, hence freeing organisations from unneces-
sary data transfer and replication and the use of disparate data-
processing and analysis solutions. Moreover, as discussed earlier,
they advocated that analytics solutions will increasingly expose
data processing and analysis features viaMapReduce and SQL–MR-
like interfaces. SAP HANA One [115], as an example, is an in-
memory platform hosted by Amazon Web Services that provides
real-time analytics for SAP applications. HANA One also offers a
SAP data integrator to load data from HDFS and Hive-accessible
databases.

EDWs or Cloud based data warehouses, however, create certain
issues with respect to data integration and the addition of new
data sources. Standard formats and interfaces can be essential to
achieve economies of scale and meet the needs of a large num-
ber of customers [52]. Some solutions attempt to address some
of these issues [105,21]. Birst [21] provides composite spaces and
space inheritance, where a composite space integrates data from
one or more parent spaces with additional data added to the com-
posite space. Birst provides a Software as a Service (SaaS) solution
that offers analytics functionalities on a subscription model; and
appliances with the business analytics infrastructure, hence pro-
viding a model that allows a customer to migrate gradually from
an on-premise analytics to a scenario with Cloud-provided analyt-
ics infrastructure. To improve the market penetration of analytics
solutions in emergingmarkets such as India, Deepak et al. [48] pro-
pose amulti-flow solution for analytics that can be deployed on the
Cloud. The multi-flow approach provides a range of possible ana-
lytics operators and flows to compose analytics solutions; viewed
as workflows or instantiations of a multi-flow solution. IVOCA [18]
is a tool aimed at Customer Relationship Management (CRM) that
ingests both structured and unstructured data and provides data
linking, classification, and text mining tools to facilitate analysts’
tasks and reduce the time to insight.

Habich et al. [67] propose Web services that co-ordinate data
Clouds for exchanging massive data sets. The Business Process Ex-
ecution Language (BPEL) data transition approach is used for data
exchange by passing references to data between services to re-
duce the execution time and guarantee the correct data processing
of an analytics process. A generic data Cloud layer is introduced
to handle heterogeneous data Clouds, and is responsible for map-
ping generic operations to each Cloud implementation. DataDirect
Cloud [41] also provides generic interfaces by offering JDBC/ODBC
drivers for applications to execute SQL queries against different
databases stored on a Cloud. Users are not required to deal with
different APIs and query languages specific to each Cloud storage
solution.

PivotLink’s AnalyticsCLOUD [105] handles both structured and
unstructured data, providing data integration features. PivotLink
also provides DataCLOUD with information about over 350 demo-
graphic, hobbies, and interest data fields for 120 million US house-
holds. This information can be used by customers to perform brand
sentiment analysis [51] and verify howweather affects their prod-
uct performance.

3.4. Data processing and resource management

MapReduce [45] is one of the most popular programming
models to process large amounts of data on clusters of com-
puters. Hadoop [10] is the most used open source MapReduce
implementation, also made available by several Cloud providers
[4,16,77,132]. Amazon EMR [4] enables customers to instantiate
Hadoop clusters to process large amounts of data using the Ama-
zon Elastic Compute Cloud (EC2) and other Amazon Web Services
for data storage and transfer.
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Hadoopuses theHDFS file system to partition and replicate data
sets across multiple nodes, such that when running a MapReduce
application, a mapper is likely to access data that is locally stored
on the cluster node where it is executing. Although Hadoop pro-
vides a set of APIs that allows developers to implementMapReduce
applications, very often a Hadoop workflow is composed of jobs
that use high-level query languages such as Hive and Pig Latin, cre-
ated to facilitate search and specification of processing tasks. Lee
et al. [94] present a survey about the features, benefits, and limita-
tions ofMapReduce for parallel data analytics. They also discuss ex-
tensions proposed for this programming model to overcome some
of its limitations.

Hadoop provides data parallelism and its data and task repli-
cation schemes enable fault tolerance, but what is often criticised
about it is the time required to load data into HDFS and the lack of
reuse of data produced bymappers. MapReduce is a model created
to exploit commodity hardware, but when executed on reliable
infrastructure, the mechanisms it provides to deal with failures
may not be entirely essential. Some of the provided features can
be disabled in certain scenarios. Herodotou and Babu [71] present
techniques for profiling MapReduce applications, identifying bot-
tlenecks and simulating what-if scenarios. Previous work has
also proposed optimisations to handle these shortcomings [66].
Cuzzocrea et al. [40] discuss issues concerning analytics over big
multidimensional data and the difficulties in buildingmultidimen-
sional structures in HDFS and integrating multiple data sources to
Hadoop.

Starfish [72], a data analytics system built atop Hadoop, focuses
on improving the performance of clusters throughout the data
lifecycle in analytics, without requiring users to understand the
available configuration options. Starfish employs techniques at
several levels to optimise the execution of MapReduce jobs. It uses
dynamic instrumentation to profile jobs and optimises workflows
by minimising the impact of data unbalance and by balancing the
load of executions. Starfish’s Elastisizer automates provisioning
decisions using a mix of simulation and model-based estimation
to address what-if questions on workload performance.

Lee et al. [93] present an approach that allocates resources and
schedules jobs considering data analytics workloads, in order to
enable consolidation of a cluster workload, reducing the number
of machines allocated for processing the workload during periods
of small load. The approach uses Hadoop andworkswith two pools
of machines – core and accelerator – and dynamically adjusts the
size of each pool according to the observed load.

Daytona [16], a MapReduce runtime for Windows Azure, lever-
ages the scalable storage services provided by Azure’s Cloud infras-
tructure as the source anddestination of data. It uses Cloud features
to provide load balancing and fault tolerance. The system relies on
a master–slave architecture where the master is responsible for
scheduling tasks and the slaves for carrying out map and reduce
operations. Section 5 discusses the visualisation features that Day-
tona provides.

Previous work shows that there is an emerging class of MapRe-
duce applications that feature small, short, and highly interactive
jobs [31,54]. As highlighted in Section 5, the visualisation commu-
nity often criticises the lack of interactivity of MapReduce-based
analytics solutions. Over the past few years, however, several at-
tempts have beenmade to tackle this issue. Borthakur et al. [23], for
instance, describe optimisations implemented in HDFS andHBase8
to make them more responsive to the realtime requirements of
Facebook applications. Chen et al. [30] propose energy efficiency
improvements to Hadoop by maintaining two distinct pools of re-
sources, namely interactive and batch jobs.

8 http://hbase.apache.org.
The eXtreme Analytics Platform (XAP) [15] enables analytics
supporting multiple data sources, data types (structured and un-
structured), and multiple types of analyses. The target infrastruc-
ture of the architecture is a cluster running a distributed file
system. Amodified version ofHadoop, deployed in the cluster, con-
tains an application scheduler (FLEX) able to better utilise the avail-
able resources than the default Hadoop scheduler. The analytics
jobs are created via a high-level language script, called Jaql, that
converts the high-level descriptive input into an analytics MapRe-
duce workflow that is executed in the target infrastructure.

Previous work has also considered other models for performing
analytics, such as scientific workflows and Online Analytical Pro-
cessing (OLAP). Rahman et al. [108] propose a hybrid heuristic for
scheduling data analytics workflows on heterogeneous Cloud en-
vironments; a heuristic that optimises cost of workflow execution
and satisfies users requirements, such as budget, deadline, anddata
placement.

In the field of simulation-enabled analytics, Li et al. [97]
developed an analytical application, modelled as a Direct Acyclic
Graph (DAG), for predicting the spread of dengue fever outbreaks
in Singapore. The analytics workflow receives data from multiple
sources, including current and past data about climate andweather
from meteorological agencies and historical information about
dengue outbreaks in the country. This data, with user-supplied
input about the origin of the infection, is used to generate a map
of the spread of the disease in the country in a day-by-day basis. A
hybrid Cloud is used to speed up the application execution. Other
characteristics of the application are security features and cost-
effective exploration of Cloud resources: the system keeps the
utilisation of public Cloud resources to a minimum to enable the
analytics to complete in the specified time and budget. A public
Cloud has also been used in a similar scenario to simulate the
impact of public transport disruptions on urban mobility [81].

Chohan et al. [36] evaluated the support of OLAP for Google
App Engine (GAE) [58] highlighting limitations and assessing their
impact on cost and performance of applications. A hybrid approach
to perform OLAP using GAE and AppScale [24] was provided, using
two methods for data synchronisation, namely bulk data transfer
and incremental data transfer. Moreover, Jung et al. [80] propose
optimisations for scheduling and processing of Big Data analysis
on federated Clouds.

Chang et al. [29] examined different data analytics workloads,
where results show significant diversity of resource usage (CPU,
I/O and, network). They recommend the use of transformation
mechanisms such as indexing, compression, and approximation to
provide a balanced system and improve efficiency of data analysis.

The Cloud can also be used to extend the capabilities of analyses
initially started on the customer’s premises. CloudComet, for
example, is an autonomic computing engine that supports Cloud
bursts that has been used to provide the programming and runtime
infrastructure to scale out/in certain on-line risk analyses [83].
CloudComet and commercial technologies such as Aneka [27] can
utilise both private resources and resources from a public Cloud
provider to handle peaks in the demands of online risk analytics.

Some analytics applications including stock quotes andweather
prediction have stringent time constraints, usually falling in the
near-time and stream categories described earlier. Request pro-
cessing time is important to deliver results in a timely fash-
ion. Chen et al. [33] investigate Continuous analytics as a Service
(CaaaS) that blends stream processing and relational data tech-
niques to extend the DBMS model and enable real-time continu-
ous analytics service provisioning. The dynamic stream processing
and static data management for data intensive analytics are uni-
fied by providing an SQL-like interface to access both static and
stream data. The proposed cycle-based query model and transac-
tionmodel allow SQL queries to run and to commit per cyclewhilst
analysing stream data per chunk. The analysis results are made
visible to clients whilst a continued query for results generation

http://hbase.apache.org


M.D. Assunção et al. / J. Parallel Distrib. Comput. 79–80 (2015) 3–15 9
Table 1
Summary of works on model building and scoring.

Work Goal Service model Deployment model

Guazzelli et al. [64] Predictive analytics (scoring) IaaS Public
Zementis [138] Data analysis and model building SaaS Public or private
Google Prediction API [59] Model building SaaS Public
Apache Mahout [11] Data analysis and model building IaaS Any
Hazy [88] Model building IaaS Any
is still running. Existing work on stream and near-time process-
ing attempt to leverage strategies to predict user or service be-
haviour [137]. In this way, an analytics service can pre-fetch data
to anticipate a user’s behaviour, hence selecting the appropriate
applications and methods before the user’s request arrives.

Realtime analysis of Big Data is a hot topic, with Cloud providers
increasingly offering solutions that can be used as building blocks
of stream and complex event processing systems. AWS Kinesis [5]
is an elastic system for real-time processing of streaming data that
can handle multiple sources, be used to build dashboards, han-
dle events, and generate alerts. It allows for integration with other
AWS services. In addition, stream processing frameworks includ-
ing Apache S4 [9], Storm [121] and IBM InfoSphere Streams [75]
can be deployed on existing Cloud offerings. Software systems such
as storm-deploy, a Clojure project based on Pallet,9 aim to ease de-
ployment of Storm topologies on Cloud offerings including AWS
EC2. Suro, a data pipeline system used by Netflix to collect events
generated by its applications, has recently been made available
to the broader community as an open source project [8]. Aiming
to address similar requirements, Apache Kafka [62] is a real-time
publish–subscribe infrastructure initially used at LinkedIn to pro-
cess activity data and later released as an open source project.
Incubated by the Apache Software Foundation, Samza [12] is a
distributed stream processing framework that blends Kafka and
Apache Hadoop YARN. Whilst Samza provides a model where
streams are the input and output to jobs, execution is completely
handled by YARN.

3.5. Challenges in big data management

In this section,wediscuss current research targeting the issue of
Big Data management for analytics. There are still, however, many
open challenges in this topic. The list below is not exhaustive, and
asmore research in this field is conducted,more challenging issues
will arise.

Data variety: How to handle an always increasing volume of
data? Especially when the data is unstructured, how to
quickly extract meaningful content out of it? How to
aggregate and correlate streaming data from multiple
sources?

Data storage: How to efficiently recognise and store important
information extracted from unstructured data? How to
store large volumes of information in a way it can be
timely retrieved? Are current file systems optimised for
the volume and variety demanded by analytics applica-
tions? If not, what new capabilities are needed? How
to store information in a way that it can be easily mi-
grated/ported between data centres/Cloud providers?

Data integration: New protocols and interfaces for integration
of data that are able to manage data of different nature
(structured, unstructured, semi-structured) and sources.

Data Processing and Resource Management: New programm-
ing models optimised for streaming and/or multidimen-
sional data; newbackend engines thatmanage optimised

9 http://github.com/pallet/pallet.
file systems; engines able to combine applications from
multiple programming models (e.g. MapReduce, work-
flows, and bag-of-tasks) on a single solution/abstraction.
How to optimise resource usage and energy consumption
when executing the analytics application?

4. Model building and scoring

The data storage and Data as a Service (DaaS) capabilities
provided by Clouds are important, but for analytics, it is equally
relevant to use the data to build models that can be utilised for
forecasts and prescriptions. Moreover, as models are built based
on the available data, they need to be tested against new data in
order to evaluate their ability to forecast future behaviour. Exist-
ing work has discussed means to offload such activities – termed
here as model building and scoring – to Cloud providers and ways
to parallelise certainmachine learning algorithms [126,11,74]. This
section describes work on the topic. Table 1 summarises the anal-
ysed work, its goals, and target infrastructures.

Guazzelli et al. [64] use Amazon EC2 as a hosting platform for
the Zementis’ ADAPAmodel [138] scoring engine. Predictive mod-
els, expressed in Predictive Model Markup Language (PMML) [65],
are deployed in the Cloud and exposed viaWeb Services interfaces.
Users can access the models with Web browser technologies to
compose their data mining solutions. Existing work also advocates
the use of PMML as a language to exchange information about pre-
dictive models [73].

Zementis [138] also provides technologies for data analysis
and model building that can run either on a customer’s premises
or be allocated as SaaS using Infrastructure as a Service (IaaS)
provided by solutions such as Amazon EC2 and IBM SmartCloud
Enterprise [76].

Google PredictionAPI [59] allows users to createmachine learn-
ing models to predict numeric values for a new item based on val-
ues of previously submitted training data or predict a category that
best describes an item. The prediction API allows users to sub-
mit training data as comma separated files following certain con-
ventions, create models, share their models or use models that
others shared. With the Google Prediction API, users can develop
applications to perform analytics tasks such as sentiment analy-
sis [51], purchase prediction, provide recommendations, analyse
churn, and detect spam. The Apache Mahout project [11] aims to
provide tools to build scalable machine learning libraries on top
of Hadoop using the MapReduce paradigm. The provided libraries
can be deployed on a Cloud and be explored to build solutions that
require clustering, recommendationmining, document categorisa-
tion, among others.

By trying to ease the complexity in building trained systems
such as IBM’s Watson, Apple’s Siri and Google Knowledge Graph,
the Hazy project [88] focuses on identifying and validating two
categories of abstractions in building trained systems, namely pro-
gramming abstractions and infrastructure abstractions. It is argued
that, by providing such abstractions, it would be easier for one to
assemble existing solutions and build trained systems. To achieve
a small and compoundable programming interface, Hazy employs
a data model that combines the relational data model and a prob-
abilistic rule-based language. For infrastructure abstraction, Hazy

http://github.com/pallet/pallet
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leverages the observation that many statistical analysis algorithms
behave as a user-defined aggregate in a Relational Database Man-
agement System (RDBMS). Hazy then explores features of the
underlying infrastructure to improve the performance on these
aggregates.

4.1. Open challenges

The key challenge in the area of Model Building and Scoring is
the discovery of techniques that are able to explore the rapid elas-
ticity and large scale of Cloud systems. Given that the amount of
data available for Big Data analytics is increasing, timely process-
ing of such data for building and scoring would give a relevant ad-
vantage for businesses able to explore such a capability.

In the same direction, standards and interfaces for these activ-
ities are also required, as they would help to disseminate ‘‘predic-
tion and analytics as services’’ providers that would compete for
customers. If the use of such services does not incur vendor lock
in (via utilisation of standards APIs and formats), customers can
choose the service provider only based on cost and performance of
services, enabling the emergence of a new competitive market.

5. Visualisation and user interaction

With the increasing amounts of data with which analyses need
to cope, good visualisation tools are crucial. These tools should con-
sider the quality of data and presentation to facilitate navigation
[44]. The type of visualisation may need to be selected according
to the amount of data to be displayed, to improve both displaying
and performance. Visualisation can assist in the three major types
of analytics: descriptive, predictive, and prescriptive. Many visu-
alisation tools do not describe advanced aspects of analytics, but
there has been an effort to explore visualisation to help on pre-
dictive and prescriptive analytics, using for instance sophisticated
reports and storytelling [86]. A key aspect to be considered on visu-
alisation and user interaction in the Cloud is that network is still a
bottleneck in several scenarios [123]. Users ideallywould like to vi-
sualise data processed in theCloudhaving the sameexperience and
feel as though data were processed locally. Some solutions have
been tackling this requirement.

For example, as Fisher et al. [52] point out, many Cloud plat-
forms available to process data analytics tasks still resemble the
batch-jobmodel used in the early times of the computing era. Users
typically submit their jobs andwait until the execution is complete
to download and analyse sample results to validate full runs. As
this back and forth of data is not well supported by the Cloud, the
authors issue a call to arms for both research and development of
better interactive interfaces for Big Data analytics where users it-
eratively pose queries and see rapid responses. Fisher et al. intro-
duce sampleAction [53] to explore whether interactive techniques
acting over only incremental samples can be considered as suffi-
ciently trustworthy by analysts to make closer to real time deci-
sions about their queries. Interviews with three teams of analysts
suggest that representations of incremental query results were ro-
bust enough so that analysts were prepared either to abandon a
query, refine it, or formulate new queries. King [84] also highlights
the importance ofmaking the analytics process iterative,withmul-
tiple checkpoints for assessment and adjustment.

In this line, existing work aims to explore the batch-job model
provided by solutions including MapReduce as a backend to fea-
tures provided in interfaces with which users are more familiar.
Trying to leverage the popularity of spreadsheets as a tool to ma-
nipulate data and perform analysis, Barga et al. proposed an Excel
ribbon connected to Daytona [16], a Cloud service for data stor-
age and analytics. Users manipulate data sets on Excel and plugins
use Microsoft’s Azure infrastructure [26] to run MapReduce ap-
plications. In addition, as described earlier, several improvements
have been proposed to MapReduce frameworks to handle interac-
tive applications [23,30,100]. However, most of these solutions are
not yet made available for general use in the Cloud.

Several projects attempt to provide a range of visualisation
methods from which users can select a set that suits their require-
ments. ManyEyes [129] from IBM allows users to upload their data,
select a visualisation method – varying from basic to advanced –
and publish their results. Users may also navigate through existing
visualisations anddiscuss their findings and experiencewith peers.
Selecting data sources automatically or semi-automatically is also
an important feature to help users perform analytics. PanXpan
[104] is an example of a tool that automatically identifies the fields
in structured data sets based on user analytics module selection.
FusionCharts [56] is another tool to allow users to visually select a
subset of data from the plotted data points to be submitted back to
the server for further processing. CloudVista [35,135] is a software
to help on visual data selection for further analysis refinement.

Existing work also provides means for users to aggregate data
frommultiple sources and employ various visualisationmodels, in-
cluding dashboards, widgets, line and bar charts, demographics,
among other models [105,98,60,61,103]. Some of these features
can be leveraged to perform several tasks, including create reports;
track what sections of a site are performing well and what kind of
content can create better user experience; how information shar-
ing on a social network impacts the web site usage; track mobile
usage [14,127]; and evaluate the impact of advertising campaigns.

Choo and Park [37] argue that the reason why Big Data visu-
alisation is not real time is the computational complexity of the
analytics operations. In this direction, authors discuss strategies to
reduce computational complexity of data analytics operations by,
for instance, decreasing precision of calculations.

Apart from software optimisation, dedicated hardware for visu-
alisation is becoming key for Big Data analytics. For example, Reda
et al. [109] discuss that, although existing tools are able to pro-
vide data belonging to a range of classes, their dimensionality and
volume exceed the capacity of visualisation provided by standard
displays. This requires the utilisation of large-scale visualisation
environments, such as CyberCommons and CAVE2,which are com-
posed of a large display wall with resolution three orders of mag-
nitude higher than that achieved by commercial displays [109].
Remote visualisation systems, such as Nautilus from XSEDE (Ex-
treme Science and Engineering Discovery Environment—the new
NSF TeraGrid project replacement), are becomingmore common to
supply high demand formemory and graphical processors to assist
very large data visualisation [134].

Besides visualisation of raw data, summarised content in form
of reports are essential to perform predictive and prescriptive an-
alytics. Several solutions have explored report generation and vi-
sualisation. For instance, SAP Crystal Solutions [116] provides BI
functionalities via which customers can explore available data to
build reports with interactive charts, what-if scenarios, and dash-
boards. The produced reports can be visualised on theWeb, e-mail,
Microsoft Office, or be embedded into enterprise applications. An-
other example on report visualisation is Cloud9 Analytics [38],
which aims to automate reports and dashboards, based on data
from CRM and other systems. It provides features for sales reports,
sales analytics, and sales forecasts and pipeline management.
By exploring history data and using the notion of risk, it offers
customers clues on which projects they should invest their re-
sources and what projects or products require immediate action.
Other companies also offer solutions that provide sales forecasts,
change analytics, and customised reports [111,21]. Salesforce [114]
supports customisable dashboards through collaborative analytics.
The platform allows authorised users to share their charts and in-
formation with other users. Another trend on visualisation to help
on predictive and prescriptive analytics is storytelling [86], which
aims at presenting data with a narrative visualisation.
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There are also visualisation tools specific for a given domain.
For instance, in the field of climate-modelling, Lee et al. [95] de-
veloped a tool for visualisation of simulated Madden–Julian Oscil-
lation, which is an important meteorological event that influences
raining patterns fromSouthAmerica to Southeast Asia. The tool en-
ables tracking of the event and its visualisation using Google Earth.
In the area of computing networks management, Liao et al. [96]
evaluated five approaches for visualisation of anomalies in large
scale computer networks. Each method has its own applications
depending on the specific type of anomaly to be visualised and the
scale of the managed system. There are also solutions that provide
means to visualise demographic information. Andrienko et al. [7]
proposed interactive visual display for analysis of movement be-
haviour of people, vehicle, and animals. The visualisation tool dis-
plays the movement data, information about the time spent in a
place, and the time interval from one place to another.

5.1. Open challenges

There are many research challenges in the field of Big Data
visualisation. First, more efficient data processing techniques are
required in order to enable real-time visualisation. Choo and
Park [37] appoint some techniques that can be employed with this
objective, such as reduction of accuracy of results, coarsely pro-
cessing of data points, compatible with the resolution of the visu-
alisation device, reduced convergence, and data scale confinement.
Methods considering each of these techniques could be further re-
searched and improved.

Cost-effective devices for large-scale visualisation is another
hot topic for analytics visualisation, as they enable finer resolu-
tion than simple screens. Visualisation for management of com-
puter networks and software analytics [101] is also an area that
is attracting attention of researchers and practitioners for its ex-
treme relevance tomanagement of large-scale infrastructure (such
as Clouds) and software, with implications in global software de-
velopment, open source software development, and software qual-
ity improvements.

6. Business models and non-technical challenges

In addition to providing tools that customers can use to build
their Big Data analytics solutions on the Cloud, models for deliv-
ering analytics capabilities as services on a Cloud have been dis-
cussed in previouswork [120]. Sun et al. [119] provide an overview
of the current state of the art on the development of customised
analytics solutions on customers’ premises and elaborate on some
of the challenges to enable analytics and analytics as a service on
the Cloud. Some of the potential businessmodels proposed in their
work include:
• Hosting customer analytics jobs in a shared platform: suit-

able for an enterprise or organisation that hasmultiple analytics
departments. Traditionally, these departments have to develop
their own analytics solutions and maintain their own clusters.
With a shared platform they can upload their solutions to ex-
ecute on a shared infrastructure, therefore reducing operation
and maintenance costs. As discussed beforehand, techniques
have been proposed for resource allocation and scheduling of
Big Data analytics tasks on the Cloud [93,108].

• A full stack designed to provide customers with end-to-end
solutions: appropriate for companies that do not have exper-
tise on analysis. In this model, analytical service providers pub-
lish domain-specific analytical stream templates as services.
The provider is responsible for hosting the software stack and
managing the resources necessary to perform the analyses. Cus-
tomers who subscribe to the services just need to upload their
data, configure the templates, receive models, and perform the
proper model scoring.

• Expose analytics models as hosted services: analytics capa-
bilities are hosted on the Cloud and exposed to customers as
services. This model is proposed to companies that do not have
enough data to make good predictions. Providers upload their
models, which are consumed by customers via scoring services
provided by the Cloud.
To make Big Data analytics solutions more affordable, Sun

et al. [119] also propose cost-effective approaches that enable
multi-tenancy at several levels. They discuss the technical chal-
lenges on isolating analytical artefacts. Hsueh et al. [73] discuss
issues related to pricing and Service Level Agreements (SLAs) on
a platform for personalisation in a wellness management platform
built atop a Cloud infrastructure. Krishna and Varma [87] envision
two types of services for Cloud analytics: (i) Analytics as a Service
(AaaS), where analytics is provided to clients on demand and they
can pick the solutions required for their purposes; and (ii) Model
as a Service (MaaS) wheremodels are offered as building blocks for
analytics solutions.

Bhattacharya et al. [18] introduced IVOCA, a solution for pro-
viding managed analytics services for CRM. IVOCA provides func-
tionalities that help analysts better explore data analysis tools to
reduce the time to insight and improve the repeatability of CRM
analytics. Also in the CRM realm, KXEN [89] offers a range of
products for performing analytics, some of which can run on the
Cloud. Cloud Prediction is a predictive analytics solution for Sales-
force.com. With its Predictive Lead Scoring, Predictive Offers, and
Churn Prediction, customers can leverage the CRM,mobile, and so-
cial data available in the Cloud to score leads based on which one
can create sales opportunities; create offers that have a higher like-
lihood to be accepted based on a prediction of offers and promo-
tions; and gain insights into which customers a company is at risk
of losing.

Cloud-enabled Big Data analytics poses several challenges with
respect to replicability of analyses. When not delivered by a Cloud,
analytics solutions are customer-specific and models often have
to be updated to consider new data. Cloud solutions for analytics
need to balance generality and usefulness. Previous work also dis-
cusses the difficulty of replicating activities of text analytics [107].
An analytical pathway is proposed to link business objectives to an
analytical flow, with the goal of establishing a methodology that
illustrates and possibly supports repeatability of analytical pro-
cesses when using complex analytics. King [84], whilst discussing
some of the problems in buying predictive analytics, provides
a best practice framework based on five steps, namely training,
assessment, strategy, implementation, and iteration.

Chen et al. [34] envision an analytics ecosystemwhere data ser-
vices aggregate, integrate, and provide access to public and private
data by enabling partnerships among data providers, integrators,
aggregators, and clients; these services are termed as DaaS. Atop
DaaS, a range of analytics functionalities that explore the data ser-
vices are offered to customers to boost productivity and create
value. This layer is viewed as AaaS. Similar to the previously de-
scribed work, they discuss a set of possible business models that
range from proprietary, where both data and models are kept pri-
vate, to co-developingmodels where both data and analytics mod-
els are shared among the parties involved in the development of
the analytics strategy or services.

7. Other challenges

In business models where high-level analytics services may
be delivered by the Cloud, human expertise cannot be easily
replaced bymachine learning and Big Data analysis [99]; in certain
scenarios, theremay be a need for human analysts to remain in the
loop [91].Management should adapt to Big Data scenarios and deal
with challenges such as how to assist human analysts in gaining
insights and how to explore methods that can help managers in
making quicker decisions.

Application profiling is often necessary to estimate the costs of
running analytics on a Cloud platform. Users need to develop their
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applications to target Cloud platforms; an effort that should be car-
ried out only after estimating the costs of transferring data to the
Cloud, allocating virtual machines, and running the analysis. This
cost estimation is not a trivial task to perform in current Cloud of-
ferings. Although best practices for using somedata processing ser-
vices are available [49], there should be tools that assist customers
to estimate the costs and risks of performing analytics on the Cloud.

Data ingestion by Cloud solutions is often aweak point,whereas
debugging and validation of developed solutions is a challenging
and tedious process. As discussed earlier, the manner analytics is
executed on Cloud platforms resembles the batch job scenario:
users submit a job and wait until tasks are executed and then
download the results. Once an analysis is complete, they download
sample results that are enough to validate the analysis task and af-
ter that perform further analysis. Current Cloud environments lack
this interactive process, and techniques should be developed to fa-
cilitate interactivity and to include analysts in the loop by provid-
ing means to reduce their time to insight. Systems and techniques
that iteratively refine answers to queries and give users more con-
trol of processing are desired [70].

Furthermore, market research shows that inadequate staffing
and skills, lack of business support, and problems with analytics
software are some of the barriers faced by corporations when per-
forming analytics [112]. These issues can be exacerbated by the
Cloud as the resources and analysts involved in certain analytics
tasks may be offered by a Cloud provider and may move from one
customer engagement to another. In addition, based on survey re-
sponses, currently most analytics updates and scores of methods
occur daily to annually; which can become an issue for analytics
on streaming data. Russom [112] also highlights the importance of
advanced data visualisation techniques and advanced analytics –
such as analysis of unstructured, large data sets and streams – to
organisations in the next few years.

Chen et al. [32] foresee the emergence of what they termed as
Business Intelligence and Analytics (BI&A) 3.0, which will require
underlying mobile analytics and location and context-aware tech-
niques for collecting, processing, analysing, and visualising large
scale mobile and sensor data. Many of these tools are still to be
developed. Moreover, moving to BI&A 3.0 will demand efforts on
integrating data from multiple sources to be processed by Cloud
resources, and using the Cloud to assist decisions by mobile device
users.

More recently, terms such as Analytics as a Service (AaaS) and
Big Data as a Service (BDaaS) are becoming popular. They comprise
services for data analysis similarly as IaaS offers computing
resources. However, these analytics services still lack well defined
contracts since it may be difficult tomeasure quality and reliability
of results and input data, provide promises on execution times,
and guarantees on methods and experts responsible for analysing
the data. Therefore, there are fundamental gaps on tools to assist
service providers and clients to perform these tasks and facilitate
the definition of contracts for both parties.

8. Summary and conclusions

The amount of data currently generated by the various activi-
ties of the society has never been so big, and is being generated in
an ever increasing speed. This Big Data trend is being seen by in-
dustries as a way of obtaining advantage over their competitors: if
one business is able to make sense of the information contained in
the data reasonably quicker, it will be able to get more costumers,
increase the revenue per customer, optimise its operation, and re-
duce its costs. Nevertheless, Big Data analytics is still a challeng-
ing and time demanding task that requires expensive software,
large computational infrastructure, and effort.

Cloud computing helps in alleviating these problems by pro-
viding resources on-demand with costs proportional to the actual
usage. Furthermore, it enables infrastructures to be scaled up and
down rapidly, adapting the system to the actual demand.
Although Cloud infrastructure offers such elastic capacity to
supply computational resources on demand, the area of Cloud-
supported analytics is still in its early days. In this paper, we dis-
cussed the key stages of analytics workflows, and surveyed the
state-of-the-art of each stage in the context of Cloud-supported
analytics. Surveyed work was classified in three key groups: Data
Management (which encompasses data variety, data storage, data
integration solutions, and data processing and resource manage-
ment), Model Building and Scoring, and Visualisation and User In-
teractions. For each of these areas, ongoing workwas analysed and
key open challengeswere discussed. This survey concludedwith an
analysis of business models for Cloud-assisted data analytics and
other non-technical challenges.

The area of Big Data Computing using Cloud resources ismoving
fast, and after surveying the current solutions we identified some
key lessons:
• There are plenty of solutions for Big Data related to Cloud com-

puting. Such a large number of solutions have been created be-
cause of thewide range of analytics requirements, but theymay,
sometimes, overwhelm non-experienced users. Analytics can
be descriptive, predictive, prescriptive; Big Data can have vari-
ous levels of variety, velocity, volume, and veracity. Therefore, it
is important to understand the requirements in order to choose
appropriate Big Data tools;

• It is also clear that analytics is a complex process that demands
people with expertise in cleaning up data, understanding and
selecting proper methods, and analysing results. Tools are fun-
damental to help people perform these tasks. In addition, de-
pending on the complexity and costs involved in carrying out
these tasks, providers who offer Analytics as a Service or Big
Data as a Service can be a promising alternative compared to
performing these tasks in-house;

• Cloud computing plays a key role for Big Data; not only be-
cause it provides infrastructure and tools, but also because it
is a business model that Big Data analytics can follow (e.g. An-
alytics as a Service (AaaS) or Big Data as a Service (BDaaS)).
However, AaaS/BDaaS brings several challenges because the
customer and provider’s staff are much more involved in the
loop than in traditional Cloud providers offering infrastruc-
ture/platform/software as a service.
Recurrent themes among the observed future work include

(i) the development of standards and APIs enabling users to eas-
ily switch among solutions and (ii) the ability of getting the most
of the elasticity capacity of the Cloud infrastructure. The latter
includes expressive languages that enable users to describe the
problem in simple terms whilst decomposing such high-level de-
scription in highly concurrent subtasks and keeping good perfor-
mance efficiency even for large numbers of computing resources.
If this can be achieved, the only limitations for an arbitrary short
processing time would be market issues, namely the relation be-
tween the cost for running the analytics and the financial return
brought for the obtained knowledge.
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