L. Torgo

ltorgo@dcc.fc.up.pt

Departamento de Ciéncia de Computadores
Faculdade de Ciéncias / Universidade do Porto

Oct, 2014

Basic Interaction

The most common form of interaction with R is through the
command line at the console

User types a command
Presses the ENTER key
R “returns” the answer

It is also possible to store a sequence of commands in a file
(typically with the .R extension) and then ask R to execute all
commands in the file

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 2/72



Basic Interaction

We may also use the console as a simple calculator

1 + 3/5 % 672

## [1] 22.6

k

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 3/72

Basic Interaction

We may also take advantage of the many functions available in R

rnorm(5, mean = 30, sd = 10)

## [1] 28.100 4.092 29.904 10.611 23.599

mean (sample (1:1000, 30))

## [1] 530.3

k

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 4/72



Basic Interaction

We may produce plots

plot (sample(1:10, 5), sample(1:10, 5),

main = "Drawing 5 random points",
xlab = "X", ylab = "Y")

Drawing 5 random points

2 4 6 8 10
F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 5/72

Variables and Objects

In R, data are stored in variables.
A variable is a “place” with a name used to store information

Different types of objects (e.g. numbers, text, data tables, graphs,
etc.).

The assignment is the operation that allows us to store an object
on a variable

Later we may use the content stored in a variable using its name.

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 6/72



Variables and Objects

R objects may store a diverse type of information.

Numbers: e.qg. 5, 6.3,10.344,-2.3, -7

Strings : e.g. "hello", "it is sunny", "my name is Ana"
Note: one the of the most frequent errors - confusing names of
variables with text values (i.e. strings)! hello is the name of a
variable, whilst "hello" is a string.

Logical values: TRUE, FALSE
Note: R is case-sensitive!
TRUE is a logical value; t rue is the name of a variable.

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 7172

Variables and Objects The Assignment Operation

The assignment operator “<-" allows to store some content on a
variable

vat <- 0.2

The above stores the number 0.2 on a variable named vat

Afterwards we may use the value stored on the variable using its

name

priceVAT <- 240 % (1 + vat)

This new example stores the value 288 (= 240 x (1 + 0.2)) on the

variable priceVAT

We may thus put expressions on the right-side of an assignment
F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 8/72



Variables and Objects The Assignment Operation

Calculate the result of the expression on the right-side of the
assignment (e.g. a numerical expression, a function call, etc.)

Store the result of the calculation in the variable indicated on the
left side

In this context, what do you think it is the value of x after the
following operations?

k <- 10
g <- k/2
X <— g * 2
E
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 9/72

Variables and Objects The Assignment Operation

We may check the value stored in a variable at any time by typing
its name followed by hitting the ENTER key

X <— 2373

X

## [1] 12167

The ~ signal is the exponentiation operator
The odd [1] will be explained soon...
And now a common mistake!

X <— true

## Error: object ’'true’ not found
F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 10/72



Variables and Objects The Assignment Operation

It is important to be aware that the assignment is destructive
If we assign some content to a variable and this variable was
storing another content, this latter value is “lost”,

X <= 23

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 11/72

Functions

In R almost all operations are carried out by functions

A function is a mathematical notion that maps a set of arguments
into a result
- e.g. the function sin applied to 0.2 gives as result 0.1986693

In terms of notation a function has a name and can have 0 or
more arguments that are indicated within parentheses and
separated by commas

-e.g. xpto (0.2, 0.3) hasthe meaning of applying the function
with the name xpto to the numbers 0.2 and 0.3

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 12/72



Functions

R uses exactly the same notation for functions.

sin(0.2)
## [1] 0.1987
sqrt (45)

## [1] 6.708

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 13/72

Functions

Any time we execute a set of operations frequently it may be wise to
create a new function that runs them automatically.

Suppose we convert two currencies frequently (e.g. Euro-Dollar).
We may create a function that given a value in Euros and an
exchange rate will return the value in Dollars,

euro2dollar <- function(p, tx) p * tx
euro2dollar (3465, 1.306)

## [1] 4712

We may also specify that some of the function parameters have
default values

euroZ2dollar <- function(p, tx = 1.34) p * tx
euro2dollar (100)

## [1] 134

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 14/72



Functions Function composition

An important mathematical notion is that of function composition
- (fo g)(x) = f(g(x)), that means to apply the function f to the
result of applying the function g to x

R is a functional language and we will use function composition
extensively as a form of performing several complex operations

without having to store every intermediate result

x <— 10
y <— sin(sqgrt (x))
Yy

## [1] -0.02068

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014

Functions Function composition

x <— 10
y <— sin(sqgrt (x))
Y

## [1] -0.02068
We could instead do (without function composition):

x <— 10

temp <- sqrt (x)
y <— sin(temp)
Y

## [1] -0.02068

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014

15/72

16/72



Vectors

Vectors are a type of R objects that can store sets of values of the

same base type
- e.g. the prices of an article sold in several stores

Everytime some set of data has something in common and are of
the same type, it may make sense to store them as a vector

A vector is another example of a content that we may store in a R
variable

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 17/72

Vectors

Let us create a vector with the set of prices of a product across 5
different stores

prices <- ¢(32.4, 35.4, 30.2, 35, 31.99)
prices

## [1] 32.40 35.40 30.20 35.00 31.99

Note that on the right side of the assignment we have a call to the
function c () using as arguments a set of 5 prices

The function c () creates a vector containing the values received
as arguments

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 18/72



Vectors

The function c () allows us to associate names to the set
members. In the above example we could associate the name of
the store with each price,

prices <- c(worten = 32.4, fnac = 35.4, mediaMkt = 30.2,
radioPop = 35, pixmania = 31.99)

prices
## worten fnac mediaMkt radioPop pixmania
## 32.40 35.40 30.20 35.00 31.99

This makes the vector meaning more clear and will also facilitate
the access to the data as we will see.

F
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 19/72
Vectors
Besides being more clear, the -
use of names is also
recommended as R will take )
advantage of these names in R
several situations. o
An example is in the creation o
of graphs with the data:
barplot (prices) .
worten fnac mediaMkt radioPop pixmania
F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 20/72



Indexing Basic indexing

When we have objects containing several values (e.g. vectors) we
may want to access some of the values individually.

That is the main purpose of indexing: access a subset of the
values stored in a variable

In mathematics we use indices. For instance, x3 usually
represents the 3rd element in a set of values x.

In R the idea is similar:

prices <- c¢(worten=32.4, fnac=35.4,
mediaMkt=30.2, radioPop=35, pixmania=31.99)
prices|[3]

## mediaMkt
#4# 30.2

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 21/72

Indexing Basic indexing

We may also use the vector position names to facilitate indexing

prices <- c(worten=32.4, fnac=35.4,
mediaMkt=30.2, radioPop=35,pixmania=31.99)
prices["worten"]

## worten
#4# 32.4

Please note that worten appears between quotation marks. This
is essencial otherwise we would have an error! Why?

Because without quotation marks R interprets worten as a
variable name and tries to use its value. As it does not exists it
complains,

prices[worten]

## Error: object 'worten’ not found

Read and interpret error messages is one of the key competences

we should practice.
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 22/72



Indexing Vectors of indices

Using vectors as indices we may access more than one vector
position at the same time

prices <- c(worten=32.4, fnac=35.4,
mediaMkt=30.2, radioPop=35,pixmania=31.99)
prices[c(2,4) ]

#4# fnac radioPop
## 35.4 35.0

We are thus accessing positions 2 and 4 of vector prices
The same applies for vectors of names

prices[c ("worten", "pixmania") ]

## worten pixmania
## 32.40 31.99
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 23/72

Indexing Vectors of indices

We may also use logical conditions to “query” the data!
prices[prices > 35]

## fnac
## 35.4

The idea is that the result of the query are the values in the vector
prices for which the logical condition is true

Logical conditions can be as complex as we want using several
logical operators available in R.

What do you think the following instruction produces as result?

prices[prices > mean (prices) ]

i fnac radioPop
## 35.4 35.0

Please note that this another example of function compoFsition!

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 24 /72



Vetorization

The great majority of R functions and operations can be applied to
sets of values (e.g vectors)

Suppose we want to know the prices after VAT in our vector
prices

vat <- 0.23
(1 + vat) % prices

# worten fnac mediaMkt radioPop pixmania
## 39.85 43.54 37.15 43.05 39.35

Notice that we have multiplied a number (1.2) by a set of numbers!

The result is another set of numbers that are the result of the
multiplication of each number by 1.2
F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 25/72

Vetorization

Although it does not make a lot of sense, notice this other example
of vectorization,

sqgrt (prices)

#4# worten fnac mediaMkt radioPop pixmania
## 5.692 5.950 5.495 5.916 5.656

By applying the function sqrt () to a vector instead of a single
number we get as result a vector with the same size, resulting
from applying the function to each individual member of the given
vector.

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 26/72



Vetorization

We can do similar things with two sets of numbers

Suppose you have the prices of the product on the same stores in
another city,

prices2 <- c¢(worten=32.5,fnac=34.6,
mediaMkt=32, radioPop=34.4,pixmania=32.1)

prices?2
## worten fnac mediaMkt radioPop pixmania
## 32.5 34.6 32.0 34.4 32.1

What are the average prices on each store over the two cities?
(prices + prices2) /2

## worten fnac mediaMkt radioPop pixmania

## 32.45 35.00 31.10 34.70 32.05

, E
Notice how we have summed two vectors!

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 27172

Vetorization

Logical conditions involving vectors are another example of
vectorization

prices > 35

## worten fnac mediaMkt radioPop pixmania
## FALSE TRUE FALSE FALSE FALSE

prices is a set of 5 numbers. We are comparing these 5
numbers with one number (35). As before the result is a vector
with the results of each comparison. Sometimes the condition is
true, others it is false.

Now we can fully understand what is going on on a statement like
prices[prices > 35]. The result of this indexing expression
is to return the positions where the condition is true, i.e. this is a
vector of Boolean values as you may confirm above.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 28/72



Vetorization

Hands On 1

A survey was carried out on several countries to find out the average
price of a certain product, with the following resulting data:

Portugal Spain Italy France Germany Greece UK Finland Belgium Austria
10.3 10.6 11.5 12.3 9.9 9.3 11.4 10.9 12.1 9.1

What is the adequate data structure to store these values?

Create a variable with this data, taking full advantage of R facilities
in order to facilitate the access to the information.

Obtain another vector with the prices after VAT.

Which countries have prices above 107

Which countries have prices above the average?

Which countries have prices between 10 and 11 euros?

How would you raise the prices by 10%?

How would you decrease by 2.5%, the prices of the countrles with
price above the average?

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 29/72

Vetorization

Hands On 2

Go to the site http://www.xe.com and create a vector with the
information you obtain there concerning the exchange rate between
some currencies. You may use the ones appearing at the opening
page.

Create a function with 2 arguments: the first is a value in Euros

and the second the name of other currency. The function should
return the corresponding value in the specified currency.

What happens if we make a mistake when specifying the currency
name? Try.

Try to apply the function to a vector of values provided in the first
argument.

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 30/72


http://www.xe.com

Matrices Basics

As vectors, matrices can be used to store sets of values of the
same base type that are somehow related

Contrary to vectors, matrices “spread” the values over two
dimensions: rows and collumns

Let us go back to the prices at the stores in two cities. It would
make more sense to store them in a matrix, instead of two vectors

Columns could correspond to stores and rows to cities

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 31/72

Matrices Basics

Let us see how to create this matrix

prc <- matrix(c(32.40,35.40,30.20, 35.00, 31.99,
32.50, 34.60, 32.00, 34.40, 32.01),
nrow=2,ncol=5,byrow=TRUE)
prc

i ¥ [,11 [,2] [,3] [,4] [,3]
## [1,] 32.4 35.4 30.2 35.0 31.99
## [2,] 32.5 34.6 32.0 34.4 32.01

The function matrix () can be used to create matrices

We have at least to provide the values and the number of columns
and rows

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 32/72



prc

prc

Matrices Basics

<- matrix(c(32.40,35.40,30.20, 35.00, 31.99,
32.50, 34.60, 32.00, 34.40, 32.01),
nrow=2,ncol=5, byrow=TRUE)

(,11 (,21 [,3] [,4] [,5]

[1,] 32.4 35.4 30.2 35.0 31.99
[2,] 32.5 34.6 32.0 34.4 32.01

The parameter nrow indicates which is the number of rows while

the parameter ncol provides the number of columns

The parameter setting by row=TRUE indicates that the values
should be “spread” by row, instead of the default which is by
column

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014

Matrices Matrix indexing

As with vectors but this time with two dimensions

prc

## [,11 [,2] [,3] [,4] [,5]
## [1,] 32.4 35.4 30.2 35.0 31.99
## [2,] 32.5 34.6 32.0 34.4 32.01

prcl2, 4]

#4 [1] 34.4

We may also access a single column or row,
prcll, |

## [1] 32.40 35.40 30.20 35.00 31.99
prcl, 2]

## [1] 35.4 34.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014

33/72

34/72



Matrices Matrix indexing

We may also give names to the two dimensions of matrices

colnames (prc) <- c("worten", "fnac", "mediaMkt", "radioPop", "pixmania")
rownames (prc) <- c("porto","lisboa")

prc

## worten fnac mediaMkt radioPop pixmania
## porto 32.4 35.4 30.2 35.0 31.99
## lisboa 32.5 34.6 32.0 34.4 32.01

The functions colnames () and rownames () may be used to get
or set the names of the respective dimensions of the matrix

Names can also be used in indexing
prc["lisboa", 1

## worten fnac mediaMkt radioPop pixmania
## 32.50 34.60 32.00 34.40 32.01

prc["porto", "pixmania"]

## [1] 31.99

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 35/72

Arrays

Arrays are extensions of matrices to more than 2 dimensions

We can create an array with the function array ()

a <- array(1:18, dim = c(3, 2, 3))
a

## , , 1

##

## [,11 [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
##

# , , 2

##

## [,11 [,2]
## [1,] 7 10
## [2,] 8 11
## [3,] 9 12
##

## , , 3

##

## (11 [,2]

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 36/72

#H [2,] 14 17



Arrays

Similar to matrices and vectors but now with multiple dimensions

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 37/72

Lists

Lists are ordered collections of other objects, known as the
components

List components do not have to be of the same type or size, which
turn lists into a highly flexible data structure.

List can be created as follows:

1lst <= 1list (1id=12323,name="John Smith",
grades=c(13.2,12.4,5.6))
1st

## Sid

## [1] 12323

##

## Sname

## [1] "John Smith"
##

## Sgrades

## [1] 13.2 12.4 5.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 38/72



Lists

To access the content of a component of a list we may use its
name,

lstSgrades
## [1] 13.2 12.4 5.6

We may access several components at the same time, resulting in
a sub-list

lst[e("name", "grades") ]

## Sname

## [1] "John Smith"
##

## Sgrades

## [1] 13.2 12.4 5.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 39/72

Lists

We may also access the content of the components through their
position, similarly to vector,

1st[[2]]
## [1] "John Smith"

Please note the double square brakets! Single square brakets
have different meaning in the context of lists,

1st[2]

## Sname
## [1] "John Smith"

As you see the result is a list (i.e. a sub-list of 1st), while with
double brakets the result is the actual content of the component,
whilst with double square brackets we got the content of the
component (in this case a string)

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 40/72



Data Frames

Data frames are the R data structure used to store data tables
As matrices they are bi-dimensional structures

In a data frame each row represents a case (observation) of some
phenomenon (e.g. a client, a product, a store, etc.)

Each column represents some information that is provided about
the entities (e.g. name, address, etc.)

Contrary to matrices, data frames may store information of
different data type

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 41/72

Data Frames Creating data frames

Usually data sets are already stored in some infrastructure
external to R (e.g. other software, a data base, a text file, the Web,
etc.)

Nevertheless, sometimes we may want to introduce the data
ourselves

We can do itin R as follows

stud <- data.frame (nrs=c("43534543","32456534"),
names=c ("Ana", "John"),
grades=c(13.4,7.2))

stud

#4 nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 42 /72



Data Frames

Creating data frames

N R Data Editor ot ) s
Copy Faste Cuit
L= Fames grades
1 [4353454% |Ana 12,4
If we have too many data to 2 |32486534 |John  |7.2
introduce it is more practicalto =~ =
add new information using a 4
spreadsheet like editor, .
A
stud <- edit (stud) =
g
9
10
314
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 43 /72

Data Frames

Indexing data frames

Data frames are visualized as a data table

stud

#4# nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

Data can be accessed in a similar way as in matrices

stud[2, 3]
## [1] 7.2
stud[1l, "names" ]

## [1l] Ana
## Levels: Ana John

© L.Torgo (DCC-FCUP) Basic R Concepts

F

Oct, 2014

44 /72



Data Frames Indexing data frames

You can check sets of rows

stud[1l:2, ]

4 nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2
Or columns

stud[,ec ("names", "grades") ]

ki names grades
## 1 Ana 13.4
## 2 John 7.2
E
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 45/72
Data Frames Indexing data frames

You may also include logical tests on the row selection

stud[studSgrades > 13, "names"]

## [1] Ana
## Levels: Ana John
Or

stud[stud$grades <= 9.5, c("names", "grades") ]

# names grades
## 2 John 7.2

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 46 /72



Data Frames Indexing data frames

Function subset () can be used to easily query the data set
subset (stud, grades > 13, names)

#H# names
## 1 Ana

subset (stud, grades <= 9.5,¢c(nrs, names))

#4# nrs names
## 2 32456534 John

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 47 /72

Data Frames Indexing data frames

Hands On Data Frames - Boston Housing

Load in the data set named “Boston” that comes with the package
MASS. This data set describes the median house price in 506 different
regions of Boston. You may load the data doing:

data (Boston, package=’'MASS’ ). This should create a data frame
named Boston. You may know more about this data set doing

help (Boston, package='"MASS’ ). With respect to this data answer
the following questions:

What are the data on the regions with an median price higher than
457

What are the values of nox and tax for the regions with an
average number of rooms (rm) above 87

Which regions have an average median price between 10 and 157?

What is the average criminality rate (crim) for the regions with a
number of rooms above 6? F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 48 /72



Time Series

R includes several data structures that can be used to store time
series

In this illustration we will use the infra-structured provided in

package xts

Note: this is an extra package that must be installed.
The function xts () can be used to create a time series,

library (xts)
sp500 <- xts(¢c(1102.94,1104.49,1115.71,1118.31),

sp500

i
ik
i
ik
ik

2010-02-25
2010-02-26
2010-03-01
2010-03-02

© L.Torgo (DCC-FCUP)

[,1]
1102.94
1104.49
1115.71
1118.31

as.Date (c("2010-02-25","2010-02-26",

"2010-03-01","2010-03-02")))

Basic R Concepts Oct, 2014 49 /72

Time Series

The function xt s has 2 arguments: the time series values and the
temporal tags of these values

The second argument must contain dates
The function as.Date () can be used to convert strings into dates

If we supply a matrix on the first argument we will get a
multivariate time series, with each column representing one of the
variables

© L.Torgo (DCC-FCUP)

F

Basic R Concepts Oct, 2014 50/72



Time Series Indexing time series

We may index the objects created by the function xts () as
follows,

sp500 [ 3]

ik [, 1]
## 2010-03-01 1115.71

However, it is far more interesting to make “temporal queries”,
sp500["2010-03-02"]

ik [, 1]
## 2010-03-02 1118.31

sp500["2010-03"]

## [,1]
## 2010-03-01 1115.71
## 2010-03-02 1118.31

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 51/72

Time Series Indexing time series

sp500["2010-02-26/"]

ik [,1]
## 2010-02-26 1104.49
## 2010-03-01 1115.71
## 2010-03-02 1118.31

sp500["2010-02-26/2010-03-01"]
## [,1]

## 2010-02-26 1104.49
## 2010-03-01 1115.71

The index is a string that may represent intervals using the symbol
/ or by omitting part of a date. You may also use : : instead of /.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 52/72



Time Series Indexing time series

sp500
The plot () function can be 2 /
used to obtain a temporal plot -
of a time series .
R takes care of selecting the S
proper axes,
plot (sp500) T
I I I I
Fev 25 Fev 26 Mar 01 Mar 02
2010 2010 2010 2010
F
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 53/72
Time Series Indexing time series

Hands On Time Series

Package quantmod (an extra package that you need to install)
contains several facilities to handle financial time series. Among them,
the function getMetals allows you to download the prices of metals
from canda.com. Explore the help page of the function to try to
understand how it works, and the answer the following:

Obtain the prices of gold of the current year
Show the prices in January
Show the prices from February 10 till March 15

Obtain the prices of silver in the last 30 days
Tip: explore the function seq.Date ()

Plot the prices of silver in the last 7 days
Tip: explore the function 1ast () on package xts
F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 54 /72



Data Manipulation with dplyr

dplyr is a package that greatly facilitates manipulating data in R
It has several interesting features like:

Implements the most basic data manipulation operations
Is able to handle several data sources (e.g. standard data frames,

data bases, etc.)
Very fast

© L.Torgo (DCC-FCUP)

Data frame table

Data Manipulation with dplyr

Basic R Concepts

Examples of data sources

A wrapper for a local R data frame

Main advantage is printing

library (dplyr)
data(iris)
<- tbl_df(iris)

ir
ir

##
##
##
##
##
##
##
##
##
##
##
##
##

#H ..

Source: local data frame

[150 x 5]

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5.0 3.4 1.5 0.2
9 4.4 2.9 1.4 0.2
10 4.9 3.1 1.5 0.1

Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

‘F

Oct, 2014

Similar functions for other data sources (e.g. da’tabases)F

© L.Torgo (DCC-FCUP)

Basic R Concepts

Oct, 2014

55/72

56 /72



Data Manipulation with dplyr The basic verbs

filter - show only a subset of the rows

select - show only a subset of the columns
arrange - reorder the rows

mutate - add new columns

summarise - summarise the values of a column

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 57 /72

Data Manipulation with dplyr The basic verbs

First argument is a data frame table
Remaining arguments describe what to do with the data

Return an object of the same type as the first argument (except
summarise)

Never change the object in the first argument

F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 58/72



Data Manipulation with dplyr The basic verbs

filter (data, condl, cond2, ...) corresponds to the rows of

data that satisfy ALL indicated conditions.
filter (ir, Sepal.Length > 6,Sepal.Width > 3.5)

## Source: local data frame [3 x 5]

#4

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.2 3.6 6.1 2.5 virginica
#H+ 2 7.7 3.8 6.7 2.2 virginica
## 3 7.9 3.8 6.4 2.0 virginica

filter(ir, Sepal.Length > 7.7 | Sepal.Length < 4.4)

## Source: local data frame [2 x 5]

##

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.3 3.0 1.1 0.1 setosa
#H# 2 7.9 3.8 6.4 2.0 virginica

© L.Torgo (DCC-FCUP) Basic R Concepts

Data Manipulation with dplyr The basic verbs

‘F

Oct, 2014

arrange (data, coll, col2, ...) re-arranges the rows of

data by ordering them by col1, then by col2, etc.

arrange (ir, Species,Petal.Width)

## Source: local data frame [150 x 5]

##

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.9 3.1 1.5 0.1 setosa
## 2 4.8 3.0 1.4 0.1 setosa
## 3 4.3 3.0 1.1 0.1 setosa
## 4 5.2 4.1 1.5 0.1 setosa
## 5 4.9 3.6 1.4 0.1 setosa
## 6 5.1 3.5 1.4 0.2 setosa
## 7 4.9 3.0 1.4 0.2 setosa
## 8 4.7 3.2 1.3 0.2 setosa
## 9 4.6 3.1 1.5 0.2 setosa
## 10 5.0 3.6 1.4 0.2 setosa
##

© L.Torgo (DCC-FCUP) Basic R Concepts

‘F

Oct, 2014

59/72

60/72



Data Manipulation with dplyr

arrange (ir,desc (Sepal.Width) ,Petal.Length)

## Source: local data frame

[150 x 5]

The basic verbs

## Sepal.Length Sepal.Width Petal.Length Petal.Width

4=
B
H O o0 Joy Ul dbd WN B

55

[C2BNE; BNE, NG, RN C, BNC, BN RN, BN,

7

R J R P & D oD

© L.Torgo (DCC-FCUP)

select (data,
coll, col2, etc. of data

select (ir, Sepal.Length, Species)

## Source: local data frame

#4# Sepal.Length

=+
=
P W o0 Jo U b WN -

NSNS TG, BN, B NN

Sod

O > OO0 OO I VO

Data Manipulation with dplyr

Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

© L.Torgo (DCC-FCUP)

4.

W W wWwwwwbd b D

4

0 0O 0 00 W W o N

coll,

[150 x 2]

1o

[ G g

5

O J o O Jd WwWN U Wb

0.

O O O OO oo oo
BW DD WS BN DN D

Basic R Concepts

col?2,

Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

The basic verbs

Basic R Concepts

‘F

Oct, 2014

‘F

Oct, 2014

61/72

. ..) shows the values of columns

62/72



Data Manipulation with dplyr

select (ir, - (Sepal.Length:Sepal.Width))

select (ir, starts_with ("Sepal"))

##
##
##
##
##
##
##
##
##
##
ki
##
##
##

Source: local data frame

[150 x 3]

Petal.Length Petal.Width

1
2
3
4
5
6
7
8
S
10

© L.Torgo (DCC-FCUP)

1,

I N R N

4

O b O J s 01 Wb

0.

Data Manipulation with dplyr

Source: local data frame

O O O O O O o oo
P NN WSDNDDNDNDNDDN

Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

[150 x 2]

Sepal.Length Sepal.Width

1
2
3
4
5
6
7
8
9
10

© L.Torgo (DCC-FCUP)

5o

NS T NINT, BN, I NN

1

O = OO0 OO I VO

3o

WNWWWWWWW

P O DS D O NDO O,

The basic verbs

Basic R Concepts

The basic verbs

Basic R Concepts

]:

Oct, 2014

]:

Oct, 2014

63/72

64 /72



mutate (data,

Data Manipulation with dplyr

newcoll,

newcoll, newcol?2, etc.

The basic verbs

newcol?2,

. ..) adds the new columns

mutate (ir, sr=Sepal.Length/Sepal.Width, pr=Petal.Length/Petal.Width, rat=sr/pr)

##
##
##
##
ki
##
ki
##
4
##
##
##
##
##
##

Source: local data frame

[150 x 8]

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5.0 3.4 1.5 0.2
9 4.4 2.9 1.4 0.2
10 4.9 3.1 1.5 0.1
Variables not shown: rat (dbl)

Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

NOTE: It does not change the original data!

© L.Torgo (DCC-FCUP)

Data Manipulation with dplyr

Basic R Concepts

Chaining

select (filter (ir,Petal.Width > 2.3), Sepal.Length, Species)

Source: local data frame

Sepal.Length
1 6.3
2 7.2
3 5.8
4 6.3
5 6.7
6 6.7

Species
virginica
virginica
virginica
virginica
virginica
virginica

© L.Torgo (DCC-FCUP)

[6 x 2]

Basic R Concepts

PR R R RR R R R

Sr

.457
.633
.469
.484
.389
.385
.353
L471
.517
.581 1

U3 Jdbd b JJo 33

pr

.000
.000
.500
.500
.000
.250
.667
.500
.000
.000

‘F

Oct, 2014

‘F

Oct, 2014

65/72

66 /72



Data Manipulation with dplyr Chaining

Function composition can become hard to understand...

arrange (
select (
filter(
mutate (ir, sr=Sepal.Length/Sepal.Width),
sr > 1.6),
Sepal.Length, Species),
Species,desc (Sepal.Length))

## Source: local data frame [103 x 2]

#4

## Sepal.Length Species
## 1 5.0 setosa
#H 2 4.9 setosa
## 3 4.5 setosa
## 4 7.0 versicolor
## 5 6.9 versicolor
## 6 6.8 versicolor
## 7 6.7 versicolor
## 8 6.7 versicolor
## 9 6.7 versicolor
## 10 6.6 versicolor
it

© L.Torgo (DCC-FCUP) Basic R Concepts

Data Manipulation with dplyr Chaining

mutate (ir, sr=Sepal.LlLength/Sepal.Width) %>% filter(sr > 1.6) %>%
select (Sepal.Length, Species) %>% arrange (Species,desc(Sepal.Length))

## Source: local data frame [103 x 2]

#H

#4# Sepal .Length Species
## 1 5.0 setosa
## 2 4.9 setosa
## 3 4.5 setosa
## 4 7.0 versicolor
## 5 6.9 versicolor
## 6 6.8 versicolor
## 7 6.7 versicolor
## 8 6.7 versicolor
## 9 6.7 versicolor
## 10 6.6 versicolor
#4

© L.Torgo (DCC-FCUP) Basic R Concepts

‘F

Oct, 2014

‘F

Oct, 2014

67 /72

68/72



Data Manipulation with dplyr

summarise (data,

summarise (ir, avgPL= mean (Petal.Length), varSw

##
##
##
##

group_by (data,

(in case of draws)

Source: local data frame

avgPL varSw
1 3.758 0.19

© L.Torgo (DCC-FCUP)

Data Manipulation with dplyr

critl,

sps <- group_by (ir, Species)

sps

Source: local data frame
Groups: Species

sumF'1,
data using the provided functions

(1 x 2]

[150 x 5]

Summaries

sumF'2,

Basic R Concepts

Groups

critz,
of data according to the indicated criteria, applied one over the other

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5.0 3.4 1.5 0.2
9 4.4 2.9 1.4 0.2
10 4.9 3.1 1.5 0.1

© L.Torgo (DCC-FCUP)

Basic R Concepts

var (Sepal.wWidth))

Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

‘F

Oct, 2014

‘F

Oct, 2014

. ..) summarises the rows in

69/72

.. .) creates groups of rows

70/72



Data Manipulation with dplyr Groups

group_by (ir, Species) %>% summarise ( =mean (Petal.Length))

## Source: local data frame [3 x 2]
##

## Species mPL

## 1 setosa 1.462

## 2 versicolor 4.260

## 3 wvirginica 5.552

‘F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 71/72

Data Manipulation with dplyr Groups

Hands On Data Manipulation with dplyr

Package mlbench (an extra package that you need to install) contains
several data sets (from UCI repository). After loading the data set Zoo
answer the following questions;

Create a data frame table with the data for easier manipulation

What is the average number of legs for the different types of
animals?

Show the information on the airborne predators

For each combination of hair and eggs count how many animals
exist

‘F

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 72/72



	Basic Interaction
	Variables and Objects
	The Assignment Operation

	Functions
	Function composition

	Vectors
	Indexing
	Basic indexing
	Vectors of indices

	Vetorization
	Matrices
	Basics
	Matrix indexing

	Arrays
	Lists
	Data Frames
	Creating data frames
	Indexing data frames

	Time Series
	Indexing time series

	Data Manipulation with dplyr
	Examples of data sources
	The basic verbs
	Chaining
	Summaries
	Groups


