Predicting Algae Blooms
brief description of this case study -

L. Torgo

ltorgo@dcc.fc.up.pt

Departamento de Ciência de Computadores Faculdade de Ciências / Universidade do Porto

Sept, 2014

Problem Description

The Problem and its Objectives

- High concentrations of certain harmful algae in rivers is a serious ecological problem with a strong impact not only on river lifeforms, but also on water quality.
- Being able to monitor and perform an early forecast of algae blooms is essential to improve the quality of rivers.
- With this goal several water samples were collected in different European rivers at different times during a period of approximately one year.
- For each water sample, different chemical properties were measured as well as the frequency of occurrence of 7 harmful algae.
- Some other characteristics of the water collection process were also stored such as the season of the year, the river size, and the river speed.

Motivation

- Chemical monitoring is cheap and easily automated, while the biological analysis of the samples to identify the algae is expensive and slow.
- Obtaining models that are able to accurately predict the algae frequencies based on chemical properties would facilitate the creation of cheap and automated systems for monitoring harmful algae blooms.
- Another objective of this study is to provide a better understanding of the factors influencing the algae frequencies.

		Faculdade de ciências UNIVERSIDADE DO PORTO						
© L.Torgo (DCC-FCUP)	Algae	Sept, 2014 3 / 6						
	Problem Description							
The Available Data								

- There are two main data sets available: one for model development and the other for model testing
- The first contains 200 observations while the second contains 140
- Each observation contains information on 11 descriptive variables:
 3 nominal and 8 numeric.
- Each observation is in effect an aggregation of the data on several water samples collected on the same river througout the same season of the year.
- The 3 nominal variables describe the season of the year, the river size, and river speed, for the respective aggregated observation
- The 8 remaining variables describe several aggregated values of chemical parameters measured on the water samples (e.g. maximum pH, minimum value of O₂, etc.)
 For

FACULDADE DE CIÊNCIAS

The Available Data (cont.)

- Associated with these 11 variables there are 7 values of the measured frequency of 7 harmful algae on the respective water samples.
- For the test set (140 observations) no information is given on these 7 variables. Our goal is exactly to forecast these 140 × 7 values.

		FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO
© L.Torgo (DCC-FCUP)	Algae	Sept, 2014 5 / 6
	Problem Description	
The Aveilable Det		

The Available Data

- The data sets are available in the DMWR package
- To use the data of the 200 observations it is sufficient to do:

```
library(DMwR)
data(algae)
```

You may check the first few lines of the data as follows,

head(algae)

##		season	size	9 8	speed	mxPH	mnO2	Cl	NO3	NH4	oPO4	PO4	Chla
##	1	winter	small	me	edium	8.00	9.8	60.80	6.238	578.00	105.00	170.00	50.0
##	2	spring	small	me	edium	8.35	8.0	57.75	1.288	370.00	428.75	558.75	1.3
##	3	autumn	small	me	edium	8.10	11.4	40.02	5.330	346.67	125.67	187.06	15.6
##	4	spring	small	me	edium	8.07	4.8	3 77.36	2.302	98.18	61.18	138.70	1.4
##	5	autumn	small	me	edium	8.06	9.0	55.35	10.416	233.70	58.22	97.58	10.5
##	6	winter	small	_	high	8.25	13.1	65.75	9.248	430.00	18.25	56.67	28.4
##		al	a2	аЗ	a4	a5	a 6	a7					
##	1	0.0	0.0	0.0	0.0	34.2	8.3	0.0					
##	2	1.4	7.6 4	1.8	1.9	6.7	0.0	2.1					
##	3	3.3 5	3.6 1	. 9	0.0	0.0	0.0	9.7					
##	4	3.1 4	1.0 18	3.9	0.0	1.4	0.0	1.4					
##	5	9.2	2.9 7	7.5	0.0	7.5	4.1	1.0					
##	6	15 1 1	16 1	1	0 0	20 E	126	2 0					