
Deploying Data Mining Results
Web Applications using Shiny

L. Torgo

ltorgo@fc.up.pt

Faculdade de Ciências / LIAAD-INESC TEC, LA
Universidade do Porto

Dec, 2014

Introduction

Deploying Your Results

Bringing your results to the users
Testing on real world environments
Commercializing your results

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 2 / 36

Introduction

Some Potential Difficulties

Users’ lack of knowledge about data mining
Software requirements for running your results
Different software environments (e.g. OS, hardware, etc.)
Maintaining different versions

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 3 / 36

Introduction

Some Benefits of Deploying Your Results

Feedback from real users
Incorporate feedback - refinement of your solution
Real world testing

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 4 / 36

Introduction

Web Applications

Applications that runs in a web browser
Increasingly popular due to:

the widespread use of browsers
ability to maintain a single version of the software on the server side
cross-platform compatibility

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 5 / 36

Introduction

Web Applications

Some Benefits of Web Apps:
no complex installation and upgrading processes
“no” requirements from the client side (simply a compatible
browser)
cross-platform compatibility
extending to other devices (smartphones, tablets, etc.)

Some Drawbacks of Web Apps:
still some sacrifice to usability
eventual connectivity difficulties
privacy concerns

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 6 / 36

Introduction

R Web Apps using Shiny

Shiny (http://shiny.rstudio.com) is a web application framework for
R
It has a very intuitive and easy workflow that allows developing
web apps very easily
It allows you to easily deploy your data mining results through a
web app
It is integrated with recent versions of RStudio

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 7 / 36

Shiny Brief Introduction

Installing Shiny

Shiny can be installed as any R package:

install.packages("shiny")

It is strongly integrated with the latest versions of RStudio
Using RStudio will facilitate your task, but it is not mandatory to
have web apps in R

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 8 / 36

http://shiny.rstudio.com

Shiny Brief Introduction

A Simple Illustration
An Interactive Hitogram

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 9 / 36

Shiny Brief Introduction

A Simple Illustration

The ui.R file
Define UI for the Web App
shinyUI(fluidPage(

Application title
titlePanel("An Interactive Histogram!"),

Sidebar with a slider input for the number of

bins
sidebarLayout(

sidebarPanel(
sliderInput("bins",

"Number of bins to use in the histogram:",
min = 1,
max = 50,
value = 30)

),

Show a plot of the generated distribution
mainPanel(

plotOutput("distPlot")
)

)
))

The server.R file

library(shiny)

Define server logic to draw the histogram
shinyServer(function(input, output) {

Expression that generates a histogram. The
expression is wrapped in a call to renderPlot
to indicate that:
1) It is "reactive" and therefore should be
automatically re-executed when inputs change
2) Its output type is a plot

output$distPlot <- renderPlot({
x <- faithful[, 2] # Faithful Geyser data
bins <- seq(min(x), max(x),

length.out = input$bins + 1)

draw the histogram with the specified
number of bins
hist(x, breaks = bins, col = 'darkgray',

border = 'white')
})

})

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 10 / 36

Shiny Brief Introduction

The Structure of a Shiny Web App

It should be contained in a folder that gives the name to the App
The folder should contain at least two files:

ui.R that controls the layout and appearence of the App
server.R that defines the instructions that shiny needs to build the
App

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 11 / 36

Shiny Brief Introduction

Running a Shiny Web App

Through the function runApp())

library(shiny)
runApp("AppFolderName")

Using a specific button at RStudio GUI

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 12 / 36

Shiny Key Elements of a Shiny App

Taking a Closer Look at “ui.R”

The ui.R file

shinyUI(fluidPage(

titlePanel("App Title"),

sidebarLayout(

sidebarPanel(),

mainPanel()

)
)

)

shinyUI() contains the user interface
fluidPage() is one type of web page,
containing a fluid layout consisting of rows
and columns. Fluid pages make sure their
content scale in realtime to the browser width
titlePanel() creates a title panel in the
page
sidebarLayout() allows you to define a
layout with a sidebar and a main area
sidebarPanel() defines the content of the
side bar
mainPanel() defines the content of the
main panel forming the side bar layout

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 13 / 36

Shiny Key Elements of a Shiny App

Taking a Closer Look at “server.R”

The server.R file
shinyServer(

function(input, output) {
output$distPlot <- renderPlot({

bins <- seq(min(x), max(x), length.out = input$bins + 1)
hist(x, breaks = bins, col = 'darkgray', border = 'white')

})
}

)

shinyServer() defines the server-side logic of the App. It is a
function that is called the first time the browser loads the page. It
must take parameters “input” and “output”.
output is a list with as many components as there are output
elements in the UI. You define here how the output is generated
input is another list with as many components as there are user
interface input elements. You can use this list to get the user
inputs to the interface.

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 14 / 36

Shiny Key Elements of a Shiny App

Going Back to the Example

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 15 / 36

Shiny Control Widgets

Some Shiny Widgets

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 16 / 36

Shiny Control Widgets

Knowing More About Shiny Widgets

Shiny Widgets Gallery
http://shiny.rstudio.com/gallery/widgets-gallery.html

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 17 / 36

Reactive Output

Output Reacting to User Interaction

Reactive output has to do with content in web apps that is dependent
on user interaction with the app (through widgets)

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 18 / 36

http://shiny.rstudio.com/gallery/widgets-gallery.html

Reactive Output

Including Reactive Output

Having reactive output in a page involves two steps:
1 Include the object content in the page (in “ui.R”)
2 Tell shiny how to get the object content (in “server.R”)

If the object value depends on the value of some shiny widget(s)
you have reactive output

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 19 / 36

Reactive Output

Output Functions

Output functions tell Shiny where to display the content of an R
object in the page
Examples:

plotOutput() can be used to include a plot
tableOutput() can be used to include the contents of a table
textOutput() can be used to include text

There are more functions (all following the naming convention
...Output())

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 20 / 36

Reactive Output

Building Content

In “server.R” you tell Shiny how to build the objects that will be
placed in the page
Examples:

Non-reactive content

shinyServer(function(input, output) {
output$textField <- renderText({

paste("The square of 2 is ",2^2)
})

}
)

The above example assumes that somewhere in “ui.R” there is an
output element of the form textOutput(textField)

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 21 / 36

Reactive Output

Building Content (cont.)

Example with reactive content

shinyServer(function(input, output) {
output$textField <- renderText({

paste("The square of",input$userNumber,
"is",input$userNumber^2)

})

}
)

Again there should be textOuput(textField) in “ui.R”, but
also a numericInput() widget with name “userNumber” that
allows the output to be re-active to whatever input the user inserts
in this widget

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 22 / 36

Reactive Output

Functions for Building Content

Examples:
renderText() for character strings
renderPlot() for R plots
renderPrint() for any printed output
renderTable() table-like output (data frames, matrices, etc.)

There are more functions (all following the naming convention
render...())

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 23 / 36

Reactive Output

Widget Values

The components of the input list contain the values of the
widgets
The type of value depends on the widget
For instance a dateRangeInput() will produce a vector with
two values, whilst a numericInput() widget will produce a
single value

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 24 / 36

Reactive Output

Code Execution

Strongly inspired on RStudio Shiny tutorial

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 25 / 36

Reactive Output

Code Execution - 2

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 26 / 36

Reactive Output

Code Execution - 3

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 27 / 36

Hands on Shiny Web Apps

Hands on Shiny Web Apps

1 Load the R data set AirPassengers and convert it into an xts
object. Create a web app that allows the user to select the period
of time she/he wants to visualize the number of air passengers.

2 Create a web app that allows the user to check the exchange
rates between a pre-defined set of currencies. The app should
allow the user to: (i) select the currencies; and (ii) select the past
time window of rates to visualize. For the second of these
requirements the user should be allowed to select among a set of
time units (e.g. day, month, year), and also to indicate a number of
these units. This means it should be easy to inspect the exchange
rates for the last 5 months or 20 days, for instance.

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 28 / 36

Deploying Shiny Apps

How to Share your Web Apps with Others?

There are two ways (both with pros and cons):
1 Share the R code of your App (e.g. “ui.R” and “server.R”)
2 Share the App as the URL of a Web page

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 29 / 36

Deploying Shiny Apps Sharing the R Code

Sharing the Code

You send your user the contents of your Web app folder
(preferably zipped)
Your user opens R and provided it has Shiny installed simply runs:

library(shiny)
runApp("yourFolderName")

As an alternative you may host your zip file at some web page you
have access and the user runs:
library(shiny)
you may try this one!"
runUrl("http://www.dcc.fc.up.pt/~ltorgo/MSBA/SimpleWebApp.zip")

Other possibilities exist through hosting sites like GitHub and Gist
and the functions runGitHub() and runGist()

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 30 / 36

Deploying Shiny Apps Sharing the R Code

Sharing the Code - pros and cons

Advantages:
Very simple to share - just Zip the folder and you are done

Disadvantages:
Your user needs to have R and the necessary packages installed
Your user needs a minimal familiarity with running R and executing
commands in R
Your app is dependent on the user software environment that you
do not control

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 31 / 36

Deploying Shiny Apps Sharing as a Web Page

Sharing the App as a Web Page

Your user will not need to know anything about R!
RStudio currently provides 3 solutions for this:

1 ShinyApps.io (https://www.shinyapps.io/)
2 Shiny Server
3 Shiny Server Pro

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 32 / 36

https://www.shinyapps.io/

Deploying Shiny Apps Sharing as a Web Page

ShinyApps.io

This is a (free for now) Shiny App hosting service from RStudio
You create an account and then

1 Install the shinyapps R package
2 Login into ShinyApps.io and copy the authorization code you need

to run at your R:
setAccountInfo(

name="ltorgo",
token="<MYTOKEN>",
secret="<SECRET>")

3 Move into the folder where your app code is and issue in R:
deployApp()

4 Your applications will now be available at a URL related with your
account
https://ltorgo.shinyapps.io/myWebApp

Please Note that all this is still at Alpha development stages!

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 33 / 36

Deploying Shiny Apps Sharing as a Web Page

Shiny Server

Shiny Server is a program that builds a web server designed to
host Shiny apps.
It’s free, open source, and available from Github.
Shiny Server runs on Linux servers.

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 34 / 36

Deploying Shiny Apps Sharing as a Web Page

Shiny Server

You need a Linux server running Ubuntu 12.04 or greater (64 bit)
or CentOS/RHEL 5 (64 bit).
If you are not using one of these Linux distributions, you need to
compile it from source.

This solution requires access to a Linux web server and technical
support to install the program at this server

Installation instructions at
https://github.com/rstudio/shiny-server/blob/master/README.md

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 35 / 36

Deploying Shiny Apps Sharing as a Web Page

Shiny Server Pro

Shiny Server Pro is a paid service to host shiny Apps
It provides features as:

Password authentification
SSL support
Administrator tools
Priority support
and more.

More information at
http://www.rstudio.com/products/shiny-server-pro/

© L.Torgo (FCUP - LIAAD / UP) Web Apps Dec, 2014 36 / 36

https://github.com/rstudio/shiny-server/blob/master/README.md
http://www.rstudio.com/products/shiny-server-pro/

	Introduction
	Shiny
	Brief Introduction
	Key Elements of a Shiny App

	Shiny Control Widgets
	Reactive Output
	Hands on Shiny Web Apps
	Deploying Shiny Apps
	Sharing the R Code
	Sharing as a Web Page

