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Classification: Definition

 Given a collection of records (training set )

– Each record is by characterized by a tuple 
(x,y), where x is the attribute set and y is the 
class label
 x: attribute, predictor, independent variable, input
 y: class, response, dependent variable, output

 Task:

– Learn a model that maps each attribute set x 
into one of the predefined class labels y
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Examples of Classification Task

Task Attribute set, x Class label, y

Categorizing 
email 
messages

Features extracted from 
email message header 
and content

spam or non-spam

Identifying 
tumor cells

Features extracted from 
MRI scans

malignant or benign 
cells

Cataloging 
galaxies

Features extracted from 
telescope images

Elliptical, spiral, or 
irregular-shaped 
galaxies
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General Approach for Building 
Classification Model
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Classification Techniques

 Base Classifiers
– Decision Tree based Methods
– Rule-based Methods
– Nearest-neighbor
– Neural Networks
– Deep Learning
– Naïve Bayes and Bayesian Belief Networks
– Support Vector Machines

 Ensemble Classifiers
– Boosting, Bagging, Random Forests
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Example of a Decision Tree

cate
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YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree
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Another Example of Decision Tree

cate
goric

al

cate
goric

al

contin
uous

class
MarSt

Home 
Owner

Income

YESNO

NO

NO

Yes No

Married 
Single, 

Divorced

< 80K > 80K

There could be more than one tree that 
fits the same data!
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Apply Model to Test Data

Home 
Owner

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data
Start from the root of tree.
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Apply Model to Test Data
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Apply Model to Test Data
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Apply Model to Test Data
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Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data

Assign Defaulted to 
“No”

Home 
Owner
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Decision Tree Classification Task

Decision 
Tree
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Decision Tree Induction

 Many Algorithms:

– Hunt’s Algorithm (one of the earliest)

– CART

– ID3, C4.5

– SLIQ, SPRINT
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General Structure of Hunt’s Algorithm

 Let Dt be the set of training 
records that reach a node t

 General Procedure:

– If Dt contains records that 
belong the same class yt, 
then t is a leaf node 
labeled as yt

– If Dt contains records that 
belong to more than one 
class, use an attribute test 
to split the data into smaller 
subsets. Recursively apply 
the procedure to each 
subset.

Dt

?
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Hunt’s Algorithm
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Design Issues of Decision Tree Induction

 How should training records be split?

– Method for specifying test condition 
 depending on attribute types

– Measure for evaluating the goodness of a test 
condition

 How should the splitting procedure stop?

– Stop splitting if all the records belong to the 
same class or have identical attribute values

– Early termination 
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Methods for Expressing Test Conditions

 Depends on attribute types

– Binary

– Nominal

– Ordinal

– Continuous

 Depends on number of ways to split

– 2-way split

– Multi-way split
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Test Condition for Nominal Attributes

 Multi-way split: 

– Use as many partitions as 
distinct values. 

 Binary split:  

– Divides values into two subsets
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Test Condition for Ordinal Attributes

 Multi-way split: 

– Use as many partitions 
as distinct values

 Binary split:  

– Divides values into two 
subsets

– Preserve order 
property among 
attribute values This grouping 

violates order 
property
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Test Condition for Continuous Attributes
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Splitting Based on Continuous Attributes

 Different ways of handling
– Discretization to form an ordinal categorical 

attribute
 Ranges can be found by equal interval bucketing, 
equal frequency bucketing (percentiles), or 
clustering.
 Static – discretize once at the beginning
 Dynamic – repeat at each node

– Binary Decision: (A < v) or (A  v)
 consider all possible splits and finds the best cut
 can be more compute intensive
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How to determine the Best Split

Before Splitting: 10 records of class 0,
10 records of class 1

Which test condition is the best?
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How to determine the Best Split

 Greedy approach: 

– Nodes with purer class distribution are 
preferred

 Need a measure of node impurity:

High degree of impurity Low degree of impurity
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Measures of Node Impurity

 Gini Index

 Entropy

 Misclassification error

GINI ( t )=1−∑
j

[ p( j|t )]2

Entropy ( t )=−∑
j

p ( j|t ) log p( j|t )

Error ( t )=1−max
i

P ( i|t )
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Finding the Best Split

1. Compute impurity measure (P) before splitting

2. Compute impurity measure (M) after splitting
 Compute impurity measure of each child node
 M is the weighted impurity of children

3. Choose the attribute test condition that 
produces the highest gain

or equivalently, lowest impurity measure after 
splitting (M) 

Gain = P – M
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Finding the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting: P

M11 M12 M21 M22

M1 M2
Gain = P – M1    vs      P – M2
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Measure of Impurity: GINI

 Gini Index for a given node t :

(NOTE: p( j | t) is the relative frequency of class j at node t).

– Maximum (1 - 1/nc) when records are equally distributed 
among all classes, implying least interesting information

– Minimum (0.0) when all records belong to one class, 
implying most interesting information

GINI ( t )=1−∑
j

[ p( j|t )]2
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Measure of Impurity: GINI

 Gini Index for a given node t :

(NOTE: p( j | t) is the relative frequency of class j at node t).

– For 2-class problem (p, 1 – p):
 GINI = 1 – p2 – (1 – p)2 = 2p (1-p)

GINI ( t )=1−∑
j

[ p( j|t )]2

C1 0
C2 6

Gini=0.000

C1 2
C2 4

Gini=0.444

C1 3
C2 3

Gini=0.500

C1 1
C2 5

Gini=0.278
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Computing Gini Index of a Single Node

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 

GINI ( t )=1−∑
j

[ p( j|t )]2

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444
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Computing Gini Index for a 
Collection of Nodes

 When a node p is split into k partitions (children)

where, ni = number of records at child i,

    n  = number of records at parent node p.

 Choose the attribute that minimizes weighted average 
Gini index of the children

 Gini index is used in decision tree algorithms such as 
CART, SLIQ, SPRINT

GINI split=∑
i=1

k n i

n
GINI ( i)
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Continuous Attributes: Computing Gini Index...

 For efficient computation: for each attribute,
– Sort the attribute on values
– Linearly scan these values, each time updating the count matrix and 

computing gini index
– Choose the split position that has the least gini index

Split Positions

Sorted Values
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Measure of Impurity: Entropy

 Entropy at a given node t:

(NOTE: p( j | t) is the relative frequency of class j at node t).

Maximum (log nc) when records are equally distributed 
among all classes implying least information

Minimum (0.0) when all records belong to one class, 
implying most information

– Entropy based computations are quite similar to 
the GINI index computations

Entropy ( t )=−∑
j

p ( j|t ) log p( j|t )
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Computing Entropy of a Single Node

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 2/6          P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92

Entropy ( t )=−∑
j

p ( j|t ) log 2 p ( j|t )
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Computing Information Gain After Splitting

 Information Gain: 

Parent Node, p is split into k partitions;

ni is number of records in partition i

– Choose the split that achieves most reduction 
(maximizes GAIN)

– Used in the ID3 and C4.5 decision tree algorithms

GAIN split=Entropy ( p )−(∑
i=1

k ni

n
Entropy (i ))
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Gain Ratio

 Gain Ratio: 

Parent Node, p is split into k partitions

ni is the number of records in partition i

– Adjusts Information Gain by the entropy of the partitioning 
(SplitINFO). 

 Higher entropy partitioning (large number of small partitions) is 
penalized!

– Used in C4.5 algorithm

– Designed to overcome the disadvantage of Information Gain

GainRATIOsplit=
GAIN Split

SplitINFO
SplitINFO=−∑

i=1

k n i

n
log

ni

n
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Gain Ratio

 Gain Ratio: 

Parent Node, p is split into k partitions

ni is the number of records in partition i

GainRATIOsplit=
GAIN Split

SplitINFO
SplitINFO=−∑

i=1

k n i

n
log

ni

n

SplitINFO = 1.52 SplitINFO = 0.72 SplitINFO = 0.97
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Measure of Impurity: Classification Error

 Classification error at a node t :

– Maximum (1 - 1/nc) when records are equally 
distributed among all classes, implying least 
interesting information

– Minimum (0) when all records belong to one class, 
implying most interesting information

Error ( t )=1−max
i

P ( i|t )
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Computing Error of a Single Node

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6          P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

Error ( t )=1−max
i

P ( i|t )
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Comparison among Impurity Measures

For a 2-class problem:
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Misclassification Error vs Gini Index

A?

Yes No

Node N1 Node N2

 Parent 

C1 7 

C2 3 

Gini = 0.42 
 

Gini(N1) 
= 1 – (3/3)2 – (0/3)2 
= 0 

Gini(N2) 
= 1 – (4/7)2 – (3/7)2 
= 0.489

Gini(Children) 
= 3/10 * 0 
+ 7/10 * 0.489
= 0.342

Gini improves but 
error remains the 
same!!

10/09/18 Introduction to Data Mining, 2nd Edition 45



Misclassification Error vs Gini Index

A?

Yes No

Node N1 Node N2

 Parent 

C1 7 

C2 3 

Gini = 0.42 
 

Misclassification error for all three cases = 0.3 ! 
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Decision Tree Based Classification

 Advantages:
– Inexpensive to construct

– Extremely fast at classifying unknown records

– Easy to interpret for small-sized trees

– Robust to noise (especially when methods to avoid overfitting 
are employed)

– Can easily handle redundant or irrelevant attributes (unless 
the attributes are interacting)

 Disadvantages: 
– Space of possible decision trees is exponentially large. 

Greedy approaches are often unable to find the best tree.

– Does not take into account interactions between attributes

– Each decision boundary involves only a single attribute
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Handling interactions

X 

Y

+ : 1000 instances

o : 1000 instances

Entropy (X) : 0.99 
Entropy (Y) : 0.99
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Handling interactions

+ : 1000 instances

o : 1000 instances

Adding Z as a noisy 
attribute generated 
from a uniform 
distribution

Y

Z

Y

Z

X

Entropy (X) : 0.99 
Entropy (Y) : 0.99
Entropy (Z) : 0.98

Attribute Z will be 
chosen for splitting!

X 
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Limitations of single attribute-based decision 

boundaries

Both positive (+) and 
negative (o) classes 
generated from 
skewed Gaussians 
with centers at (8,8) 
and (12,12) 
respectively.  
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