Data Mining Classification: Basic Concepts and Techniques

Lecture Notes for Chapter 3

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Classification: Definition

- Given a collection of records (training set)
 - Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label
 - \bullet x: attribute, predictor, independent variable, input
 - \bullet y: class, response, dependent variable, output
- Task:

- Learn a model that maps each attribute set x into one of the predefined class labels y

Examples of Classification Task

Task	Attribute set, <i>x</i>	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

General Approach for Building Classification Model

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Deep Learning
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

Example of a Decision Tree

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Test Data

			Defaulted Borrower
No	Married	80K	?

Decision Tree Classification Task

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

General Structure of Hunt's Algorithm

 Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

(7,3)

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No **(7,3)**

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition

- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous

- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Test Condition for Nominal Attributes

- Multi-way split:
 - Use as many partitions as distinct values.

- Binary split:
 - Divides values into two subsets

Test Condition for Ordinal Attributes

Multi-way split:

Use as many partitions as distinct values

Binary split:

- Divides values into two subsets
- Preserve order property among attribute values

Test Condition for Continuous Attributes

(i) Binary split

(ii) Multi-way split

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
- Dynamic repeat at each node
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Customer Id	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	$_{ m M}$	Sports	Medium	C0
3	\mathbf{M}	Sports	Medium	C0
4	M	Sports	Large	C0
5	\mathbf{M}	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	\mathbf{F}	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	$_{\mathrm{M}}$	Family	Large	C1
12	M	Family	Extra Large	C1
13	\mathbf{M}	Family	Medium	C1
14	\mathbf{M}	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropy

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

Misclassification error

$$Error(t) = 1 - \max_{i} P(i|t)$$

Finding the Best Split

- Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - Compute impurity measure of each child node
 - M is the weighted impurity of children
- 3. Choose the attribute test condition that produces the highest gain

$$Gain = P - M$$

or equivalently, lowest impurity measure after splitting (M)

Finding the Best Split

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Measure of Impurity: GINI

• Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- For 2-class problem (p, 1 - p):

• GINI =
$$1 - p^2 - (1 - p)^2 = 2p (1-p)$$

C1	0		
C2	6		
Gini=0.000			

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3							
C2	3							
Gini=0.500								

Computing Gini Index of a Single Node

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Computing Gini Index for a Collection of Nodes

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at parent node p.

- Choose the attribute that minimizes weighted average
 Gini index of the children
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat	No			No		No		Yes		Yes		Υє	es	s No		o N		N	No		No		
		Annual Income																						
Sorted Values Split Positions		60			70		75		85		90		95		100		120		125		220			
		55		6	65 7		72		80		7	9	2	9	97		110		122		72	230		
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	\=	>	<=	>	<=	>	
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0	
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0	
	Gini	0.4	20	0.400		0.3	0.375		0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420	

Measure of Impurity: Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Computing Information Gain After Splitting

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

Gain Ratio

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{Split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

Gain Ratio

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{Split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

	CarType		
	Family	Sports	Luxury
C1	1	8	1
C2	3	0	7
Gini	0.163		

$$SplitINFO = 1.52$$

	CarType	
	{Sports, Luxury}	{Family}
C1	9	1
C2	7	3
Gini	0.468	

$$SplitINFO = 0.72$$

	CarType	
	{Sports}	{Family, Luxury}
C1	8	2
C2	0	10
Gini	0.167	

SplitINFO = 0.97

Measure of Impurity: Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i|t)$$

- Maximum (1 $1/n_c$) when records are equally distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most interesting information

Computing Error of a Single Node

$$Error(t) = 1 - \max_{i} P(i|t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Comparison among Impurity Measures

For a 2-class problem:

Misclassification Error vs Gini Index

	Parent	
C1	7	
C2	2 3	
Gini = 0.42		

Gini(N1)
=
$$1 - (3/3)^2 - (0/3)^2$$

= 0

Gini(N2)
=
$$1 - (4/7)^2 - (3/7)^2$$

= 0.489

	N1	N2
C1	3	4
C2	0	3
Gini=0.342		

Gini(Children)

= 3/10 * 0

+ 7/10 * 0.489

= 0.342

Gini improves but error remains the same!!

Misclassification Error vs Gini Index

	Parent	
C1	7	
C2	3	
Gini = 0.42		

	N1	N2
C1	3	4
C2	0	3
Gini=0.342		

	N1	N2
C1	3	4
C2	1	2
Gini=0.416		

Misclassification error for all three cases = 0.3!

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Can easily handle redundant or irrelevant attributes (unless the attributes are interacting)

Disadvantages:

- Space of possible decision trees is exponentially large.
 Greedy approaches are often unable to find the best tree.
- Does not take into account interactions between attributes
- Each decision boundary involves only a single attribute

Handling interactions

+: 1000 instances

o: 1000 instances

Entropy (X): 0.99

Entropy (Y): 0.99

Handling interactions

+: 1000 instances

o: 1000 instances

Adding Z as a noisy attribute generated from a uniform distribution

Entropy (X): 0.99

Entropy (Y): 0.99

Entropy (Z): 0.98

Attribute Z will be chosen for splitting!

Limitations of single attribute-based decision boundaries

Both positive (+) and negative (o) classes generated from skewed Gaussians with centers at (8,8) and (12,12) respectively.