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Support Vector Machines
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® Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines
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® One Possible Solution
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Support Vector Machines
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® Another possible solution
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Support Vector Machines
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® Other possible solutions
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Support Vector Machines

® Which one is better? B1 or B2?

® How do you define better?
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Support Vector Machines

B,

® Find hyperplane maximizes the margin => B1 is better than B2
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Support Vector Machines

ﬁ:-i’+b=0?

— — 4}'4 —_
wex+b=-1 wex+b=+1

I ifwex+b=1 b

£(F) = { Margin =

—1 ifwex+b=s-1 [l

02/14/2018 Introduction to Data Mining, 2" Edition 8



Linear SVM

® Linear model:

(1
f(x)={—1 if WexX+bs—1

® | earning the model is equivalent to
determining the values of w and b

— How to find ¥ and b from training data?
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Learning Linear SVM

® Objective is to maximize: Margin :HZTH
W
= 112
— Which is equivalent to minimizing: L(VV):HM;”

— Subject to the following constraints:
1 ifwex +b=1

y“'_{—l if WeX, +bs—I

OF  yi(wx+b)21, i=12,...,N

¢ This is a constrained optimization problem

— Solve it using Lagrange multiplier method
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Learning Linear SVM

® Decision boundary depends only on support
vectors

— If you have data set with same support
vectors, decision boundary will not change

— How to classify using SVM once w and b
are found? Given a test record, X
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Support Vector Machines

® What if the problem is not linearly separable?
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Support Vector Machines

® What if the problem is not linearly separable?

— Introduce slack variables

¢ Need to minimize: ||Vv||2

Liw)= 5 +C

N

D &

i=1

¢ Subject to:

(1 ifWex +bL1-5
y’_{—l ifwex, +b<Cl+ED

¢ If kis 1 or 2, this leads to same objective
function as linear SVM but with different
constraints (see textbook)
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Support Vector Machines
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® Find the hyperplane that optimizes both factors
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Nonlinear Support Vector Machines

® What if decision boundary is not linear?
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Machines

® Trick: Transform data into higher dimensional

space
D T
N 2 2 .
005} O ] ry — I + Ly — I3 = —0.46.
01+ N o J— j—
. o ®: (21,29) — (23,23, V2oy, V222, 1),
>.< 0.15 .
[ It
> 2 a = =
wyr] + warsy +way 2ry + wiv 2ee 4wy = 0.
02}
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Decision boundary:
01 005 0

w-d(X)+b=0
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Learning Nonlinear SVM

® Optimization problem:

min ”W”E
w 2
subject to yi(w- () +b) = 1, (i ua)}

® Which leads to the same set of equations (but
iInvolve ®(x) instead of x)

n
]. i 9 o "y F— & & i .m.
Lp=7) 1 A= g D AU k) Rx) WS Zj At blxi)
1= L

Ai{wi( D Njus®(x;) - B(x;) +b) — 1} =0,
7

T
flz) =sign(w-®(z)+b) = .e-.f'_a_’m{z Ay P(a) - P(z) + b).

i=1
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Learning NonLinear SVM

® |ssues:

— What type of mapping function ® should
be used?

— How to do the computation in high
dimensional space?

¢ Most computations involve dot product ®(x)e
D(x;)
¢ Curse of dimensionality?
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Learning Nonlinear SVM

® Kernel Trick:
— @(x;)* ©(x;) = K(x;, X))

— K(x;, x;) Is a kernel function (expressed in
terms of the coordinates in the original
space)

¢ Exampl Kix.y)=(x-yv+1)*
K(x,y) = e Ix=vI*/(2o%)

Kix.v) =tanh(kx-v — d)
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Example of Nonlinear SVM
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Learning Nonlinear SVM

® Advantages of using kernel:

— Don’t have to know the mapping function
()

— Computing dot product ®(x;)* ®(x;) in the
original space avoids curse of
dimensionality

® Not all functions can be kernels

— Must make sure there is a corresponding ®
iIn some high-dimensional space

— Mercer’s theorem (see textbook)
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Characteristics of SVM

® Since the learning problem is formulated as a convex
optimization problem, efficient algorithms are
available to find the global minima of the objective
function (many of the other methods use greedy
approaches and find locally optimal solutions)

® Overfitting is addressed by maximizing the margin of
the decision boundary, but the user still needs to
provide the type of kernel function and cost function

® Difficult to handle missing values
® Robust to noise
® High computational complexity for building the model
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