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Utilizing Database Architecture to Decrease Resource 

Utilization in Research Data Science Workflows 

Abstract 

In this work, one research workflow was studied to pinpoint the greatest impediment for ‘time to 

science’ or the amount of time before the user (a researcher) could begin their work. The database 

ingestion portion of a research workflow was slow enough that researchers were limiting the data 

studied, rather than waiting for the full dataset requested to become available. This research 

workflow utilized data available via Twitter’s API for several use cases from public health to 

computational social science. Several areas for potential speed up of record ingestion were 

studied, including the shared cloud resources and the data’s characteristics. After examining 

shared file system load and looking for differences in the individual ingestion files, the presence 

of duplicate tweets emerged as a major complication. When the primary key was changed from 

the source record ID, in this case the tweet ID, to a unique auto-incrementing integer, ingestion 

time sped up 350%. Computing optimizations equate to savings in cost and energy usage. To 

ingest a year of the ‘1% feed’ Twitter data, this time savings translates to $342.11 (€307.65) in 

cloud cost savings and 19.3 kW in energy savings or the equivalent of CO2 emissions from 

charging a smartphone 1,740 times or burning 15 pounds (6.8 kg) of coal. 

Background 

Putting large-scale/big data into a relational database is time consuming. While other approaches 

exist for collecting and querying data, many researchers are not ready for the paradigm shift away 

from SQL and structured data. Ingestion into a relational database is resource (time) prohibitive 

and limits the time scientists have for analysis and inquiry. Researchers must wait for the data to 

be ready and often reframe research questions to require less data – or draw conclusions based 

on much smaller data sample sizes. An overarching goal of this research is to speed up 

researchers’ ‘time to science’ or rather, decrease the amount of time spent getting data ready and 

compute environments configured before inquiry can begin. Decreasing the use of resources 

needed to accomplish the same analysis holds the potential to save researchers’ limited funds, 

as well as to contribute to decreasing computing’s climate impact. 

Twitter as a Multipurpose Dataset for Many Research Domains 

Social media datasets, such as can be obtained from Twitter using the free 1% API feed, provide 

data and computer scientists with a versatile resource for testing different techniques, such as 

clustering and topic modeling. Scientists and their lab staff are often most familiar with relational 

databases and SQL, preferring to use databases such as MySQL and PostgreSQL (Oracle 2020, 

PostgreSQL 2020). The same datasets can be converted for use in specific-purpose database 

platforms, such as Solr for text mining, and Neo4J for graphs (Solr 2020, Neo4J 2020).  
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Twitter data was selected for its usefulness in several domains. Political scientists query Twitter 

datasets to look for co-occurring keywords to detect relationships of concepts over time, as well 

as to build graphs to detect network development and influence (Zheng 2019, Steinert-Threlkeld 

2019). Twitter is useful in public health to augment (public health) surveillance systems that may 

only release data annually; Twitter data can provide timely insight into aggregate behavioral 

trends such as unsafe sex or drug use (Benbow 2019, Guo 2019).  

Its high degree of spatial and temporal granularity allows the study of behavior at low  

levels of aggregation but also at a more macro scale and from a comparative perspective. 

The fact that human behavior is observed unobtrusively also facilitates collecting data at 

a larger scale and reduces certain types of biases (Barberá 2019).  

 

Across projects requiring even short period samples (days) of social media data, the time to ingest 

or copy already available data into a database is the most time-consuming portion of the workflow 

and an impediment to its intended use by the data science or domain study that requires the data 

resource. The San Diego Supercomputer Center (SDSC) has been collecting tweets for its data 

scientists for various applications since 2018 and has over 15 billion tweets (records) in their 

native (file) format, stored in a cloud bucket (object store). At 700GB uncompressed, the tweets 

can’t be loaded onto a single system using open source software. Despite having data available 

for analysis, it is a constant challenge to make the data available in a form that can be queried 

and is useful to researchers. 

Related Work 

Recent publications such as Oliviera examine how moving scientific workflows to the cloud bring 

complexity, especially as it relates to predicting failures. “The complexity of cloud infrastructures 

(i.e., the large number of hardware and software components and their interdependence 

relationships) raises the need for performance evaluation methods that consider the failure of 

components” (2019). Because of the complexity and cost and time constraints for testing many 

permutations and variations of configuration, state-based models are often used for performance 

evaluation, e.g. Stochastic petri nets. Gathering job characteristics such as “response time, 

throughput, availability” can be a path to finding appropriate cloud architectures (Andrade 2019). 

Where such literature shows a gap is in skipping optimization to focus on the performance and 

dependability of well-defined information technology (IT) loads. Much of the experimentation in 

the literature is making use of simulators, notably CloudSim, rather than experimentation based 

on real world tests or validated using worked examples (Oliviera 2019, Erradi 2020, CloudSim 

2020). Further the focus on cost optimization is not always aligned with saving power or computing 

cycles. At the San Diego Supercomputer Center, compute-intensive racks, such as for high 

performance computing (HPC) average 12 kilowatt hours (kWh) per 48u rack versus the average 

of 4 kWh for non-HPC, and often far less for storage only racks (Filliez 2020). Storage can be the 

costliest element in a commercial cloud bill, which in turn can add complexity to a workflow, such 

as in trying to move data between archival (cheaper) storage and any kind of ‘hot’ or spinning disk 

storage, so that at any one moment, only the data being computed is on spinning disks (Erradi 

2020).  
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There is a gap in the literature concerning cloud use for research data science loads. Much 

research has been done to optimize workloads where the parameters are unchanging, such as 

persistent virtual machines that host databases with very small add/delete/update queries. It is 

understandable that much attention is paid to industry loads because of the monetary incentive 

to save money and/or to speed up processes that will lead to increased revenue, e.g. earlier, 

more frequent product shipments (Beloglazov 2012). It is somewhat inconsistent to focus 

research on predictable loads given that cloud is inherently unpredictable due to its use of shared, 

commodity hardware (Homer 2014).  

 

Concerning the particular workflow studied and its use of PostgreSQL: there are numerous works 

concerning PostgreSQL best practices and a large and active user community (Geschwinde 

2002, Obe 2017, PostgreSQL 2020). However, none were found to address the optimization 

opportunities for users of shared infrastructure, i.e., who lack access to the underlying file system. 

Where the literature is helpful in a cloud context, is in regard to memory optimization for 

PostgreSQL. Borodin found memory improvements that tripled the speed to copying data into an 

index by three (2017). However, the specific recommendation was suggested as an improvement 

to PostgreSQL’s code base and not something the user can control. Additional literature review 

and matching of database design and schemas should be done as suggested by additional 

workflows and bottlenecks related to interaction with database management systems (DBMS). 

Specific Challenge Examined 

The workflow analyzed begins with obtaining Twitter data from the Twitter API and ends with a 

populated PostgreSQL database ready for querying. With historical Twitter data available on the 

local cloud already, a common task is to create a new database with a sample of x months of 

tweets. Scientists would prefer more data, at least a year’s worth, but at current processing 

speeds it was time prohibitive: taking over 28 days just to copy available data on the same 10GB 

network into a database - and often much longer because of duplicate records that would cause 

data ingestion to fail. Data ingestion was found to be one of the workflow’s significant bottlenecks. 

Description of the Workflow Studied 

The workflow chosen for examination creates an open source relational database using data 

captured from a Twitter stream. This is accomplished in three distinct steps. Cloud instance sizes 

discussed refer to specific templates used to configure cloud resources. Table 1 summarizes 

relevant resource differences between instance types mentioned. 

1. Data Capture - an xe.large instance utilizes Apache Heron, Twitter’s open source 

streaming service for capturing large amounts of data. A Twitter key authenticates the API 

calls from Heron. Heron obtains the tweets from Twitter in JSON format, stores them on 

a RAM disk, and periodically writes the records to a compressed .zip file. The files are first 

stored locally on the cloud instance. Each hour a new file is created and the previous one 

is uploaded to OpenStack Swift via Swift’s native protocol (similar to, but not S3) (Swift 
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2020).  Each one hour file is approximately 200 MB and contains 2.5 million tweets 

(records).   

2. Data pre-processing - a constant issue is the occurrence of duplicate records. In the 

current workflow, the tweet IDs are used as unique keys.  The presence of duplicate 

records will cause the individual file to fail when it is attempted to copy a record with a 

duplicate primary key into the table. It was assumed that Heron was introducing the 

duplicate records, so a short Java program was written to capture the Twitter feed instead. 

This appears to have corrected the issue going forward, however, duplicates still remain 

in the large number of tweets collected already. The current workflow design transforms 

the JSON into CSV that matches the database schema (see Appendix I). 

3. Ingestion (DBMS Schema /copy/insert) - The database schema used is from GNIP (see 

Appendix I) and combined two schemas: one for activities (tweets) and one for actors 

(users). This was compared against Twitter’s object data dictionary, and “tweet” and “user” 

were later added. In the time since the data collection began, Twitter doubled the number 

of characters per tweet and added an additional field with the data above 140 characters. 

This made it necessary to combine the two text fields from newer, longer tweets into one 

field for easier analysis. Once the data is pre-processed, it is copied into PostgreSQL via 

a copy command (Appendix II). Each hour or ~2.5 million records are copied in a batch. 

A shell script controls the serial batching of data ingestion.  

It should be noted that in the original workflow, a custom schema was used that kept the 

tweets and users in two separate tables. The GNIP schema was employed for testing in 

an attempt to limit complications from user customizations.   

Shared Resources and Cloud Computing Introduce New 

Complications for Diagnosing Bottlenecks 

The workflow examined runs on SDSC Cloud, a private cloud based on OpenStack (SDSC 

Cloud). OpenStack is an open source software project that allows for hosting infrastructure as a 

service (IaaS) style compute and storage instances, similar but much more simplistic than 

Amazon Web Services (AWS) or Google Cloud Platform (GCP) (Sefraoui 2012). The relative 

simplicity of billing and limited menu of services can be welcome features for scientists doing 

grant-funded research who find commercial cloud’s options and billing complexity vexing.  

 

SDSC Cloud is a shared resource. Every attempt was made to isolate the processing times 

although the underlying storage and networking infrastructure is shared by the entire SDSC 

Cloud. The workflow utilizes three cloud instances, all with 20 GB of storage for the operating 

system (Table 1). The cloud instances use attached block storage managed by Ceph with 3 copy 

replication (Weil). Ceph is set up with a 5:1 ratio of spinning hard disks (HDDs) to solid state 

drives (SSDs). The tweets are stored on in object store using OpenStack Swift (Swift). The object 

store is configured to store three copies and can be accessed via an S3 API.  
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 Size vCPUs RAM Storage 

Heron Tweet collection xe.large 2 64 GB (32 of 64 as a RAM disk) S3 bucket 

Tweet pre-processing m1.medium 1 40GB  

Social media database R.1xlarge 4 32 GB 1 TB block 

Table 1: Cloud instances utilized in the workflow studied. 

The database utilized is PostgreSQL (Stonebreaker 1991). It was chosen because it is open 

source, has a wide user base, and is relatively stable. Prior to PostgreSQL, Apache AsterixDB 

was used, an open source DBMS designed for big data needs (Grover 2015). While it excels at 

ingestion of real-time data streams, it was relatively new and undergoing frequent overhauls; 

features were not always stable between releases, leading to the need to reload data. As well, 

storage of the raw data was appealing, rather than ingestion straight into AsterixDB, as the data 

could be imported into other types of DBMS. It was decided to convert to a more stable DBMS 

that the research computing team had considerable experience using.  

 

The schema used is a sample database schema provided by GNIP, the company owned by 

Twitter that manages the Twitter API and data dictionary (see Appendix I for schema details). As 

with many modern DBMS’s, Postgres uses a B+- tree index which allows for flexibility in 

supporting different types of queries including equality and range (Stonebreaker 1991). Aside 

from database tuning, performance is related to the I/0, CPU, and the underlying file system 

(Geschwinde 2002). However, much of the advice in the literature is not applicable to cloud-based 

implementations as researchers do not gain access to the configuration of the shared file system. 

In today’s IT structures where analysts specialize in systems management or database 

management (but rarely both), tuning a system for the DBMS requires careful cooperation and 

shared knowledge; the systems person should possess basic database knowledge, and database 

administrators (DBAs) should understand the system they rely on.  

 

Memory is another key resource, which in a cloud environment can be controlled by the user. 

Cloud users can create RAM disks out of the memory allocated. For the workflow studied, a RAM 

disk was created for the cloud instance running the data import from Twitter. Of 64 GB of memory 

allocated to the instance, half (32GB) was used as a RAM disk that performed at roughly twice 

the speed of a regular spinning disk or hard (disk) drive (HDD). While a powerful technique for 

storing data before writing to a file, the RAM disk did not appear applicable to the bottleneck 

examined. Future study should include use of solid state drives (SSDs) in cloud architectures. 

SSDs are in use in the underlying cloud nodes and storage subsystems of SDSC Cloud.  

However, dedicated SSDs are not currently available to SDSC Cloud users. This is due to the 

limitation in allocation.  SSDs must be allocated by the size of the physical resource and can’t be 

shared.  For example, a 1 TB SSD must be allocated as 1 TB, even if the cloud instance only 

needs 100GB or 10% of the available resource. 
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Experimentation  

Suspected Causes of Data Ingestion Slowness and Failure  

The data scientists using the system believed the ingestion was related to the size of the database 

and that more resources, such as added memory or CPUs, might speed up processing times: 

Hypothesis1 - Ingestion time increases as the database grows in size.  Because of the issue with 

duplicate records causing the processing of individual files to hang or fail, this led to the 

supposition that locating and omitting duplicate records prior to ingestion might speed processing: 

Hypothesis2 - Ingestion time can be decreased through data preprocessing. Aside from the first 

two hypotheses, it seemed prudent to ensure that best practices were being followed for the 

specific DBMS: Hypothesis3 - Ingestion can be sped up by implementing best practices related 

to record inserts and updates for the specific DBMS. 

Exploration and Experimentation to Speed Up Ingestion 

Database Size in Records  

Hypothesis1, is that ingestion time increases as the database grows in size.  Using the research 

workflow with no adjustments, the ingestion was re-run. Sample processing times for a database 

that already contains 33M records, as it grows to 100M records was analyzed and show to vary 

widely (Appendix III). Given the relative homogeneity of the individual files (in number of records  

 
Figure 1: Sample ingestion times given database size in records. 

and data type), it became unclear how the run times could range from 43 - 67 minutes for the 

same amount of data. It showed no correlation (R2 of .015) between the number of records in the 

database and ingestion times (Figure 1).  

Shared Resources and the File System 

Shared infrastructure load was another area to investigate. This exposed that previous ingestion 

job logs were not capturing the timestamp for when the individual files were either started or 

completed, making it difficult to look for correlations between the processing times and shared 
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system load. The ingestion script was augmented to include timestamps per file processed going 

forward. The resource that seemed most variable and likely to impact performance based on the 

literature review is the shared file system, based on Ceph (Ceph 2020). Looking at samples of 

load in Ceph logs viewed via Graphite, a log visualization platform, there were no immediate 

patterns that correlated to the variability in ingestion times (Graphite 2020). This was set aside as 

a place to investigate further once the ingestion logs had timestamps to match with Ceph load 

levels. 

 

Once the experiment with timestamped jobs was available, it showed no discernible pattern 

between processing times and Ceph load as expressed in reads or writes (by bytes per second) 

(Figure 2). Ceph logs were converted from PST to UTC to align with ingest job timestamps. Ceph  

 
Figure 2: Sample of Ceph block storage activity. All OpenStack cloud instances share this storage resource.  
Top line shows reads, bottom line shows writes. Plotted numbers denote the end of jobs in minutes. 

reads by bytes per second appear to be very flat, with a few small fluctuations only a few times 

per day. The scale of the visualization when viewed with writes is confusing and suggests an 

inaccurate trend.  Reads are not as variable as writes, but the STDEV is 18% of the mean value. 

Both reads and writes have high variability (Table 2). Initially writes appeared to have four data 

points that were outliers, as seen in the high spikes on the bottom (green) line in Figure 2.  

However, even with the four data points removed, the variability is high or 45% of the mean value 

(Table 2). 

 Writes (with outliers removed) Writes (raw) Reads 

Mean 18,799,954 22,726,801.95 544,754,417 

STDEV   8,456,525 23,998,263.25   96,574,868 

% of Mean 45% 106% 18% 

Table 2: Variability in Read/Writes per bytes per second in the Ceph file system. 
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Even so, the high ingestion times don’t always correspond with file system load. For example, the 

ingest time of 96 minutes comes just after a period of high write load.  However, other high ingest 

times correspond to relatively low load.  More study is needed to adequately attribute ingest times 

to file system load. 

Data Characteristics 

Another point of inquiry was to verify that the individual data files ingested were dissimilar enough 

to account for the processing variability. Each 2.5 million records file was analyzed for word and 

character counts. Because of an issue with one file processed, the result was a missing or 

incomplete value. This represented noise in the data, not an outlier (Aggarwal 2015). After 

normalizing the data, the underlying trend was more easily seen (see Appendix IV); the standard 

deviation in the tens and hundreds of millions looked large but was actually very small relative to 

the values’ range: only 2% of the mean value. Looking at differences between words and 

characters did not reveal anything unexpected. The correlation between words and characters 

was very similar between files and fit a predictable relationship with an R2 of .97 (Figure 3). 

 

 
Figure 3: Characters per file were directly correlated to the number of words. 

Data Pre-processing 

With no obvious source for the ingestion time variability, attention was turned to preprocessing, 

Hypothesis2 - Ingestion time can be decreased through data preprocessing. This hypothesis was 

investigated by the research computing developer on the team. As noted in the workflow 

description, duplicate tweets were found in many of the uncompressed .zip files.  The developer 

had already tested pre-processing the tweet files to find and remove duplicates. However, at 2.5 

million lines per file, just loading the file in any editor or running a command against it, was very 

time consuming. The anecdotal report was that the pre-processing took as much time as it saved 

on ingestion, rendering it a moot solution unless pre-processing was parallelized. This requires 

significant expertise and time investment to set up. Pre-processing experimentation was set aside 

in favor of other potential experiments. 
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Data Schema and Index Type 

Though best practices on data insert was a favored hypothesis (Hypothesis3), with the 

information that pre-processing or ‘hitting’ duplicate keys on ingestion was time intensive in this 

workflow, a new experiment was designed to avoid the duplicate tweet issue altogether. Rather 

than use the tweet ID as a unique key, an additional field could be added to act as the unique ID. 

Recent versions of PostgreSQL have a feature for a field to be an auto-incrementing integer.  The 

database was recreated using the GNIP schema (see Appendix I), but the last three lines (60-

62): 

 

60. ALTER TABLE ONLY public.tweet ADD CONSTRAINT tweet_id_pk PRIMARY KEY (tweet_id); 

61. CREATE UNIQUE INDEX tweet_id_uindex ON public.tweet USING btree (tweet_id); 

62. CREATE INDEX user_id_uindex ON public.tweet USING btree (user_id); 

 

were replaced by a line that creates a primary key that is an incrementing integer: 

 ALTER TABLE public.tweet ADD COLUMN unique_id SERIAL PRIMARY KEY 

Hypothesis3 and Revisiting Hypothesis1 

Upon dropping the constraint of a unique key based on the tweet ID, and replacing the primary 

key with a unique, auto-incrementing integer, there was a remarkable decrease in processing 

times (Table 3, Figure 4).  One file only processed 1.4 million records and skewed results when 

included; this data was normalized by replacing the data noise with the mean value.  Further 

investigation into what caused the ingest to fail before the file was complete showed a missing 

escape character to close a record. Data pre-processing includes searching for missing escape 

characters, but it was unsuccessful in this particular instance. The pre-processing script should 

be verified, as well as additional work on the ingestion script to allow for skipping lines with errors 

and finishing the file. 

 

Lines/Records Records at 

Processing 

Start 

Minutes to 

process 

2486936 0 15.62 

2485910 2,486,936 14.87 

2491324 4,972,846 15.76 

2462280 7,464,170 15.23 

2478868 9,926,450 16.36 

2482803 12,405,318 16.57 

1411266 14,888,121 9.45 
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Lines/Records Records at 

Processing 

Start 

Minutes to 

process 

2486346 16,299,387 16.17 

2488091 18,785,733 17.95 

2486009 21,273,824 17.82 

2485729 23,759,833 18.96 

2490273 26,245,562 18.11 

Table 3: Sample of processing times by number of database records and lines or records per file processed. 

Even with the outlier time included, a new trend emerges (Figure 4). There is a slight trend towards 

higher processing times as the database size grows, with an R2 of .175. 

 
Figure 4: Processing times by records in the database prior to ingestion with the data noise included. 

When the data is normalized and the mean value inserted for processing time (16.67 minutes) 

and number of lines (2,484,052 records) in its place, the correlation is even clearer (Table 4, 

Figure 5). The processing times show a correlation to records in the database, R2 = .82. 

 

Records at 

Processing Start 

Minutes to 

process 

0 15.62 

2,486,936 14.87 

4,972,846 15.76 

7,464,170 15.23 

9,926,450 16.36 



Kirkpatrick 12 

Records at 

Processing Start 

Minutes to 

process 

12,405,318 16.57 

14,888,121 16.67 

17,372,173 16.17 

19,858,519 17.95 

22,346,610 17.82 

24,832,619 18.96 

27,318,348 18.11 

Table 4: Normalized data, omitting noise 

 

 
Figure 5: Times to process based on records at ingestion. 

In the original workflow, to ingest 18.5 days of data it took 34.4 hours.  With the simple change of 

primary key prior to data copy, the same period of data took 9.91 hours to copy into the database,  

or about 3.5 times faster. Examining sample speed increases between experiments, shows that 

the change in key value is responsible consistently for 230-330% increases (Table 5). The savings 

in cost and energy is significant, especially knowing that this sample is representative of activity 

that runs year-round on SDSC Cloud.  

 

Database 

Size at Start 

Minutes to 

process 

w/o Tweet ID 

as Primary Key 

% Time 

Improvement 

36,197,823 67.43 23.04 293% 

38,683,405 48.95 19.04 257% 

41,169,195 56.62 18.88 300% 



Kirkpatrick 13 

Database 

Size at Start 

Minutes to 

process 

w/o Tweet ID 

as Primary Key 

% Time 

Improvement 

43,655,140 52.79 22.78 232% 

46,140,396 56.04 17.09 328% 

48,626,048 55.44 18.00 308% 

Table 5: Sample speed increases due to change in primary key. 

Once the research workflow is adjusted based on database management administration best 

practices, Hypothesis1 is proven true (Figure 5).  However, the effect of number of records is very 

small compared to the overall processing times with a mean of 16.7 and a standard deviation of 

1.3 minutes (8% of the mean time). This compares with the original run time mean of 56 minutes 

and a standard deviation of 7 minutes or 12% of the average run time. 

Economic and Climate Impact from Compute 

Efficiency 

In the United States alone, data centers consume nearly 2% of the total electricity load (Shehabi 

2016). This computing load is estimated to require 73 billion kWh in 2020. A more aggressive 

estimate pegged US data center consumption at 90 billion kWk per year, which requires the 

equivalent of “requiring roughly 34 giant (500-megawatt) coal-powered plants” (Danilak 2017). 

With the global computing load estimated to be closer to 3% of the world’s electricity supply or 

416 terrawatts, with that consumption doubling every four years, it is critical efficiency factors 

larger into computing plans.  

 

Real impact can be seen in the economic and energy costs saved through compute cycles 

avoided. In this work, simply by using a different primary key in the schema design, ingesting a 

year’s worth of Twitter data in the workflow described would save 19.3 kW or the equivalent of 

CO2 emissions from charging a smartphone 1,740 times or burning 15 pounds (6.8 kg) of coal 

(Table 8) (EPA 2020). For resource savings calculations, the following costs and energy 

consumption statistics were used (Table 6). Costs reflect SDSC external customer rates.  

 

 Size Cost per hour (USD), external rate Watts (w) per hour 

Heron Tweet collection xe.large   

Tweet pre-processing m1.medium $0.116  

Social media database R.1xlarge $0.638 40w 

Storage 1 TB volume $0.00009135/GB/hour or $0.063/TB/hr  

Table 6: SDSC Cloud External Rates and Estimated Power Usage 
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Utility Costs and PUE 

Power/utility costs are based on an average of $0.13/kW/hr.  This is much cheaper than average 

power costs in California (USA) and remains low as the University of California San Diego 

generates 72% of its own electricity; the percentage fluctuates with demand, in summer demand 

is higher and the co-generation percentage is lower. Only requiring a portion of the campus energy 

needs from the local utility insulates the campus from rising and fluctuating costs (UCSD 2020). 

A more accurate way to account for power costs is to multiply the power consumed by the 

individual system by the energy rating of the data center. SDSC has a Power Usage Effectiveness 

(PUE) rating of 1.35. While an imperfect measurement that fails to account for hardware efficiency 

and other factors, it is the industry standard and current best practice for calculating the true cost 

of powering (computer) infrastructure in data centers (Horner 2016). This means for every unit of 

power consumed, it requires an additional 35% to maintain the environment, primarily the cooling 

and other infrastructure that provides a stable environment in a data center. For example, for 

computing equipment sitting in the SDSC data center, for every one kilowatt (kW) of energy 

consumed (per hour) at a rate of $0.13 (€0.12) for utility costs alone, accounting for the added 

load of cooling (PUE of 1.35), the actual cost to consume the 1 kw for one hour is ~$0.18 (€0.16). 

Estimating Power Consumption in Shared Environments 

Power consumption in a shared environment can be difficult to measure, but not impossible to 

estimate. The R.1xlarge cloud node that stores the database is one of ten identical nodes in a 

rack consuming 4kW on average (4kW ÷ 10 nodes = 400w). Of the 400w attributable to the 1U 

node, the R.x1large instance uses 7% of the CPU and 12% of the RAM. The majority of energy 

consumption in the node is attributable to the CPU, but for estimation, one can attribute 

approximately 10% of the 1U node’s power use to the R.x1large instance or 40w (400w ÷ ~10% 

= 40w).  

 

With these values, one can estimate the power savings attributable to the avoided compute cycles 

in the above experiment.  The first savings estimate is based on the experiment run for 18.5 days 

of Twitter data (Table 7).  

 

Sample 18.5 days of social media record ingestion 

Primary 

Key 

Time (hrs) Compute 

Cost 

Storage Power 

(kW) 

Power 

Cost 

Total 

Cost 

Savings kW 

Saved 

Tweet ID 34.4  $21.95  $2.17 1.4  $0.24  $24.36   

Integer 9.91  $6.32  $0.62 0.4  $0.07  $7.02  $17.34 1.0 

Table 7: Economic and power savings based on 18.5 day sample used in the experiment. 

This data was extrapolated to estimate the savings possible from ingesting one year of Twitter 

data (Table 8). A researcher paying for the cloud ingestion of Twitter data could save $342.11 in 

avoided compute costs and 19.3 kW of power usage. 
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Ingestion Costs for one year's worth of Twitter data 

Primary 

Key 

Time (hrs) Compute 

Cost 

Storage Power 

(kW) 

Power 

Cost 

Total 

Cost 

Savings kW 

Saved 

Tweet ID 678.7  $433.02  $42.76 27.1  $4.76  $480.54   

Integer 195.5  $124.74  $12.32 7.8  $1.37  $138.44  $342.11 19.3 

Table 8: Economic and power savings estimated for ingestion using new unique key for one year of Twitter data. 

Further Study 

In the original workflow, the database schema separates users and tweets into two tables, 

whereas these experiments utilized a standard GNIP schema that kept both in one table. It is 

possible that the science drivers and characteristics of data, such as volume, will necessitate 

separating data into multiple tables. In these cases, random integers as keys may not perform as 

well for joins across tables. Further inquiry should be done to see if the findings here can improve 

the ingestion performance for user-defined schemas, especially ingestion across multiple tables. 

 

Several areas of additional study should be investigated. 1. Additional experiments for query times 

using different index types should be tested. These might include indexes based on GIN (rather 

than B-tree), or custom extensions such as VODKA and RUM.  These index types produce faster 

querying when combining complex column types, such as full-text phrase searches (Obe 2017). 

2. Increase memory available on the RAM disk to test until ingestion cannot be improved, to 

attempt to find the true ingestion speed limitation attributable to the underlying, shared storage 

(Ceph file system) reads/writes. It may also be fruitful to assess use of RAM disks versus SSDs, 

especially savings in job time and cost. 3. Adapt this workflow to use with big data technologies 

such as Apache Hive over Hadoop to provide an SQL-like query interface while making use of 

other database architectures, especially those designed for big data needs. With the highest goal 

being increased ‘time to science’ for researchers, it will be important to factor learning curve 

needed to use the new methods into any decreased ingestion processing times. 
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Appendix 

 

I. Schema.sql - Line numbers have been added for use in referencing portions of the 

database schema.   

1. -- https://support.gnip.com/articles/relational-databases-part-4.html 

2. -- 

3. -- https://developer.twitter.com/en/docs/tweets/data-

dictionary/overview/tweet-object.html 

4. -- 

5. CREATE TABLE public.tweet ( 

6.    tweet_created_at timestamp without time zone, 

7.    tweet_id bigint NOT NULL, 

8.    tweet_id_str character varying(80) NOT NULL, 

9.    tweet_text text, 

10.    tweet_source character varying(200), 

11.    tweet_truncated boolean, 

12.    tweet_in_reply_to_status_id bigint, 

13.    tweet_in_reply_to_status_id_str character varying(80), 

14.    tweet_in_reply_to_user_id bigint, 

15.    tweet_in_reply_to_user_id_str character varying(80), 

16.    tweet_in_reply_to_screen_name character varying(80), 

17.    tweet_coordinates jsonb, 

18.    tweet_place jsonb, 

19.    tweet_quoted_status_id bigint, 

20.    tweet_quoted_status_id_str character varying(80), 

21.    tweet_is_quote_status boolean, 

22.    tweet_quoted_status jsonb, 

23.    tweet_retweeted_status jsonb, 

24.    tweet_quote_count integer, 

25.    tweet_reply_count integer, 

26.    tweet_retweet_count integer, 

27.    tweet_favorite_count integer, 

28.    tweet_entities jsonb, 

29.    tweet_extended_entities jsonb, 

30.    tweet_favorited boolean, 

31.    tweet_retweeted boolean, 

32.    tweet_possibly_sensitive boolean, 

33.    tweet_filter_level character varying(80), 

34.    tweet_lang character varying(80), 

35.    tweet_matching_rules jsonb, 

36.    user_id bigint NOT NULL, 

37.    user_id_str character varying(80) NOT NULL, 

38.    user_name character varying(80), 

39.    user_screen_name character varying(80), 

40.    user_location character varying(200), 

41.    user_derived jsonb, 
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42.    user_url character varying(200), 

43.    user_description character varying(400), 

44.    user_protected boolean, 

45.    user_verified boolean, 

46.    user_followers_count integer, 

47.    user_friends_count integer, 

48.    user_listed_count integer, 

49.    user_favourites_count integer, 

50.    user_statuses_count integer, 

51.    user_created_at timestamp without time zone, 

52.    user_profile_banner_url character varying(200), 

53.    user_profile_image_url_https character varying(400), 

54.    user_default_profile boolean, 

55.    user_default_profile_image boolean, 

56.    user_withheld_in_countries jsonb, 

57.    user_withheld_scope character varying(80) 

58. ); 

59. ALTER TABLE public.tweet OWNER TO postgres; 

60. ALTER TABLE ONLY public.tweet ADD CONSTRAINT tweet_id_pk PRIMARY KEY 

(tweet_id); 

61. CREATE UNIQUE INDEX tweet_id_uindex ON public.tweet USING btree (tweet_id); 

62. CREATE INDEX user_id_uindex ON public.tweet USING btree (user_id); 

 

Lines 60-62 were omitted and the following command (line A) was used instead to establish a 

unique, auto-incrementing key instead: 

A.  ALTER TABLE public.tweet ADD COLUMN unique_id SERIAL PRIMARY KEY; 

 

II. Once the data is pre-processed, it is copied into Postgres via this command: 

 

psql -h localhost -U postgres -W --command "\\copy public.tweet (tweet_created_at, 

tweet_id, tweet_id_str, tweet_text, tweet_source, tweet_truncated, 

tweet_in_reply_to_status_id, tweet_in_reply_to_status_id_str, 

tweet_in_reply_to_user_id, tweet_in_reply_to_user_id_str, 

tweet_in_reply_to_screen_name, tweet_coordinates, tweet_place, 

tweet_quoted_status_id, tweet_quoted_status_id_str, tweet_is_quote_status, 

tweet_quoted_status, tweet_retweeted_status, tweet_quote_count, tweet_reply_count, 

tweet_retweet_count, tweet_favorite_count, tweet_entities, tweet_extended_entities, 

tweet_favorited, tweet_retweeted, tweet_possibly_sensitive, tweet_filter_level, 

tweet_lang, tweet_matching_rules, user_id, user_id_str, user_name, 

user_screen_name, user_location, user_derived, user_url, user_description, 

user_protected, user_verified, user_followers_count, user_friends_count, 

user_listed_count, user_favourites_count, user_statuses_count, user_created_at, 

user_profile_banner_url, user_profile_image_url_https, user_default_profile, 

user_default_profile_image, user_withheld_in_countries, user_withheld_scope) FROM 

'tweets_01.csv' DELIMITER ',' CSV QUOTE '|' ESCAPE '''';" 
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III. Processing times in minutes compared to number of records in the database prior to 

ingestion. 

Database Size at Start Minutes to process 

36,197,823 67.43 

38,683,405 48.95 

41,169,195 56.62 

43,655,140 52.79 

46,140,396 56.04 

48,626,048 55.44 

51,112,609 50.36 

53,599,799 43.12 

56,086,810 58.45 

58,573,610 64.49 

61,059,010 57.41 

63,544,592 44.34 

66,030,382 47.58 

68,516,327 54.60 

71,001,583 63.44 

73,487,235 51.57 

75,973,796 54.05 

78,460,807 62.51 

80,947,607 59.46 

83,433,007 64.67 
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IV. Tweet File Properties - the file value ‘5m-04-aa_tsu’ (noise) was replaced with the mean. 

 

 Lines Words Characters File path 

 2486936 786809583 10824051372 5m-01-aa_tsu 

 2485910 795689691 10975190898 5m-01-ab_tsu 

 2491324 801012264 11025300350 5m-02-aa_tsu 

 2462280 804336592 11114944355 5m-02-ab_tsu 

 2478868 792772808 10955904268 5m-03-aa_tsu 

 2482803 789963377 10897665169 5m-03-ab_tsu 

 2486670 785250601 10852532776 5m-04-aa_tsu 

 2486346 797446224 10992026011 5m-04-ab_tsu 

 2488091 788165743 10834386551 5m-05-aa_tsu 

 2486009 803569862 11080499028 5m-05-ab_tsu 

 2485729 798638995 11012317981 5m-06-aa_tsu 

 2490273 809126298 11159784409 5m-06-ab_tsu 

 2484863 798189921 11022828424 5m-07-aa_tsu 

 2490850 797495165 10966756250 5m-07-ab_tsu 

 2491420 809478696 11125317048 5m-08-aa_tsu 

 2490186 813494334 11211124791 5m-08-ab_tsu 

 2490764 803342946 11069546867 5m-09-aa_tsu 

 2492941 784955503 10813646660 5m-09-ab_tsu 

 2492764 779567049 10764980642 5m-10-aa_tsu 

 2491515 767722229 10591648439 5m-10-ab_tsu 

 2488963 776620003 10744376991 5m-11-aa_tsu 

 2488613 774062706 10668983243 5m-11-ab_tsu 

 2486840 778997122 10768461647 5m-12-aa_tsu 
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 Lines Words Characters File path 

 2485790 799528915 11121589728 5m-12-ab_tsu 

 2485894 786902641 10897089656 5m-13-aa_tsu 

 2486275 776148175 10744877440 5m-13-ab_tsu 

 2485582 778103119 10811653953 5m-14-aa_tsu 

 2485790 775665438 10744723541 5m-14-ab_tsu 

 2485945 764885657 10590187671 5m-15-aa_tsu 

 2485256 767570466 10642572188 5m-15-ab_tsu 

 2485652 764226177 10579847378 5m-16-aa_tsu 

 2486561 776609695 10772911505 5m-16-ab_tsu 

 2487190 770373893 10752641276 5m-17-aa_tsu 

 2487011 769483994 10687158844 5m-17-ab_tsu 

 2486800 760236270 10553747791 5m-18-aa_tsu 

 2485400 742579488 10319904796 5m-18-ab_tsu  

 2486670 785250601 10852532776 5m-19-aa_tsu 

Mean 2486670 785250601 10852532776  

STDEV  15807704.3 197550714  

STDEV % from Mean 2% 2%  

  



Kirkpatrick 21 

Works Cited 

 

Aggarwal, Charu C. Data mining: the textbook. Springer (2015). 

 

Andrade, E., Nogueira, B. Performability Evaluation of a Cloud-Based Disaster Recovery 

Solution for IT Environments. J Grid Computing 17, 603–621 (2019). 

https://doi.org/10.1007/s10723-018-9446-2 

 

Barberá, Pablo, and Zachary C. Steinert-Threlkeld. "Social media as data generators." 

http://www.luigicurini.com/uploads/6/7/9/8/67985527/pb-zst-chapter.pdf Accessed 14 January 

2020. 2019.  Forthcoming in Curini, L., and Franzese, R. (eds) The SAGE Handbook of 

Research Methods in Political Science and International Relations, London: Sage (2019). 

 

Beloglazov, Anton, Jemal Abawajy, Rajkumar Buyya.  Energy-aware resource allocation 

heuristics for efficient management of data centers for Cloud computing. Future Generation 

Computer Systems, Volume 28, Issue 5, (2012). Pages 755-768, ISSN 0167-739X, 

https://doi.org/10.1016/j.future.2011.04.017. 

 

Benbow, Nanette, Christine Kirkpatrick, Amarnath Gupta, Sean Young, and interested health 

officials. “A Mixed-Methods Iterative Process of Integrating and Developing Big Data Modeling 

and Visualization Tools for Public Health Officials.” SAGE Case Study (Submitted June 2019, 

under review). 

 

Borodin, Andrey, et al. "Optimization of memory operations in generalized search trees of 

PostgreSQL." International Conference: Beyond Databases, Architectures and Structures. 

Springer, Cham (2017). 

 

Ceph. https://ceph.io/  Accessed 15 January 2020. 

 

CloudSim. Cloud Computing and Distributed Systems (CLOUDS) Laboratory, University of 

Melbourne. http://www.cloudbus.org/cloudsim/ Accessed 2 February 2020. 

 

Danilak, Radoslav. “Why Energy Is A Big And Rapidly Growing Problem For Data Centers.” 

Forbes. 15 December 2017. https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-

energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#22e754395a30 . Accessed 2 

February 2020. 

 

Environmental Protection Agency (EPA) Greenhouse Gas Equivalencies Calculator.    

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator Accessed 11 January 

2020. 

 

Erradi, Abdelkarim, and Yaser Mansouri. "Online cost optimization algorithms for tiered cloud 

storage services." Journal of Systems and Software 160 (2020): 110457. 

http://www.luigicurini.com/uploads/6/7/9/8/67985527/pb-zst-chapter.pdf
https://ceph.io/
http://www.cloudbus.org/cloudsim/
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#22e754395a30
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#22e754395a30
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator


Kirkpatrick 22 

 

Filliez, Jeff.  Interview regarding power consumption in the San Diego Supercomputer Center’s 

data center.  (2020). 

 

Geschwinde, Ewald, and Hans-Jürgen Schönig. PostgreSQL developer's handbook. Sams 

Publishing (2002). 

 

Graphite. https://graphiteapp.org/ Accessed 11 January 2020. 

 

Grover, Raman, and Michael J. Carey. "Data Ingestion in AsterixDB." EDBT (2015). 

 

Guo, Junan, Subhasis Dasgupta, and Amarnath Gupta.  “Multi-Model Investigative Exploration 

of Social Media Data with boutique: A Case Study in Public Health.” (Submitted on 24 May 

2019). arXiv:1905.10482 [cs.DB] 

 

Homer, Alex, John Sharp, Larry Brader, Masashi Narumoto, and Trent Swanson. Cloud Design 

Patterns: Prescriptive Architecture Guidance for Cloud Applications. Microsoft patterns & 

practices (2014). 

 

Horner, Nathaniel, and Ines Azevedo. "Power usage effectiveness in data centers: overloaded 

and underachieving." The Electricity Journal 29.4 (2016): 61-69. 

 

Neo4J.  https://neo4j.com/.  Accessed 14 January 2020. 

 

Obe, Regina O., and Leo S. Hsu. PostgreSQL: Up and Running: a Practical Guide to the 

Advanced Open Source Database. " O'Reilly Media, Inc." (2017). 

 

Oliveira, Danilo, et al. "Performability evaluation and optimization of workflow applications in 

cloud environments." Journal of Grid Computing 17.4 (2019): 749-770. 

 

Oracle MySQL.  https://www.mysql.com/  Accessed 15 January 2020. 

 

PostgreSQL. The PostgreSQL Global Development Group, https://www.postgresql.org/. 

Accessed 15 January 2020. 

 

SDSC Cloud. https://www.sdsc.edu/services/ci/cloud.html Accessed 11 January 2020. 

 

Sefraoui, Omar, Mohammed Aissaoui, and Mohsine Eleuldj. "OpenStack: toward an open-

source solution for cloud computing." International Journal of Computer Applications 55.3 

(2012): 38-42. 

 

Shehabi, Arman, et al. United states data center energy usage report. No. LBNL-1005775. 

Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), (2016). 

 

https://graphiteapp.org/
https://arxiv.org/abs/1905.10482
https://neo4j.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.sdsc.edu/services/ci/cloud.html


Kirkpatrick 23 

Solr. Apache Solr. https://lucene.apache.org/solr/ Accessed 14 January 2020. 

Steinert-Threlkeld, Zachary C. "Spontaneous collective action: Peripheral mobilization during 

the Arab Spring." American Political Science Review 111.2 (2017): 379-403. 

 

Stonebraker, Michael, and Greg Kemnitz. "The POSTGRES next generation database 

management system." Communications of the ACM 34.10 (1991): 78-92. 

 

Swift, OpenStack Object Storage. https://wiki.openstack.org/wiki/Swift Accessed 11 January 

2020. 

 

UCSD.  “Clean Energy.” Sustainability. http://sustainability.ucsd.edu/focus/energy.html  

Accessed 11 January 2020. 

 

Weil, Sage A., et al. "Ceph: A scalable, high-performance distributed file system." Proceedings 

of the 7th symposium on Operating systems design and implementation. USENIX Association, 

(2006). 

 

Zheng, Xiuwen, Qiyu Liu, and Amarnath Gupta. "Scalable Community Detection over Geo-

Social Network." arXiv preprint arXiv:1906.05505 (2019). 

 

Note: some text from “Related Work” was previously used in C. Kirkpatrick’s PhD Work Plan 

Application. 

 

https://lucene.apache.org/solr/
https://wiki.openstack.org/wiki/Swift
http://sustainability.ucsd.edu/focus/energy.html

