

DATA MINING I:
Utilizing Database Architecture and Data Cleaning to
Increase ‘Time to Science’ and Decrease Resources Needed
in Research Data Science Workflows

3 February 2020

Christine R. Kirkpatrick

Department of Computer Science, School of Sciences of University of Porto, Portugal and
San Diego Supercomputer Center, University of California San Diego, USA

Kirkpatrick 1

Table of Contents

Abstract.. 2

Background .. 2

Twitter as a Multipurpose Dataset for Many Research Domains ... 2

Related Work .. 3

Specific Challenge Examined ... 4

Description of the Workflow Studied ... 4

Shared Resources and Cloud Computing Introduce New Complications for Diagnosing

Bottlenecks ... 5

Experimentation ... 7

Suspected Causes of Data Ingestion Slowness and Failure ... 7

Exploration and Experimentation to Speed Up Ingestion .. 7

Database Size in Records ... 7

Shared Resources and the File System .. 7

Data Characteristics .. 9

Data Pre-processing ... 9

Data Schema and Index Type ..10

Hypothesis3 and Revisiting Hypothesis1 ...10

Economic and Climate Impact from Compute Efficiency ...13

Utility Costs and PUE ..14

Estimating Power Consumption in Shared Environments ..14

Further Study ..15

Acknowledgements ...15

Appendix ...16

Works Cited ..21

Kirkpatrick 2

Utilizing Database Architecture to Decrease Resource

Utilization in Research Data Science Workflows

Abstract

In this work, one research workflow was studied to pinpoint the greatest impediment for ‘time to

science’ or the amount of time before the user (a researcher) could begin their work. The database

ingestion portion of a research workflow was slow enough that researchers were limiting the data

studied, rather than waiting for the full dataset requested to become available. This research

workflow utilized data available via Twitter’s API for several use cases from public health to

computational social science. Several areas for potential speed up of record ingestion were

studied, including the shared cloud resources and the data’s characteristics. After examining

shared file system load and looking for differences in the individual ingestion files, the presence

of duplicate tweets emerged as a major complication. When the primary key was changed from

the source record ID, in this case the tweet ID, to a unique auto-incrementing integer, ingestion

time sped up 350%. Computing optimizations equate to savings in cost and energy usage. To

ingest a year of the ‘1% feed’ Twitter data, this time savings translates to $342.11 (€307.65) in

cloud cost savings and 19.3 kW in energy savings or the equivalent of CO2 emissions from

charging a smartphone 1,740 times or burning 15 pounds (6.8 kg) of coal.

Background

Putting large-scale/big data into a relational database is time consuming. While other approaches

exist for collecting and querying data, many researchers are not ready for the paradigm shift away

from SQL and structured data. Ingestion into a relational database is resource (time) prohibitive

and limits the time scientists have for analysis and inquiry. Researchers must wait for the data to

be ready and often reframe research questions to require less data – or draw conclusions based

on much smaller data sample sizes. An overarching goal of this research is to speed up

researchers’ ‘time to science’ or rather, decrease the amount of time spent getting data ready and

compute environments configured before inquiry can begin. Decreasing the use of resources

needed to accomplish the same analysis holds the potential to save researchers’ limited funds,

as well as to contribute to decreasing computing’s climate impact.

Twitter as a Multipurpose Dataset for Many Research Domains

Social media datasets, such as can be obtained from Twitter using the free 1% API feed, provide

data and computer scientists with a versatile resource for testing different techniques, such as

clustering and topic modeling. Scientists and their lab staff are often most familiar with relational

databases and SQL, preferring to use databases such as MySQL and PostgreSQL (Oracle 2020,

PostgreSQL 2020). The same datasets can be converted for use in specific-purpose database

platforms, such as Solr for text mining, and Neo4J for graphs (Solr 2020, Neo4J 2020).

Kirkpatrick 3

Twitter data was selected for its usefulness in several domains. Political scientists query Twitter

datasets to look for co-occurring keywords to detect relationships of concepts over time, as well

as to build graphs to detect network development and influence (Zheng 2019, Steinert-Threlkeld

2019). Twitter is useful in public health to augment (public health) surveillance systems that may

only release data annually; Twitter data can provide timely insight into aggregate behavioral

trends such as unsafe sex or drug use (Benbow 2019, Guo 2019).

Its high degree of spatial and temporal granularity allows the study of behavior at low

levels of aggregation but also at a more macro scale and from a comparative perspective.

The fact that human behavior is observed unobtrusively also facilitates collecting data at

a larger scale and reduces certain types of biases (Barberá 2019).

Across projects requiring even short period samples (days) of social media data, the time to ingest

or copy already available data into a database is the most time-consuming portion of the workflow

and an impediment to its intended use by the data science or domain study that requires the data

resource. The San Diego Supercomputer Center (SDSC) has been collecting tweets for its data

scientists for various applications since 2018 and has over 15 billion tweets (records) in their

native (file) format, stored in a cloud bucket (object store). At 700GB uncompressed, the tweets

can’t be loaded onto a single system using open source software. Despite having data available

for analysis, it is a constant challenge to make the data available in a form that can be queried

and is useful to researchers.

Related Work

Recent publications such as Oliviera examine how moving scientific workflows to the cloud bring

complexity, especially as it relates to predicting failures. “The complexity of cloud infrastructures

(i.e., the large number of hardware and software components and their interdependence

relationships) raises the need for performance evaluation methods that consider the failure of

components” (2019). Because of the complexity and cost and time constraints for testing many

permutations and variations of configuration, state-based models are often used for performance

evaluation, e.g. Stochastic petri nets. Gathering job characteristics such as “response time,

throughput, availability” can be a path to finding appropriate cloud architectures (Andrade 2019).

Where such literature shows a gap is in skipping optimization to focus on the performance and

dependability of well-defined information technology (IT) loads. Much of the experimentation in

the literature is making use of simulators, notably CloudSim, rather than experimentation based

on real world tests or validated using worked examples (Oliviera 2019, Erradi 2020, CloudSim

2020). Further the focus on cost optimization is not always aligned with saving power or computing

cycles. At the San Diego Supercomputer Center, compute-intensive racks, such as for high

performance computing (HPC) average 12 kilowatt hours (kWh) per 48u rack versus the average

of 4 kWh for non-HPC, and often far less for storage only racks (Filliez 2020). Storage can be the

costliest element in a commercial cloud bill, which in turn can add complexity to a workflow, such

as in trying to move data between archival (cheaper) storage and any kind of ‘hot’ or spinning disk

storage, so that at any one moment, only the data being computed is on spinning disks (Erradi

2020).

Kirkpatrick 4

There is a gap in the literature concerning cloud use for research data science loads. Much

research has been done to optimize workloads where the parameters are unchanging, such as

persistent virtual machines that host databases with very small add/delete/update queries. It is

understandable that much attention is paid to industry loads because of the monetary incentive

to save money and/or to speed up processes that will lead to increased revenue, e.g. earlier,

more frequent product shipments (Beloglazov 2012). It is somewhat inconsistent to focus

research on predictable loads given that cloud is inherently unpredictable due to its use of shared,

commodity hardware (Homer 2014).

Concerning the particular workflow studied and its use of PostgreSQL: there are numerous works

concerning PostgreSQL best practices and a large and active user community (Geschwinde

2002, Obe 2017, PostgreSQL 2020). However, none were found to address the optimization

opportunities for users of shared infrastructure, i.e., who lack access to the underlying file system.

Where the literature is helpful in a cloud context, is in regard to memory optimization for

PostgreSQL. Borodin found memory improvements that tripled the speed to copying data into an

index by three (2017). However, the specific recommendation was suggested as an improvement

to PostgreSQL’s code base and not something the user can control. Additional literature review

and matching of database design and schemas should be done as suggested by additional

workflows and bottlenecks related to interaction with database management systems (DBMS).

Specific Challenge Examined

The workflow analyzed begins with obtaining Twitter data from the Twitter API and ends with a

populated PostgreSQL database ready for querying. With historical Twitter data available on the

local cloud already, a common task is to create a new database with a sample of x months of

tweets. Scientists would prefer more data, at least a year’s worth, but at current processing

speeds it was time prohibitive: taking over 28 days just to copy available data on the same 10GB

network into a database - and often much longer because of duplicate records that would cause

data ingestion to fail. Data ingestion was found to be one of the workflow’s significant bottlenecks.

Description of the Workflow Studied

The workflow chosen for examination creates an open source relational database using data

captured from a Twitter stream. This is accomplished in three distinct steps. Cloud instance sizes

discussed refer to specific templates used to configure cloud resources. Table 1 summarizes

relevant resource differences between instance types mentioned.

1. Data Capture - an xe.large instance utilizes Apache Heron, Twitter’s open source

streaming service for capturing large amounts of data. A Twitter key authenticates the API

calls from Heron. Heron obtains the tweets from Twitter in JSON format, stores them on

a RAM disk, and periodically writes the records to a compressed .zip file. The files are first

stored locally on the cloud instance. Each hour a new file is created and the previous one

is uploaded to OpenStack Swift via Swift’s native protocol (similar to, but not S3) (Swift

Kirkpatrick 5

2020). Each one hour file is approximately 200 MB and contains 2.5 million tweets

(records).

2. Data pre-processing - a constant issue is the occurrence of duplicate records. In the

current workflow, the tweet IDs are used as unique keys. The presence of duplicate

records will cause the individual file to fail when it is attempted to copy a record with a

duplicate primary key into the table. It was assumed that Heron was introducing the

duplicate records, so a short Java program was written to capture the Twitter feed instead.

This appears to have corrected the issue going forward, however, duplicates still remain

in the large number of tweets collected already. The current workflow design transforms

the JSON into CSV that matches the database schema (see Appendix I).

3. Ingestion (DBMS Schema /copy/insert) - The database schema used is from GNIP (see

Appendix I) and combined two schemas: one for activities (tweets) and one for actors

(users). This was compared against Twitter’s object data dictionary, and “tweet” and “user”

were later added. In the time since the data collection began, Twitter doubled the number

of characters per tweet and added an additional field with the data above 140 characters.

This made it necessary to combine the two text fields from newer, longer tweets into one

field for easier analysis. Once the data is pre-processed, it is copied into PostgreSQL via

a copy command (Appendix II). Each hour or ~2.5 million records are copied in a batch.

A shell script controls the serial batching of data ingestion.

It should be noted that in the original workflow, a custom schema was used that kept the

tweets and users in two separate tables. The GNIP schema was employed for testing in

an attempt to limit complications from user customizations.

Shared Resources and Cloud Computing Introduce New

Complications for Diagnosing Bottlenecks

The workflow examined runs on SDSC Cloud, a private cloud based on OpenStack (SDSC

Cloud). OpenStack is an open source software project that allows for hosting infrastructure as a

service (IaaS) style compute and storage instances, similar but much more simplistic than

Amazon Web Services (AWS) or Google Cloud Platform (GCP) (Sefraoui 2012). The relative

simplicity of billing and limited menu of services can be welcome features for scientists doing

grant-funded research who find commercial cloud’s options and billing complexity vexing.

SDSC Cloud is a shared resource. Every attempt was made to isolate the processing times

although the underlying storage and networking infrastructure is shared by the entire SDSC

Cloud. The workflow utilizes three cloud instances, all with 20 GB of storage for the operating

system (Table 1). The cloud instances use attached block storage managed by Ceph with 3 copy

replication (Weil). Ceph is set up with a 5:1 ratio of spinning hard disks (HDDs) to solid state

drives (SSDs). The tweets are stored on in object store using OpenStack Swift (Swift). The object

store is configured to store three copies and can be accessed via an S3 API.

Kirkpatrick 6

 Size vCPUs RAM Storage

Heron Tweet collection xe.large 2 64 GB (32 of 64 as a RAM disk) S3 bucket

Tweet pre-processing m1.medium 1 40GB

Social media database R.1xlarge 4 32 GB 1 TB block

Table 1: Cloud instances utilized in the workflow studied.

The database utilized is PostgreSQL (Stonebreaker 1991). It was chosen because it is open

source, has a wide user base, and is relatively stable. Prior to PostgreSQL, Apache AsterixDB

was used, an open source DBMS designed for big data needs (Grover 2015). While it excels at

ingestion of real-time data streams, it was relatively new and undergoing frequent overhauls;

features were not always stable between releases, leading to the need to reload data. As well,

storage of the raw data was appealing, rather than ingestion straight into AsterixDB, as the data

could be imported into other types of DBMS. It was decided to convert to a more stable DBMS

that the research computing team had considerable experience using.

The schema used is a sample database schema provided by GNIP, the company owned by

Twitter that manages the Twitter API and data dictionary (see Appendix I for schema details). As

with many modern DBMS’s, Postgres uses a B+- tree index which allows for flexibility in

supporting different types of queries including equality and range (Stonebreaker 1991). Aside

from database tuning, performance is related to the I/0, CPU, and the underlying file system

(Geschwinde 2002). However, much of the advice in the literature is not applicable to cloud-based

implementations as researchers do not gain access to the configuration of the shared file system.

In today’s IT structures where analysts specialize in systems management or database

management (but rarely both), tuning a system for the DBMS requires careful cooperation and

shared knowledge; the systems person should possess basic database knowledge, and database

administrators (DBAs) should understand the system they rely on.

Memory is another key resource, which in a cloud environment can be controlled by the user.

Cloud users can create RAM disks out of the memory allocated. For the workflow studied, a RAM

disk was created for the cloud instance running the data import from Twitter. Of 64 GB of memory

allocated to the instance, half (32GB) was used as a RAM disk that performed at roughly twice

the speed of a regular spinning disk or hard (disk) drive (HDD). While a powerful technique for

storing data before writing to a file, the RAM disk did not appear applicable to the bottleneck

examined. Future study should include use of solid state drives (SSDs) in cloud architectures.

SSDs are in use in the underlying cloud nodes and storage subsystems of SDSC Cloud.

However, dedicated SSDs are not currently available to SDSC Cloud users. This is due to the

limitation in allocation. SSDs must be allocated by the size of the physical resource and can’t be

shared. For example, a 1 TB SSD must be allocated as 1 TB, even if the cloud instance only

needs 100GB or 10% of the available resource.

Kirkpatrick 7

Experimentation

Suspected Causes of Data Ingestion Slowness and Failure

The data scientists using the system believed the ingestion was related to the size of the database

and that more resources, such as added memory or CPUs, might speed up processing times:

Hypothesis1 - Ingestion time increases as the database grows in size. Because of the issue with

duplicate records causing the processing of individual files to hang or fail, this led to the

supposition that locating and omitting duplicate records prior to ingestion might speed processing:

Hypothesis2 - Ingestion time can be decreased through data preprocessing. Aside from the first

two hypotheses, it seemed prudent to ensure that best practices were being followed for the

specific DBMS: Hypothesis3 - Ingestion can be sped up by implementing best practices related

to record inserts and updates for the specific DBMS.

Exploration and Experimentation to Speed Up Ingestion

Database Size in Records

Hypothesis1, is that ingestion time increases as the database grows in size. Using the research

workflow with no adjustments, the ingestion was re-run. Sample processing times for a database

that already contains 33M records, as it grows to 100M records was analyzed and show to vary

widely (Appendix III). Given the relative homogeneity of the individual files (in number of records

Figure 1: Sample ingestion times given database size in records.

and data type), it became unclear how the run times could range from 43 - 67 minutes for the

same amount of data. It showed no correlation (R2 of .015) between the number of records in the

database and ingestion times (Figure 1).

Shared Resources and the File System

Shared infrastructure load was another area to investigate. This exposed that previous ingestion

job logs were not capturing the timestamp for when the individual files were either started or

completed, making it difficult to look for correlations between the processing times and shared

Kirkpatrick 8

system load. The ingestion script was augmented to include timestamps per file processed going

forward. The resource that seemed most variable and likely to impact performance based on the

literature review is the shared file system, based on Ceph (Ceph 2020). Looking at samples of

load in Ceph logs viewed via Graphite, a log visualization platform, there were no immediate

patterns that correlated to the variability in ingestion times (Graphite 2020). This was set aside as

a place to investigate further once the ingestion logs had timestamps to match with Ceph load

levels.

Once the experiment with timestamped jobs was available, it showed no discernible pattern

between processing times and Ceph load as expressed in reads or writes (by bytes per second)

(Figure 2). Ceph logs were converted from PST to UTC to align with ingest job timestamps. Ceph

Figure 2: Sample of Ceph block storage activity. All OpenStack cloud instances share this storage resource.
Top line shows reads, bottom line shows writes. Plotted numbers denote the end of jobs in minutes.

reads by bytes per second appear to be very flat, with a few small fluctuations only a few times

per day. The scale of the visualization when viewed with writes is confusing and suggests an

inaccurate trend. Reads are not as variable as writes, but the STDEV is 18% of the mean value.

Both reads and writes have high variability (Table 2). Initially writes appeared to have four data

points that were outliers, as seen in the high spikes on the bottom (green) line in Figure 2.

However, even with the four data points removed, the variability is high or 45% of the mean value

(Table 2).

 Writes (with outliers removed) Writes (raw) Reads

Mean 18,799,954 22,726,801.95 544,754,417

STDEV 8,456,525 23,998,263.25 96,574,868

% of Mean 45% 106% 18%

Table 2: Variability in Read/Writes per bytes per second in the Ceph file system.

Kirkpatrick 9

Even so, the high ingestion times don’t always correspond with file system load. For example, the

ingest time of 96 minutes comes just after a period of high write load. However, other high ingest

times correspond to relatively low load. More study is needed to adequately attribute ingest times

to file system load.

Data Characteristics

Another point of inquiry was to verify that the individual data files ingested were dissimilar enough

to account for the processing variability. Each 2.5 million records file was analyzed for word and

character counts. Because of an issue with one file processed, the result was a missing or

incomplete value. This represented noise in the data, not an outlier (Aggarwal 2015). After

normalizing the data, the underlying trend was more easily seen (see Appendix IV); the standard

deviation in the tens and hundreds of millions looked large but was actually very small relative to

the values’ range: only 2% of the mean value. Looking at differences between words and

characters did not reveal anything unexpected. The correlation between words and characters

was very similar between files and fit a predictable relationship with an R2 of .97 (Figure 3).

Figure 3: Characters per file were directly correlated to the number of words.

Data Pre-processing

With no obvious source for the ingestion time variability, attention was turned to preprocessing,

Hypothesis2 - Ingestion time can be decreased through data preprocessing. This hypothesis was

investigated by the research computing developer on the team. As noted in the workflow

description, duplicate tweets were found in many of the uncompressed .zip files. The developer

had already tested pre-processing the tweet files to find and remove duplicates. However, at 2.5

million lines per file, just loading the file in any editor or running a command against it, was very

time consuming. The anecdotal report was that the pre-processing took as much time as it saved

on ingestion, rendering it a moot solution unless pre-processing was parallelized. This requires

significant expertise and time investment to set up. Pre-processing experimentation was set aside

in favor of other potential experiments.

Kirkpatrick 10

Data Schema and Index Type

Though best practices on data insert was a favored hypothesis (Hypothesis3), with the

information that pre-processing or ‘hitting’ duplicate keys on ingestion was time intensive in this

workflow, a new experiment was designed to avoid the duplicate tweet issue altogether. Rather

than use the tweet ID as a unique key, an additional field could be added to act as the unique ID.

Recent versions of PostgreSQL have a feature for a field to be an auto-incrementing integer. The

database was recreated using the GNIP schema (see Appendix I), but the last three lines (60-

62):

60. ALTER TABLE ONLY public.tweet ADD CONSTRAINT tweet_id_pk PRIMARY KEY (tweet_id);

61. CREATE UNIQUE INDEX tweet_id_uindex ON public.tweet USING btree (tweet_id);

62. CREATE INDEX user_id_uindex ON public.tweet USING btree (user_id);

were replaced by a line that creates a primary key that is an incrementing integer:

 ALTER TABLE public.tweet ADD COLUMN unique_id SERIAL PRIMARY KEY

Hypothesis3 and Revisiting Hypothesis1

Upon dropping the constraint of a unique key based on the tweet ID, and replacing the primary

key with a unique, auto-incrementing integer, there was a remarkable decrease in processing

times (Table 3, Figure 4). One file only processed 1.4 million records and skewed results when

included; this data was normalized by replacing the data noise with the mean value. Further

investigation into what caused the ingest to fail before the file was complete showed a missing

escape character to close a record. Data pre-processing includes searching for missing escape

characters, but it was unsuccessful in this particular instance. The pre-processing script should

be verified, as well as additional work on the ingestion script to allow for skipping lines with errors

and finishing the file.

Lines/Records Records at

Processing

Start

Minutes to

process

2486936 0 15.62

2485910 2,486,936 14.87

2491324 4,972,846 15.76

2462280 7,464,170 15.23

2478868 9,926,450 16.36

2482803 12,405,318 16.57

1411266 14,888,121 9.45

Kirkpatrick 11

Lines/Records Records at

Processing

Start

Minutes to

process

2486346 16,299,387 16.17

2488091 18,785,733 17.95

2486009 21,273,824 17.82

2485729 23,759,833 18.96

2490273 26,245,562 18.11

Table 3: Sample of processing times by number of database records and lines or records per file processed.

Even with the outlier time included, a new trend emerges (Figure 4). There is a slight trend towards

higher processing times as the database size grows, with an R2 of .175.

Figure 4: Processing times by records in the database prior to ingestion with the data noise included.

When the data is normalized and the mean value inserted for processing time (16.67 minutes)

and number of lines (2,484,052 records) in its place, the correlation is even clearer (Table 4,

Figure 5). The processing times show a correlation to records in the database, R2 = .82.

Records at

Processing Start

Minutes to

process

0 15.62

2,486,936 14.87

4,972,846 15.76

7,464,170 15.23

9,926,450 16.36

Kirkpatrick 12

Records at

Processing Start

Minutes to

process

12,405,318 16.57

14,888,121 16.67

17,372,173 16.17

19,858,519 17.95

22,346,610 17.82

24,832,619 18.96

27,318,348 18.11

Table 4: Normalized data, omitting noise

Figure 5: Times to process based on records at ingestion.

In the original workflow, to ingest 18.5 days of data it took 34.4 hours. With the simple change of

primary key prior to data copy, the same period of data took 9.91 hours to copy into the database,

or about 3.5 times faster. Examining sample speed increases between experiments, shows that

the change in key value is responsible consistently for 230-330% increases (Table 5). The savings

in cost and energy is significant, especially knowing that this sample is representative of activity

that runs year-round on SDSC Cloud.

Database

Size at Start

Minutes to

process

w/o Tweet ID

as Primary Key

% Time

Improvement

36,197,823 67.43 23.04 293%

38,683,405 48.95 19.04 257%

41,169,195 56.62 18.88 300%

Kirkpatrick 13

Database

Size at Start

Minutes to

process

w/o Tweet ID

as Primary Key

% Time

Improvement

43,655,140 52.79 22.78 232%

46,140,396 56.04 17.09 328%

48,626,048 55.44 18.00 308%

Table 5: Sample speed increases due to change in primary key.

Once the research workflow is adjusted based on database management administration best

practices, Hypothesis1 is proven true (Figure 5). However, the effect of number of records is very

small compared to the overall processing times with a mean of 16.7 and a standard deviation of

1.3 minutes (8% of the mean time). This compares with the original run time mean of 56 minutes

and a standard deviation of 7 minutes or 12% of the average run time.

Economic and Climate Impact from Compute

Efficiency

In the United States alone, data centers consume nearly 2% of the total electricity load (Shehabi

2016). This computing load is estimated to require 73 billion kWh in 2020. A more aggressive

estimate pegged US data center consumption at 90 billion kWk per year, which requires the

equivalent of “requiring roughly 34 giant (500-megawatt) coal-powered plants” (Danilak 2017).

With the global computing load estimated to be closer to 3% of the world’s electricity supply or

416 terrawatts, with that consumption doubling every four years, it is critical efficiency factors

larger into computing plans.

Real impact can be seen in the economic and energy costs saved through compute cycles

avoided. In this work, simply by using a different primary key in the schema design, ingesting a

year’s worth of Twitter data in the workflow described would save 19.3 kW or the equivalent of

CO2 emissions from charging a smartphone 1,740 times or burning 15 pounds (6.8 kg) of coal

(Table 8) (EPA 2020). For resource savings calculations, the following costs and energy

consumption statistics were used (Table 6). Costs reflect SDSC external customer rates.

 Size Cost per hour (USD), external rate Watts (w) per hour

Heron Tweet collection xe.large

Tweet pre-processing m1.medium $0.116

Social media database R.1xlarge $0.638 40w

Storage 1 TB volume $0.00009135/GB/hour or $0.063/TB/hr

Table 6: SDSC Cloud External Rates and Estimated Power Usage

Kirkpatrick 14

Utility Costs and PUE

Power/utility costs are based on an average of $0.13/kW/hr. This is much cheaper than average

power costs in California (USA) and remains low as the University of California San Diego

generates 72% of its own electricity; the percentage fluctuates with demand, in summer demand

is higher and the co-generation percentage is lower. Only requiring a portion of the campus energy

needs from the local utility insulates the campus from rising and fluctuating costs (UCSD 2020).

A more accurate way to account for power costs is to multiply the power consumed by the

individual system by the energy rating of the data center. SDSC has a Power Usage Effectiveness

(PUE) rating of 1.35. While an imperfect measurement that fails to account for hardware efficiency

and other factors, it is the industry standard and current best practice for calculating the true cost

of powering (computer) infrastructure in data centers (Horner 2016). This means for every unit of

power consumed, it requires an additional 35% to maintain the environment, primarily the cooling

and other infrastructure that provides a stable environment in a data center. For example, for

computing equipment sitting in the SDSC data center, for every one kilowatt (kW) of energy

consumed (per hour) at a rate of $0.13 (€0.12) for utility costs alone, accounting for the added

load of cooling (PUE of 1.35), the actual cost to consume the 1 kw for one hour is ~$0.18 (€0.16).

Estimating Power Consumption in Shared Environments

Power consumption in a shared environment can be difficult to measure, but not impossible to

estimate. The R.1xlarge cloud node that stores the database is one of ten identical nodes in a

rack consuming 4kW on average (4kW ÷ 10 nodes = 400w). Of the 400w attributable to the 1U

node, the R.x1large instance uses 7% of the CPU and 12% of the RAM. The majority of energy

consumption in the node is attributable to the CPU, but for estimation, one can attribute

approximately 10% of the 1U node’s power use to the R.x1large instance or 40w (400w ÷ ~10%

= 40w).

With these values, one can estimate the power savings attributable to the avoided compute cycles

in the above experiment. The first savings estimate is based on the experiment run for 18.5 days

of Twitter data (Table 7).

Sample 18.5 days of social media record ingestion

Primary

Key

Time (hrs) Compute

Cost

Storage Power

(kW)

Power

Cost

Total

Cost

Savings kW

Saved

Tweet ID 34.4 $21.95 $2.17 1.4 $0.24 $24.36

Integer 9.91 $6.32 $0.62 0.4 $0.07 $7.02 $17.34 1.0

Table 7: Economic and power savings based on 18.5 day sample used in the experiment.

This data was extrapolated to estimate the savings possible from ingesting one year of Twitter

data (Table 8). A researcher paying for the cloud ingestion of Twitter data could save $342.11 in

avoided compute costs and 19.3 kW of power usage.

Kirkpatrick 15

Ingestion Costs for one year's worth of Twitter data

Primary

Key

Time (hrs) Compute

Cost

Storage Power

(kW)

Power

Cost

Total

Cost

Savings kW

Saved

Tweet ID 678.7 $433.02 $42.76 27.1 $4.76 $480.54

Integer 195.5 $124.74 $12.32 7.8 $1.37 $138.44 $342.11 19.3

Table 8: Economic and power savings estimated for ingestion using new unique key for one year of Twitter data.

Further Study

In the original workflow, the database schema separates users and tweets into two tables,

whereas these experiments utilized a standard GNIP schema that kept both in one table. It is

possible that the science drivers and characteristics of data, such as volume, will necessitate

separating data into multiple tables. In these cases, random integers as keys may not perform as

well for joins across tables. Further inquiry should be done to see if the findings here can improve

the ingestion performance for user-defined schemas, especially ingestion across multiple tables.

Several areas of additional study should be investigated. 1. Additional experiments for query times

using different index types should be tested. These might include indexes based on GIN (rather

than B-tree), or custom extensions such as VODKA and RUM. These index types produce faster

querying when combining complex column types, such as full-text phrase searches (Obe 2017).

2. Increase memory available on the RAM disk to test until ingestion cannot be improved, to

attempt to find the true ingestion speed limitation attributable to the underlying, shared storage

(Ceph file system) reads/writes. It may also be fruitful to assess use of RAM disks versus SSDs,

especially savings in job time and cost. 3. Adapt this workflow to use with big data technologies

such as Apache Hive over Hadoop to provide an SQL-like query interface while making use of

other database architectures, especially those designed for big data needs. With the highest goal

being increased ‘time to science’ for researchers, it will be important to factor learning curve

needed to use the new methods into any decreased ingestion processing times.

Acknowledgements

This work would not have been possible without my advisor, Dr. Ines Dutra, and the support of

SDSC’s Director, Dr. Mike Norman. Kevin Coakley and Colby Walsworth were instrumental in

making cloud resources available, for providing access to underlying cloud logs, and suggestions

on DBMS best practices. Kevin Coakley provided the workflow and scripts related to the Twitter

workflow documented here and made improvements to the workflow that were suggested through

our interviews and work together. Drs. Amarnath Gupta and Subhasis Dasgupta provided the

use case for the workflow and were interviewed for this work.

Kirkpatrick 16

Appendix

I. Schema.sql - Line numbers have been added for use in referencing portions of the

database schema.

1. -- https://support.gnip.com/articles/relational-databases-part-4.html

2. --

3. -- https://developer.twitter.com/en/docs/tweets/data-

dictionary/overview/tweet-object.html

4. --

5. CREATE TABLE public.tweet (

6. tweet_created_at timestamp without time zone,

7. tweet_id bigint NOT NULL,

8. tweet_id_str character varying(80) NOT NULL,

9. tweet_text text,

10. tweet_source character varying(200),

11. tweet_truncated boolean,

12. tweet_in_reply_to_status_id bigint,

13. tweet_in_reply_to_status_id_str character varying(80),

14. tweet_in_reply_to_user_id bigint,

15. tweet_in_reply_to_user_id_str character varying(80),

16. tweet_in_reply_to_screen_name character varying(80),

17. tweet_coordinates jsonb,

18. tweet_place jsonb,

19. tweet_quoted_status_id bigint,

20. tweet_quoted_status_id_str character varying(80),

21. tweet_is_quote_status boolean,

22. tweet_quoted_status jsonb,

23. tweet_retweeted_status jsonb,

24. tweet_quote_count integer,

25. tweet_reply_count integer,

26. tweet_retweet_count integer,

27. tweet_favorite_count integer,

28. tweet_entities jsonb,

29. tweet_extended_entities jsonb,

30. tweet_favorited boolean,

31. tweet_retweeted boolean,

32. tweet_possibly_sensitive boolean,

33. tweet_filter_level character varying(80),

34. tweet_lang character varying(80),

35. tweet_matching_rules jsonb,

36. user_id bigint NOT NULL,

37. user_id_str character varying(80) NOT NULL,

38. user_name character varying(80),

39. user_screen_name character varying(80),

40. user_location character varying(200),

41. user_derived jsonb,

Kirkpatrick 17

42. user_url character varying(200),

43. user_description character varying(400),

44. user_protected boolean,

45. user_verified boolean,

46. user_followers_count integer,

47. user_friends_count integer,

48. user_listed_count integer,

49. user_favourites_count integer,

50. user_statuses_count integer,

51. user_created_at timestamp without time zone,

52. user_profile_banner_url character varying(200),

53. user_profile_image_url_https character varying(400),

54. user_default_profile boolean,

55. user_default_profile_image boolean,

56. user_withheld_in_countries jsonb,

57. user_withheld_scope character varying(80)

58.);

59. ALTER TABLE public.tweet OWNER TO postgres;

60. ALTER TABLE ONLY public.tweet ADD CONSTRAINT tweet_id_pk PRIMARY KEY

(tweet_id);

61. CREATE UNIQUE INDEX tweet_id_uindex ON public.tweet USING btree (tweet_id);

62. CREATE INDEX user_id_uindex ON public.tweet USING btree (user_id);

Lines 60-62 were omitted and the following command (line A) was used instead to establish a

unique, auto-incrementing key instead:

A. ALTER TABLE public.tweet ADD COLUMN unique_id SERIAL PRIMARY KEY;

II. Once the data is pre-processed, it is copied into Postgres via this command:

psql -h localhost -U postgres -W --command "\\copy public.tweet (tweet_created_at,

tweet_id, tweet_id_str, tweet_text, tweet_source, tweet_truncated,

tweet_in_reply_to_status_id, tweet_in_reply_to_status_id_str,

tweet_in_reply_to_user_id, tweet_in_reply_to_user_id_str,

tweet_in_reply_to_screen_name, tweet_coordinates, tweet_place,

tweet_quoted_status_id, tweet_quoted_status_id_str, tweet_is_quote_status,

tweet_quoted_status, tweet_retweeted_status, tweet_quote_count, tweet_reply_count,

tweet_retweet_count, tweet_favorite_count, tweet_entities, tweet_extended_entities,

tweet_favorited, tweet_retweeted, tweet_possibly_sensitive, tweet_filter_level,

tweet_lang, tweet_matching_rules, user_id, user_id_str, user_name,

user_screen_name, user_location, user_derived, user_url, user_description,

user_protected, user_verified, user_followers_count, user_friends_count,

user_listed_count, user_favourites_count, user_statuses_count, user_created_at,

user_profile_banner_url, user_profile_image_url_https, user_default_profile,

user_default_profile_image, user_withheld_in_countries, user_withheld_scope) FROM

'tweets_01.csv' DELIMITER ',' CSV QUOTE '|' ESCAPE '''';"

Kirkpatrick 18

III. Processing times in minutes compared to number of records in the database prior to

ingestion.

Database Size at Start Minutes to process

36,197,823 67.43

38,683,405 48.95

41,169,195 56.62

43,655,140 52.79

46,140,396 56.04

48,626,048 55.44

51,112,609 50.36

53,599,799 43.12

56,086,810 58.45

58,573,610 64.49

61,059,010 57.41

63,544,592 44.34

66,030,382 47.58

68,516,327 54.60

71,001,583 63.44

73,487,235 51.57

75,973,796 54.05

78,460,807 62.51

80,947,607 59.46

83,433,007 64.67

Kirkpatrick 19

IV. Tweet File Properties - the file value ‘5m-04-aa_tsu’ (noise) was replaced with the mean.

 Lines Words Characters File path

 2486936 786809583 10824051372 5m-01-aa_tsu

 2485910 795689691 10975190898 5m-01-ab_tsu

 2491324 801012264 11025300350 5m-02-aa_tsu

 2462280 804336592 11114944355 5m-02-ab_tsu

 2478868 792772808 10955904268 5m-03-aa_tsu

 2482803 789963377 10897665169 5m-03-ab_tsu

 2486670 785250601 10852532776 5m-04-aa_tsu

 2486346 797446224 10992026011 5m-04-ab_tsu

 2488091 788165743 10834386551 5m-05-aa_tsu

 2486009 803569862 11080499028 5m-05-ab_tsu

 2485729 798638995 11012317981 5m-06-aa_tsu

 2490273 809126298 11159784409 5m-06-ab_tsu

 2484863 798189921 11022828424 5m-07-aa_tsu

 2490850 797495165 10966756250 5m-07-ab_tsu

 2491420 809478696 11125317048 5m-08-aa_tsu

 2490186 813494334 11211124791 5m-08-ab_tsu

 2490764 803342946 11069546867 5m-09-aa_tsu

 2492941 784955503 10813646660 5m-09-ab_tsu

 2492764 779567049 10764980642 5m-10-aa_tsu

 2491515 767722229 10591648439 5m-10-ab_tsu

 2488963 776620003 10744376991 5m-11-aa_tsu

 2488613 774062706 10668983243 5m-11-ab_tsu

 2486840 778997122 10768461647 5m-12-aa_tsu

Kirkpatrick 20

 Lines Words Characters File path

 2485790 799528915 11121589728 5m-12-ab_tsu

 2485894 786902641 10897089656 5m-13-aa_tsu

 2486275 776148175 10744877440 5m-13-ab_tsu

 2485582 778103119 10811653953 5m-14-aa_tsu

 2485790 775665438 10744723541 5m-14-ab_tsu

 2485945 764885657 10590187671 5m-15-aa_tsu

 2485256 767570466 10642572188 5m-15-ab_tsu

 2485652 764226177 10579847378 5m-16-aa_tsu

 2486561 776609695 10772911505 5m-16-ab_tsu

 2487190 770373893 10752641276 5m-17-aa_tsu

 2487011 769483994 10687158844 5m-17-ab_tsu

 2486800 760236270 10553747791 5m-18-aa_tsu

 2485400 742579488 10319904796 5m-18-ab_tsu

 2486670 785250601 10852532776 5m-19-aa_tsu

Mean 2486670 785250601 10852532776

STDEV 15807704.3 197550714

STDEV % from Mean 2% 2%

Kirkpatrick 21

Works Cited

Aggarwal, Charu C. Data mining: the textbook. Springer (2015).

Andrade, E., Nogueira, B. Performability Evaluation of a Cloud-Based Disaster Recovery

Solution for IT Environments. J Grid Computing 17, 603–621 (2019).

https://doi.org/10.1007/s10723-018-9446-2

Barberá, Pablo, and Zachary C. Steinert-Threlkeld. "Social media as data generators."

http://www.luigicurini.com/uploads/6/7/9/8/67985527/pb-zst-chapter.pdf Accessed 14 January

2020. 2019. Forthcoming in Curini, L., and Franzese, R. (eds) The SAGE Handbook of

Research Methods in Political Science and International Relations, London: Sage (2019).

Beloglazov, Anton, Jemal Abawajy, Rajkumar Buyya. Energy-aware resource allocation

heuristics for efficient management of data centers for Cloud computing. Future Generation

Computer Systems, Volume 28, Issue 5, (2012). Pages 755-768, ISSN 0167-739X,

https://doi.org/10.1016/j.future.2011.04.017.

Benbow, Nanette, Christine Kirkpatrick, Amarnath Gupta, Sean Young, and interested health

officials. “A Mixed-Methods Iterative Process of Integrating and Developing Big Data Modeling

and Visualization Tools for Public Health Officials.” SAGE Case Study (Submitted June 2019,

under review).

Borodin, Andrey, et al. "Optimization of memory operations in generalized search trees of

PostgreSQL." International Conference: Beyond Databases, Architectures and Structures.

Springer, Cham (2017).

Ceph. https://ceph.io/ Accessed 15 January 2020.

CloudSim. Cloud Computing and Distributed Systems (CLOUDS) Laboratory, University of

Melbourne. http://www.cloudbus.org/cloudsim/ Accessed 2 February 2020.

Danilak, Radoslav. “Why Energy Is A Big And Rapidly Growing Problem For Data Centers.”

Forbes. 15 December 2017. https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-

energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#22e754395a30 . Accessed 2

February 2020.

Environmental Protection Agency (EPA) Greenhouse Gas Equivalencies Calculator.

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator Accessed 11 January

2020.

Erradi, Abdelkarim, and Yaser Mansouri. "Online cost optimization algorithms for tiered cloud

storage services." Journal of Systems and Software 160 (2020): 110457.

http://www.luigicurini.com/uploads/6/7/9/8/67985527/pb-zst-chapter.pdf
https://ceph.io/
http://www.cloudbus.org/cloudsim/
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#22e754395a30
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#22e754395a30
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Kirkpatrick 22

Filliez, Jeff. Interview regarding power consumption in the San Diego Supercomputer Center’s

data center. (2020).

Geschwinde, Ewald, and Hans-Jürgen Schönig. PostgreSQL developer's handbook. Sams

Publishing (2002).

Graphite. https://graphiteapp.org/ Accessed 11 January 2020.

Grover, Raman, and Michael J. Carey. "Data Ingestion in AsterixDB." EDBT (2015).

Guo, Junan, Subhasis Dasgupta, and Amarnath Gupta. “Multi-Model Investigative Exploration

of Social Media Data with boutique: A Case Study in Public Health.” (Submitted on 24 May

2019). arXiv:1905.10482 [cs.DB]

Homer, Alex, John Sharp, Larry Brader, Masashi Narumoto, and Trent Swanson. Cloud Design

Patterns: Prescriptive Architecture Guidance for Cloud Applications. Microsoft patterns &

practices (2014).

Horner, Nathaniel, and Ines Azevedo. "Power usage effectiveness in data centers: overloaded

and underachieving." The Electricity Journal 29.4 (2016): 61-69.

Neo4J. https://neo4j.com/. Accessed 14 January 2020.

Obe, Regina O., and Leo S. Hsu. PostgreSQL: Up and Running: a Practical Guide to the

Advanced Open Source Database. " O'Reilly Media, Inc." (2017).

Oliveira, Danilo, et al. "Performability evaluation and optimization of workflow applications in

cloud environments." Journal of Grid Computing 17.4 (2019): 749-770.

Oracle MySQL. https://www.mysql.com/ Accessed 15 January 2020.

PostgreSQL. The PostgreSQL Global Development Group, https://www.postgresql.org/.

Accessed 15 January 2020.

SDSC Cloud. https://www.sdsc.edu/services/ci/cloud.html Accessed 11 January 2020.

Sefraoui, Omar, Mohammed Aissaoui, and Mohsine Eleuldj. "OpenStack: toward an open-

source solution for cloud computing." International Journal of Computer Applications 55.3

(2012): 38-42.

Shehabi, Arman, et al. United states data center energy usage report. No. LBNL-1005775.

Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), (2016).

https://graphiteapp.org/
https://arxiv.org/abs/1905.10482
https://neo4j.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.sdsc.edu/services/ci/cloud.html

Kirkpatrick 23

Solr. Apache Solr. https://lucene.apache.org/solr/ Accessed 14 January 2020.

Steinert-Threlkeld, Zachary C. "Spontaneous collective action: Peripheral mobilization during

the Arab Spring." American Political Science Review 111.2 (2017): 379-403.

Stonebraker, Michael, and Greg Kemnitz. "The POSTGRES next generation database

management system." Communications of the ACM 34.10 (1991): 78-92.

Swift, OpenStack Object Storage. https://wiki.openstack.org/wiki/Swift Accessed 11 January

2020.

UCSD. “Clean Energy.” Sustainability. http://sustainability.ucsd.edu/focus/energy.html

Accessed 11 January 2020.

Weil, Sage A., et al. "Ceph: A scalable, high-performance distributed file system." Proceedings

of the 7th symposium on Operating systems design and implementation. USENIX Association,

(2006).

Zheng, Xiuwen, Qiyu Liu, and Amarnath Gupta. "Scalable Community Detection over Geo-

Social Network." arXiv preprint arXiv:1906.05505 (2019).

Note: some text from “Related Work” was previously used in C. Kirkpatrick’s PhD Work Plan

Application.

https://lucene.apache.org/solr/
https://wiki.openstack.org/wiki/Swift
http://sustainability.ucsd.edu/focus/energy.html

