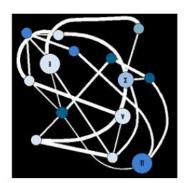
#### Handling Multi-Relational Data

May 6th, 2020



# Handling Multi-Relational Data

- Value: ability to transform a "tsunami" of data into knowledge
- Veracity: quality

#### Handling Multi-Relational Data

- Most machine learning methods build models based on a 2-dimensional table, where, usually, rows are instances and columns are variables
  - exception: itemset mining
- How about multi-relational or multi-modal data?
- Relations may exist among instances, not only among variables
- How to capture all relations?

# Limitations of a single 2-dimensional table

- data may need to be preprocessed: often big/full join of multiple tables
- joining multiple tables may introduce redundancy or bias
- consume space
  - ▶ if data is missing, may use compression techniques for sparse matrices (e.g., CSR – compressed sparse row or CSC – compressed sparse column formats and variants)
  - undersampling

# Handling Multi-Relational Data: example 1

#### TRAINS GOING EAST











#### TRAINS GOING WEST











# Handling Multi-Relational Data: example 2

#### Relations among instances, variables with multiple values

| Patient | Location | Size | Date     | Calcifications |
|---------|----------|------|----------|----------------|
| P1      | С        | 0.1  | 20050403 | F, A           |
| P1      | С        | 0.2  | 20060412 | F              |
| P1      | 9        | 0.1  | 20060412 | A              |
| P2      | 12       | 0.3  | 20050415 | M              |
|         |          |      |          |                |

### Ideal system to handle big data

- uncertainty
- multiple relations
- multiple modalities
- streamed data
- explain the model!
- ...all of this consuming a minimum number of resources!

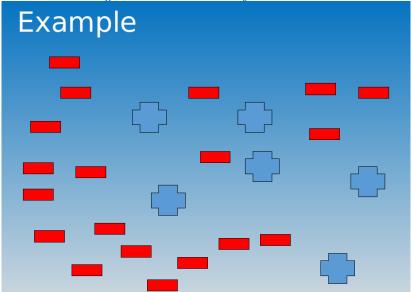
#### Models that can explain

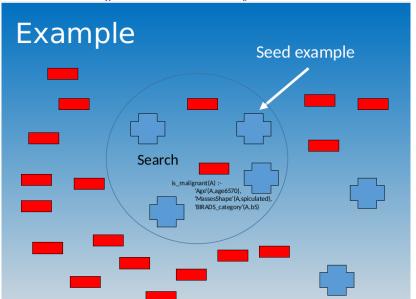
- Rules
- Decision trees (hierarchical propositional rules)
- Bayesian networks
- But...
  - Decision trees and Bayesian networks are not multi-relational
  - ► Rules can be multi-relational if the representation is in first-order logic

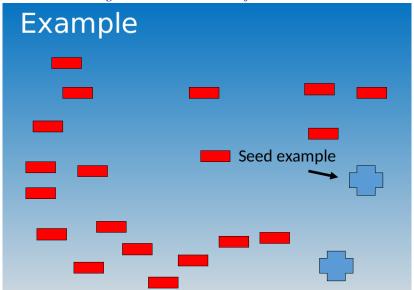
# Example of first order logic representation

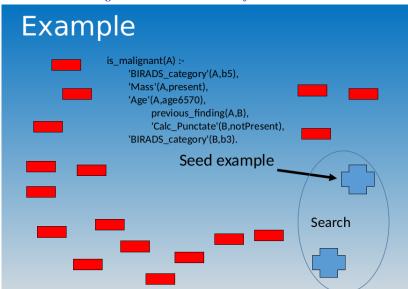
```
short(car 12).
                                     load(car 11,rectangle,3).
closed(car 12).
                                     load(car_12,triangle,1).
long(car_11).
                                     load(car_13,hexagon,1).
                                     load(car 14,circle,1).
long(car 13).
short(car 14).
                                     wheels(car 11,2).
open car(car 11).
                                     wheels(car_12,2).
open_car(car_13).
                                     wheels(car 13,3).
open_car(car_14).
                                     wheels(car_14,2).
                                     has_car(east1,car 11).
shape(car_11,rectangle).
shape(car_12,rectangle).
                                     has car(east1,car 12).
shape(car 13, rectangle).
                                     has car(east1,car 13).
shape(car 14,rectangle).
                                     has car(east1,car 14).
```

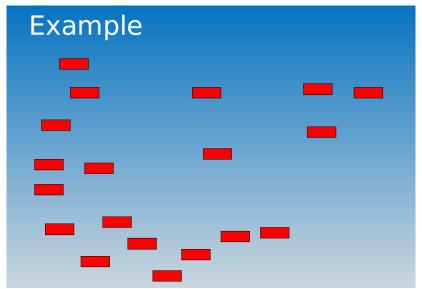
- Given E = E+ U E-,BK, language and constraints C
- Repeat until E+ is empty:
  - Select any example e from E+
  - Build a list of candidate literals using C, BK and e
  - Search for a "good" hypothesis H
     (parallelization is here on the coverage step)
  - Add H to theory T
  - Remove from E+ positive examples covered by H
- Return T and its confusion matrix



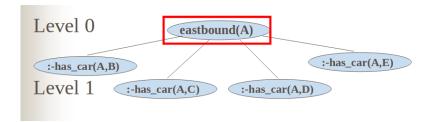




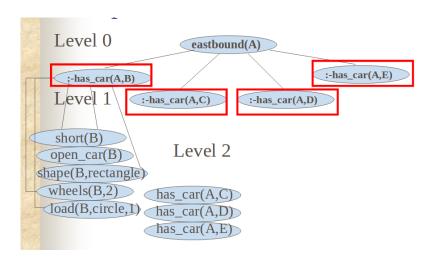




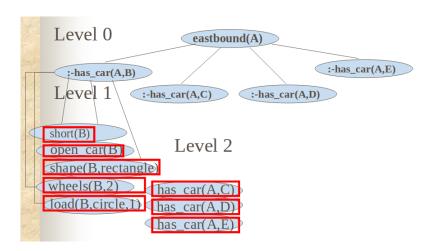
# Search tree for hypothesis



#### Search tree for hypothesis



#### Search tree for hypothesis



### Opportunities for optimization

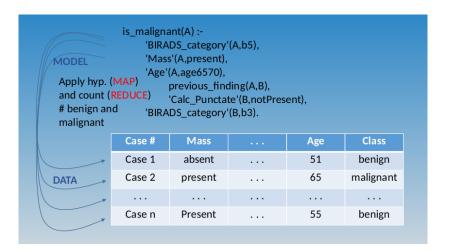
- representation for the coverage lists
- parallel search
- parallel coverage
- tree compression

#### Parallelizing the coverage

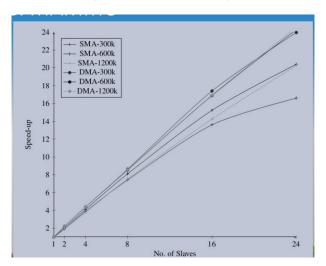
DATA

| Case # | Mass    | <br>Age | Class     |
|--------|---------|---------|-----------|
| Case 1 | absent  | <br>51  | benign    |
| Case 2 | present | <br>65  | malignant |
|        |         | <br>    |           |
| Case n | Present | <br>55  | benign    |

#### Parallelizing the coverage

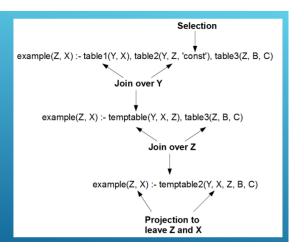


# Parallelizing the coverage (mammo, 1.5GB)



#### Parallelizing the coverage: GPU-Datalog

► Datalog rules can be evaluated using the relational algebra operators select, join and projection.



## Parallelizing the coverage: GPU-Datalog parsing

- Facts and rules are converted to numbers
- Each distinct string is assigned a unique id, equal strings are assigned the same id
- Capitalize on the GPU capability to process numbers

# Parallelizing the coverage: GPU-Datalog preprocessing

- For each rule, specify which operations to perform and with which arguments
- Create small arrays for each operation, e.g.: p(A,X,Y,Z), q(Z,X,B,C,Y).  $\rightarrow [1,1,2,4,3,0]$
- Arrays are loaded in the shared memory of the GPU
  - allow each thread to work with the correct arguments without having to calculate them

# Parallelizing the coverage: GPU-Datalog memory management

- Minimization of transfers between GPU memory and host memory by maintaining facts and rule results in GPU memory for as long as possible.
- To do so, maintain a list with information about each fact and rule result resident in GPU memory.
- Apply the Least Recently Used (LRU) page replacement algorithm.

## Parallelizing the coverage: GPU-Datalog selection

- The size of the result in a selection is not known beforehand.
- Selection uses three different kernel executions:
  - first kernel: marks all the rows that satisfy the selection arguments with a value one.
  - ▶ second kernel: performs a prefix sum on the marks to determine the size of the results buffer and the location where each GPU thread must write the results.
  - last kernel: writes the results.

# Parallelizing the coverage: GPU-Datalog and learning FOL

- BK and examples represented in first-order language (Prolog syntax)
- BK is parsed and sent to the GPUs with Examples
- While searching for a good hypothesis (on the host):
  - Coverage step (on the GPU) using bottom-up evaluation of the hypotheses
    - Parse the hypothesis
    - Send it to GPU
    - Perform database operations using BK and E
    - Return count to host

### GPU Datalog: Experimental Evaluation

- Join over 4 tables of 5 million entries
- Transitive closure of a graph
- Same-generation benchmark

GPU Datalog: Experimental Evaluation

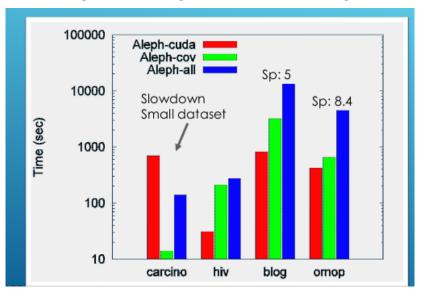
| System | Join   | Closure | Same-<br>gen |
|--------|--------|---------|--------------|
| YAP    | 125.20 | 3.51    | 0.02         |
| XSB    | 287.81 | 4.08    | 0.03         |
| MITRE  | N/A    | 5.28    | 4.67         |
| CUDA   | 1.07   | 0.12    | 0.02         |

Times in seconds

# Parallelizing the coverage with GPU-Datalog: datasets

| Application | ВК        | Examples |
|-------------|-----------|----------|
| Carcino     | 21,303    | 297      |
| hiv         | 2,310,575 | 48,766   |
| omop        | 4,802,317 | 125,000  |
| blog        | 5,124,092 | 50,000   |

### Parallelizing the coverage with GPU-Datalog: datasets



#### Python package

You may want to play with python-rdm