Handling Multi- Relational Data

May 6th, 2020




Handling Multi-Relational Data

® Value: ability to transform a “tsunami” of data into
knowledge

® Veracity: quality



Handling Multi-Relational Data

Most machine learning methods build models based on a
2-dimensional table, where, usually, rows are instances and
columns are variables

P exception: itemset mining
How about multi-relational or multi-modal data?

Relations may exist among instances, not only among
variables

How to capture all relations?

3/1



Limitations of a single 2-dimensional table

¢ data may need to be preprocessed: often big/full join of
multiple tables

® joining multiple tables may introduce redundancy or bias

® consume space
» if data is missing, may use compression techniques for
sparse matrices (e.g., CSR — compressed sparse row or CSC
— compressed sparse column formats and variants)
» undersampling

4/1



Handling Multi- Relational Data: example 1

TRAINS GOING EAST TRAINS GOING WEST

oH o HaHoooHB

P
o
H

5/1



Handling Multi- Relational Data: example 2

Relations among instances, variables with multiple values

TN
6/1



Ideal system to handle big data

uncertainty
multiple relations
multiple modalities
streamed data
explain the model!

...all of this consuming a minimum number of resources!

7/1



Models that can explain

Rules
Decision trees (hierarchical propositional rules)

Bayesian networks
But...
» Decision trees and Bayesian networks are not
multi-relational
» Rules can be multi-relational if the representation is in
first-order logic

8/1



Example of first order logic representation

short(car_12).
closed(car_12).
long(car_11).
long(car_13).
short(car_14).

open_car(car_11). |

open_car(car_13).
open_car(car_14).

shape(car_11,rectangle).

shape(car_12,rectangle).
shape(car_13,rectangle).
shape(car_14,rectangle).

o HaJooof@

load(car_11,rectangle,3). |
load(car_12,triangle,1).
load(car_13,hexagon,1).
load(car_14,circle,1).
wheels(car_11,2). \
wheels(car_12,2).
wheels(car_13,3).
wheels(car_14,2).
has_car(eastl,car_11).

has_car(east1,car_12).
has_car(eastl,car_13).

has_car(eastl,car_14).

9/1



Main algorithm to learn first-order rules

* Repeat until E+ is empty:
* Select any example e from E+

* Build a list of candidate literals using C, BK
and e

* Search for a “good” hypothesis H
(parallelization is here on the coverage step)

* Add H to theory T
* Remove from E+ positive examples covered
by H
* Return T and its confusion matrix

10/1



Main algorithm to learn first-order rules




Main algorithm to learn first-order rules

Example

Seed example




Main algorithm to learn first-order rules

Example




Main algorithm to learn first-order rules

Example

14/1



Main algorithm to learn first-order rules

Example

= 9Hao
15/1



Search tree for hypothesis

Level 0 eastbound(A)
/C\\

Level 1

16/1



Level 0 W@\

Search tree for hypothesis

—1<_:i-has car(A B)

Lve\ 1

:-has_car(A,D)

Level 2

17/1



Search tree for hypothesis

Level 0 eastbound(A)
i-has_car(A,B) \

18/1



Opportunities for optimization

representation for the coverage lists
parallel search
parallel coverage

tree compression

19/1



Parallelizing the coverage

o = T = ==
Case 1 absent benign
Case 2 present 65 malignant

Casen Present

3T

benign

DA
20/1



Parallelizing the coverage

KR R T A A
Case 1 absent benign
Case 2 present 65 malignant

Casen Present

benign

DA
21/1



Parallelizing the coverage

(mammo, 1.5GB)

Do
22/1



Parallelizing the coverage: GPU-Datalog

Selection

example(Z, X) :- table1(Y, X), table2(Y, Z, 'const’), table3(Z, B, C)
» Datalog rules ANy Pl
can be Join over Y
evaluated

Saliie the example(Z, X) :- temptable(Y, X, Z), table3(Z, B, C)

relational
algebra ™ el

Join over Z
operators

select, join and
projection. example(Z, X) - temptable2(Y, X, Z, B, C)

Projection to
leave Z and X

u]
8]
I
i
it

Qe

23/1



Parallelizing the coverage: GPU-Datalog parsing

® Facts and rules are converted to numbers

e FEach distinct string is assigned a unique id, equal strings
are assigned the same id

e (Capitalize on the GPU capability to process numbers

24 /1



Parallelizing the coverage: GPU-Datalog preprocessing

® For each rule, specify which operations to perform and
with which arguments

® (Create small arrays for each operation, e.g.:
p(A,X,Y,2), q(Z,X,B,C,Y). — [1,1,2,4,3,0]

® Arrays are loaded in the shared memory of the GPU

» allow each thread to work with the correct arguments
without having to calculate them

25 /1



Parallelizing the coverage: GPU-Datalog memory
management

® Minimization of transfers between GPU memory and host
memory by maintaining facts and rule results in GPU
memory for as long as possible.

® To do so, maintain a list with information about each fact
and rule result resident in GPU memory.

e Apply the Least Recently Used (LRU) page replacement
algorithm.

26/ 1



Parallelizing the coverage: GPU-Datalog selection

® The size of the result in a selection is not known
beforehand.
® Selection uses three different kernel executions:

» first kernel: marks all the rows that satisfy the selection
arguments with a value one.

» second kernel: performs a prefix sum on the marks to
determine the size of the results buffer and the location
where each GPU thread must write the results.

P last kernel: writes the results.

27 /1



Parallelizing the coverage: GPU-Datalog and learning
FOL

¢ BK and examples represented in first-order language
(Prolog syntax)

e BK is parsed and sent to the GPUs with Examples

e While searching for a good hypothesis (on the host):
» Coverage step (on the GPU) using bottom-up evaluation of
the hypotheses
Parse the hypothesis
Send it to GPU
Perform database operations using BK and E
Return count to host

28 /1



GPU Datalog: Experimental Evaluation

® Join over 4 tables of 5 million entries
e Transitive closure of a graph

® Same-generation benchmark

29 /1



GPU Datalog: Experimental Evaluation

] 0.02

125.20 3.5

XSB 287 .81 4.08 0.03

N/A 5.28 4.67

0.02

1.07 0.12

Times in seconds

30/1



Parallelizing the coverage with GPU-Datalog: datasets

Carcino 21,303 297
hiv 2,310,575 48,766

omop 4,802,317 125,000

blog 5,124,092 50,000

31/1



Parallelizing the coverage with GPU-Datalog: datasets

Time (sec)

100000

10000

1000

100

10

Aleph-cuda
Aleph-cov s
Aleph-all —

Slowdown
Srmall dataset

carcina hiv

Sp:5

blog

Sp: 8.4

omop

32/1



Python package

You may want to play with python-rdm

33/1


https://pypi.org/project/python-rdm/

