
Handling Multi-Relational Data

May 6th, 2020

1 / 1



Handling Multi-Relational Data

• Value: ability to transform a “tsunami” of data into
knowledge

• Veracity: quality

2 / 1



Handling Multi-Relational Data

• Most machine learning methods build models based on a
2-dimensional table, where, usually, rows are instances and
columns are variables
I exception: itemset mining

• How about multi-relational or multi-modal data?

• Relations may exist among instances, not only among
variables

• How to capture all relations?

3 / 1



Limitations of a single 2-dimensional table

• data may need to be preprocessed: often big/full join of
multiple tables

• joining multiple tables may introduce redundancy or bias

• consume space
I if data is missing, may use compression techniques for

sparse matrices (e.g., CSR – compressed sparse row or CSC
– compressed sparse column formats and variants)

I undersampling

4 / 1



Handling Multi-Relational Data: example 1

5 / 1



Handling Multi-Relational Data: example 2

Relations among instances, variables with multiple values

Patient Location Size Date Calcifications

P1 C 0.1 20050403 F, A

P1 C 0.2 20060412 F

P1 9 0.1 20060412 A

P2 12 0.3 20050415 M

... ... ... ... ...

6 / 1



Ideal system to handle big data

• uncertainty

• multiple relations

• multiple modalities

• streamed data

• explain the model!

• ...all of this consuming a minimum number of resources!

7 / 1



Models that can explain

• Rules

• Decision trees (hierarchical propositional rules)

• Bayesian networks

• But...
I Decision trees and Bayesian networks are not

multi-relational
I Rules can be multi-relational if the representation is in

first-order logic

8 / 1



Example of first order logic representation

9 / 1



Main algorithm to learn first-order rules

10 / 1



Main algorithm to learn first-order rules

11 / 1



Main algorithm to learn first-order rules

12 / 1



Main algorithm to learn first-order rules

13 / 1



Main algorithm to learn first-order rules

14 / 1



Main algorithm to learn first-order rules

15 / 1



Search tree for hypothesis

16 / 1



Search tree for hypothesis

17 / 1



Search tree for hypothesis

18 / 1



Opportunities for optimization

• representation for the coverage lists

• parallel search

• parallel coverage

• tree compression

19 / 1



Parallelizing the coverage

20 / 1



Parallelizing the coverage

21 / 1



Parallelizing the coverage
(mammo, 1.5GB)

22 / 1



Parallelizing the coverage: GPU-Datalog

23 / 1



Parallelizing the coverage: GPU-Datalog parsing

• Facts and rules are converted to numbers

• Each distinct string is assigned a unique id, equal strings
are assigned the same id

• Capitalize on the GPU capability to process numbers

24 / 1



Parallelizing the coverage: GPU-Datalog preprocessing

• For each rule, specify which operations to perform and
with which arguments

• Create small arrays for each operation, e.g.:
p(A,X,Y,Z), q(Z,X,B,C,Y). → [1,1,2,4,3,0]

• Arrays are loaded in the shared memory of the GPU
I allow each thread to work with the correct arguments

without having to calculate them

25 / 1



Parallelizing the coverage: GPU-Datalog memory
management

• Minimization of transfers between GPU memory and host
memory by maintaining facts and rule results in GPU
memory for as long as possible.

• To do so, maintain a list with information about each fact
and rule result resident in GPU memory.

• Apply the Least Recently Used (LRU) page replacement
algorithm.

26 / 1



Parallelizing the coverage: GPU-Datalog selection

• The size of the result in a selection is not known
beforehand.

• Selection uses three different kernel executions:
I first kernel: marks all the rows that satisfy the selection

arguments with a value one.
I second kernel: performs a prefix sum on the marks to

determine the size of the results buffer and the location
where each GPU thread must write the results.

I last kernel: writes the results.

27 / 1



Parallelizing the coverage: GPU-Datalog and learning
FOL

• BK and examples represented in first-order language
(Prolog syntax)

• BK is parsed and sent to the GPUs with Examples

• While searching for a good hypothesis (on the host):
I Coverage step (on the GPU) using bottom-up evaluation of

the hypotheses
• Parse the hypothesis
• Send it to GPU
• Perform database operations using BK and E
• Return count to host

28 / 1



GPU Datalog: Experimental Evaluation

• Join over 4 tables of 5 million entries

• Transitive closure of a graph

• Same-generation benchmark

29 / 1



GPU Datalog: Experimental Evaluation

Times in seconds

30 / 1



Parallelizing the coverage with GPU-Datalog: datasets

31 / 1



Parallelizing the coverage with GPU-Datalog: datasets

32 / 1



Python package

You may want to play with python-rdm

33 / 1

https://pypi.org/project/python-rdm/

