
J. LOGIC PROGRAMMING 1994: 19,20:629679 629

INDUCTIVE LOGIC PROGRAMMING: THEORY AND
METHODS

STEPHEN MUGGLETON AND LUC DE RAEDT

D Inductive Logic Programming (ILP) is a new discipline which investigates the in-
ductive construction of first-order clausal theories from examples and background
knowledge. We survey the most important theories and methods of this new field.
First, various problem specifications of ILP are formalized in semantic settings
for ILP, yielding a “model-theory” for ILP Second, a generic ILP algorithm is
presented. Third, the inference rules and corresponding operators used in ILP are
presented, resulting in a “proof-theory” for ILP Fourth, since inductive inference
does not produce statements which are assured to follow from what is given, in-
ductive inferences require an alternative form of justification. This can take the
form of either probabilistic support or logical constraints on the hypothesis lan-
guage. Information compression techniques used within ILP are presented within
a unifying Bayesian approach to confirmation and corroboration of hypotheses.
Also, different ways to constrain the hypothesis language or specify the declara-
tive bias are presented. Fifth, some advanced topics in ILP are addressed. These
include aspects of computational learning theory as applied to ILP, and the issue of
predicate invention. Finally, we survey some applications and implementations of
ILP ILP applications fall under two different categories: first, scientific discovery
and knowledge acquisition, and second, programming assistants. a

1. INTRODUCTION

Inductive Logic Programming (ILP) has been defined [81] as the intersection of inductive
learning and logic programming. Thus, ILPemploys techniques from both machine learning
and logic programming.

Address correspondence to Stephen Muggleton, Oxford University Computing Laboratory, Wolfson
Building, Parks Road, Oxford, OX1 3QD, England or Luc De Raedt, Department of Computing Science,
Katholieke Universiteit Leuven, 200A Celestijnenlaan, B-3001, Heverlee, Belgium.

Received May 1993; accepted January 1994.

THE JOURNAL OF LOGIC PROGRAMMING

0 Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

630 S. MUGGLETONANDLDERAEDT

From inductive machine learning, ILP inherits its goal: to develop tools and techniques
to induce hypotheses from observations (examples) and to synthesize new knowledge from
experience. By using computational logic as the representational mechanism for hypotheses
and observations, inductive logic programming can overcome the two main limitations of
classical machine learning techniques, such as the Top-Down-Induction-of-Decision-Tree
(TDIDT) family [loll:

1, the use of a limited knowledge representation formalism (essentially a propositional

logic), and
2. difficulties in using substantial background knowledge in the learning process.

The first limitation is important because many domains of expertise can only be expressed
in a first-order logic, or a variant of first-order logic, and not in a propositional one. One
problem in which this is obvious is the domain of logic program synthesis from examples.
Most logic programs cannot be defined using only propositional logic. The use of domain
knowledge is also crucial because one of the well-established findings of artificial intelli-

gence is that the use of domain knowledge is essential for achieving intelligent behavior.
Logic offers an elegant formalism to represent knowledge, and hence incorporate it in the
induction task.

From computational logic, inductive logic programming inherits its representational for-
malism, its semantical orientation, and various well-established techniques. In contrast to
most other approaches to inductive learning, inductive logic programming is interested
in properties of inference rules, in convergence of algorithms, and in the computational
complexity of procedures. Many inductive logic programming systems benefit from using
the results of computational logic. Additional benefit could potentially be derived from
making use of work on termination, types and modes, knowledge-base updating, algorith-
mic debugging, abduction, constraint logic programming, program synthesis, and program
analysis.

Inductive logic programming extends the theory and practice of computational logic
by investigating induction rather than deduction as the basic mode of inference. Whereas
present computational logic theory describes deductive inference from logic formulas pro-
vided by the user, inductive logic programming theory describes the inductive inference
of logic programs from instances and background knowledge. In this manner, ILP may
contribute to the practice of logic programming, by providing tools that assist logic pro-
grammers to develop and verify programs.

ILP can be distinguished from traditional investigations of inductive inference in areas
such as grammatical induction and induction of finite state automata [76, 13, 31 by its
emphasis on the use of a universal representation. Clearly, universal representations promise
much wider scope of applicability. Logic programs are arguably much easier to manipulate
for a machine learning algorithm than other universal representations which have been
investigated, such as Universal Turing Machine programs [141 and LISP programs [133,121.
This is due to the fact that, in pure clausal logic, changes can be made to a program
by simply adding or deleting either complete clauses or literals within a clause without
worrying about ordering effects. Since the semantics of logic programs are so closely allied
to their syntax, such changes also have a clear and simple effect on the generality of the
resulting program. In addition, logic programs allow a single representation for examples,
background knowledge, and hypotheses.

In this paper, we provide an introduction to ILP. The introduction focuses on what we
believe to be the foundations of the field. This paper is not a bottom-up paper based on

INDUCTIVE LOGIC PROGRAMMING 631

describing small differences between many different systems. It is instead a top-down
synthetic overview of concepts, terminology, and methods. We are not overly concerned
with discussing the implementation details of particular systems and approaches because
the differences are often quite minor and not of great interest to a general audience. We aim
instead at providing a conceptual framework for presenting ILP at four levels of description:
a semantic level (defining the problem of ILP), a generic ILP algorithm level, a proof-
theoretic level (defining the inference rules used in ILP), and a probabilistic semantics of
belief (defining the justification of induced hypotheses).

The paper is organized as follows. In Section 2, we introduce inductive logic program-
ming informally by means of some examples; in Section 3, we formally define the problem
of inductive logic programming at the model-theoretic or semantic level; in Section 4, we
provide a generic ILP algorithm; in Section 5, we study some inductive inference rules
used in ILP, yielding a “proof-theory” for ILP; in Section 6, information compression tech-
niques used within ILP are presented within a unifying Bayesian approach to confirmation
and corroboration of hypotheses; in Section 7, we survey some methods to constrain the
search-space in ILP (syntactic and semantic bias); in Section 8, the convergence and com-
putationally complexity of ILP (learnability) is investigated; in Section 9, the problem of
inventing new predicates is addressed; in Section 10, various ILP implementations are dis-
cussed and compared; in Section 11, some applications of ILP in scientific discovery and
automatic programming are summarized; finally, in Section 12, we conclude. Appendix A
contains a list of symbols and notations used throughout this paper.

2. GENERAL SETTING

Inductive inference is a very common form of everyday reasoning. Consider the following
examples, which will be used throughout this paper.

2.1. Family Example

Imagine yourself as learning about the relationships between people in your close family
circle. You have been told that your grandfather is the father of one of your parents, but do
not yet know what a parent is. You might have the following beliefs.

I
grundfather(X, Y) t father(X, Z), parent (Z, Y)

B = father(henry, jane) +

mother (june, john) t

mother(june, alice) t

You are now given the following facts (positive examples) concerning the relationships
between particular grandfathers and their grandchildren.

grundfuther(henry, john) t
grundfuther(henry, alice) t

You might be told, in addition, that the following relationships do not hold (negative exam-
ples).

E_ = t grundfuther(john, henry)
t grundf uther(ulice, john)

632 S. MUGGLETON AND L. DE RAEDT

Believing B, and faced with the new facts E+ and E-, you might guess the following
relationship.

H = parent(X, Y) +- mother(X, Y)

Note that H is not a consequence of B and E-. That is,

B A E- F •I (prior satisf iability)

However, H allows us to explain E+ relative to B. That is,

B A H b E+ (posterior sufficiency)

Note that B and H are consistent with E-. That is,

B A H A E- k 0 (posterior satisfiability)

The question arises as to how it is possible to derive (even tentatively) the hypothesis H.

2.2. Another Example: Tweety

Suppose that you know the following about birds:

haswings t bird(X)

B = hasbeak t bird(X)

bird(X) t u&me(X)

carnivore(X) +- vulture(X)

Imagine now that an expedition to the upper Za’ire basin comes across a creature, which we
shall call for convenience “Tweety.” The expedition leader telegraphs you. to let you know
that Tweety has wings and a beak. This could be represented as the following logic program
E+.

haswings(tweety) t
hasbeak(tweety) t

Even without any negative examples, it would not take a very inspired ornithologist with
belief set B to hazard the guess “Tweety is a bird.” This can be written as

H = bird(tweety) t

This might be seen by our ornithologist as a working hypothesis about Tweety. It could
clearly be refuted if further evidence revealed Tweety to be made of plastic (although this
would require a more sophisticated belief set B’). Note that, as in the grandfather example,
H allows us to explain E relative to B. That is,

INDUCTIVE LOGIC PROGRAMMING 633

Note that the ornithologist would be unlikely to entertain the more speculative hypothesis
“vulture(tweety),” even though this could also be used to explain all the evidence.

H’ = uulture(tweety) t

But how do we know from B and E+ that H’ is more speculative than H?

2.3. Sorting Example

Inductive inference can also be viewed as a form of program synthesis. Imagine that a
learning program is to be taught the logic program for “quick-sort.” The following definitions
are provided as background knowledge.

I
part(X, [I* [I, [I> +
part(X, [Y/T], [YISI], S2) +- Y =< X, partition(X, T, Sl, S2)

B = purt(X, [Y/T], Sl, [Y]S2]) t Y > X, part(X, T, Sl, S2)

wm, L, L) +-
v~([XlTl, L, [XIRI) + ~PPV, L, RI

The program is then provided with a set of positive ground examples of quick-sort, such as

i

ssort([l, [I) +
E+ = qsort(COl, [Ol> i-

wrt([l, 01, K4 11) +-
. . .

together with some negative examples such as

+- q.wt(ll, 01, P, 01)
E- = + wort(lOl, 11)

. . .

In this case, we might hope that the algorithm would, given a sufficient number of examples,
suggest the following clauses for “quick-sort.”

I
qsort(ll, [I) +
qsort([XJT], S) t purt(X, T, Ll, L2),

H= qsort(L1, Sl),
qsort(L2, S2),

app(S1, [Xl% s>

Indeed, several ILP systems such as Golem [!%I and FOIL [1051 can learn this definition
of quick-sort from as few as six or ten examples. Although much background knowledge
is required to learn quick-sort, the mentioned ILP systems are able to select the correct
hypothesis from a huge space of possible hypotheses.

634 S. MUGGLETON AND L. DE RAEDT

In some parts of the paper, we will also employ background theory B’. From B’ and
some examples, it is easy to induce a permutation sort.

B’ zz

perm([l, [I> +-
perm(l, [XIP]) +- del(X, L, Ll), perm(l1, P)

del(X, tXlT1, T> +-
deZ(X, [Y(T], [Y]Tl]) t deZ(X, T, Tl)
sorted t

sorted([X]) +-

sorted([X, Y(T]) +- X 5 Y, sorted([YIT])

2.4. Inductive Inference and the Philosophy of Science

The form of reasoning demonstrated in the last three examples is known as inductive in-
ference and is very common within the natural sciences. Aristotle first describes it in his
Posterior Analytics. Francis Bacon, in discussing the empiricism of the new natural sciences
in the 17th century (in Novum Organum), gave numerous examples of inductive inference
as a paradigm for scientific method.

However, despite the efforts of philosophers such as Hume, Mill, Pierce, Popper, and
Carnap, the foundations of inductive reasoning are still much less clear than those of de-
ductive mathematical logic. Since the 1970s several researchers from within Computer
Science have attempted, with varying degrees of success, to find a logical basis for inductive
inference. These researchers have included Plotkin [loo], Shapiro [125, 1261, and the new
school of Inductive Logic Programming [81, 83, 1071.

In this paper, we will describe the theoretical basis of Inductive Logic Programming in the
framework of first-order predicate calculus, Bayesian statistics, and algorithmic complexity
theory. Although the examples used generally only involve definite clauses, most results
extend quite naturally to full clausal logic (see Section 3). The theory of ILP will be related
to implementations and applications throughout the paper.

2.5. Hypothesis Formation and Justification

From the examples in Sections 2.1, 2.2, and 2.3, it is clear that the processes of hypothesis
formation (abduction) and hypothesis justification need further clarification. In this paper,
it will be assumed that

Induction = Abduction + Justification

Abduction. According to the philosopher Pierce, abduction is the process of hypothesis
formation. This term is used withinLogic Programming (e.g., [52,19,51]) to denote
a form of nonmonotonic reasoning (see also Section 11.2.5). Pierce describes the
basis of abduction as follows: given E and E t H, hypothesize H. A more
extensive definition appropriate for ILP will be given in Section 3.

Justification. The degree of belief ascribed to a hypothesis given a certain amount of
evidence. Followers of Carnap talk of the degree of “confirmation,” claiming that
no absolute justification is possible. On the other hand, a follower of Popper would
not see there being a problem of justification, but rather a problem of deciding
between competing hypotheses. They would therefore rather talk of corroboration.

INDUCTIVE LOGIC PROGRAMMING 635

The term justification is used here to introduce the whole nexus of related problems.
The problem of justification is discussed in detail in Section 6.

In fact, scientific theory formation involves much more than the two elements of induction
above. Facts must be gathered, experiments must be planned, and alternative theories must
be tested out. Abduction and justification can be seen as central components of this process.
Several ILP applications (Section 11) have involved the discovery of new pieces of scientific
knowledge from empirical evidence. ILP potentially also contributes to experimentation
and testing of hypotheses [1061.

3. MODEL-THEORY OF ILP

The logical elements (the semantics) involved in inductive inference will now be described,
together with the relationships which should hold between them. We describe two different
semantics for ILP: the normal and nonmonotonic semantics, and we also discuss the definite
semantics, which is-roughly speaking-a special case of the normal semantics.

Throughout the paper, we will employ the notion of syntactic bias (see Section 7). The
syntactic bias defines the set of well-formed hypotheses, and thus constitutes a parameter
of any ILP task. Because the use of a syntactic bias is omni-present in ILP, we will not
always write explicitly that we assume the hypotheses are well-formed with regard to this
bias.

3.1. Normal Semantics

Here, we will use a general setting for ILP and allow examples, background theory, and
hypotheses to be any (well-formed) logical formula.

The problem of inductive inference is as follows. Given is background (prior) knowledge
B and evidence E. The evidence E = E+ A E- consists of positive evidence E+ and
negative evidence E-. The aim is then to find a hypothesis H such that the following
conditions hold.

Dejnition 3.1. (normal semantics)

Prior Satisfiability. B A E- k 0

Posterior Satisfiability. B A H A E- k Cl
Prior Necessity. B k E+
Posterior Sufficiency. B A H j= E+

The Sufficiency criterion is sometimes named completeness with regard to positive evi-
dence, and the Posterior Satisfiability criterion is also known as consistency with the negative
evidence.

In most ILP systems, background theory and hypotheses are restricted to being definite.
This definite setting is simpler than the general setting because a definite clause theory T
has a unique minimal Herbrand model M+(T), and any logical formula is either true or
false in this least model. This setting is formalized in the definite setting of Definition 3.2.

Dejnition 3.2. (definite semantics)

636 S. MUGGLETON AND L. DE RAEDT

Prior Satisfiability. all e E E- are false in M+(B)
Posterior Satisfiability. all e E E- are false in M+(B A H)

Prior Necessity. some e E E+ are false in M+(B)

Posterior Sufficiency. all e E E+ are true in M+(B A H)

The special case of the definite semantics, where the evidence is restricted to true and
false ground facts (examples), will be called the example setting. Notice that the example
setting is equivalent to the normal semantics, where B and H are definite clauses and E is
a set of ground unit clauses. The example setting is the main setting of ILP. It is employed
by the large majority of ILP systems; it will also be the most important setting in this paper.
The example setting is the one illustrated in Section 2.

The reason for allowing evidence other than examples in the definite semantics is that
it is often useful to allow general clauses as evidence (cf. [llO, 1071 and Section 11.2).
Clausal evidence usually captures more knowledge than factual evidence consisting of only
ground facts. For instance, in the family example of Section 2.1, the first positive example
could be

grandfather(henry, john) + father(henry, june), mother(jane, john)

and the (positive) evidence could also include t grandfuther(X,X), stating that no one is
their own grandfather. Analogously, in the sorting example of Section 2.3, one could use
sorted(Y) t quicksort(X, Y) and quicksort(X,X) t sorted(X) as positive evidence when the
definition of sorted is in the background theory. The use of clausal evidence provides the
learner with an incomplete or partial specification of the sorting predicate. This constrains
the space of acceptable hypotheses. Positive evidence has to be true in the minimal model
of the hypothesis and theory, whereas negative evidence has to be false in this setting.

3.2. The Nonmonotonic Semantics

A nonmonotoniclsetting for ILP was introduced by Nicolas Helft [48] and Flach [39]; some
variants were later considered by 17, 113, 1141. Here, we define a variant related to the
normal setting and [I 13, 1141.

In the nonmonotonic setting of ILP, the background theory is a set of definite clauses,
the evidence is empty, and the hypotheses are sets of general clauses expressible using the

same alphabet as the background theory. The reason that the evidence is empty is that the
positive evidence is considered part of the background theory and the negative evidence is
derived implicitly, by making a kind of closed world assumption (realized by taking the
least Herbrand model).

In the nonmonotonic setting, the following conditions should hold for H and B:

Definition 3.3. (nonmonotonic semantics)

Validity: all h E H are true in M+(B)
Completeness: if general clause g is true in M+(B), then H /= g
Minimality: there is no proper subset G of H which is valid and complete

‘The term “nonmonotonic” was introduced by Helft in order to make a link with other forms of non-
monotonic reasoning because of the relation to the closed world assumption and its variants.

INDUCTIVE LOGIC PROGRAMMING 637

The Validity requirement assures that all clauses belonging to a hypothesis hold in the
database B, i.e., that they are true properties of the data. The Completeness requirement
states that all information that is valid in the database should be encoded in the hypothesis.
This requirement should also be understood with regard to a given syntactic bias, which
determines the set of well-formed hypotheses (see Section 7). The Minimality requirement
aims at deriving nonredundant hypotheses.

To illustrate the nonmonotonic setting, consider the following example (taken from
[1131) and assume that a hypothesis is well-formed if it consists of clauses containing a
single variable:

I

male(luc) t

B=
f emale(lieve) t
human(lieve) t

human(Euc) t

A possible solution is then

I

t f emale(male(X)
H = human(X) + male(X)

human(X) + female(X)
f emale(male(X) + human(X)

To explain the differences between the example setting and the nonmonotonic setting, let
us consider

bird(oliver) t

EF = flies(tweety) t

An acceptable hypothesis HI in the example setting would be flies(X) t bird(X). Notice
that this clause realizes an inductive leap asj?ies(oliver) is true in M+(Bl A HI). On the
other hand, HI is not a solution in the nonmonotonic setting as there exists a substitution 6’
= {X t oliver} which makes the clause false (nonvalid) in M+(Bl A Et). This demon-
strates that the nonmonotonic setting hypothesizes only properties that hold in the database.
Therefore, the nonmonotonic semantics realizes induction by deduction. The induction
principle of the nonmonotonic setting states that the hypothesis H, which is, in a sense,
deduced from the set of observed examples E and the background theory B (using a kind of
closed world and closed domain assumption), holds for all possible sets of examples. This
produces generalization beyond the observations. As a consequence, properties derived in
the nonmonotonic setting are more conservative than those derived in the normal setting.

The differences between the two settings are related to the closed world assumption. In
most applications of the example setting in ILP [58,91], only the set of positive examples
is specified, and the set of negative examples is derived from this by applying the closed
world assumption, i.e., by taking E- = M-(B A E+).21n our illustration, this results in

*M-(T) = [f : f E (B(T) - M+(T))), i.e., the complement of the minimal Herbrand model of T,

where 7 denotes the negation of .f, where T is a definite clause program, and where B(T) is the Herbrand
base of T.

638 S. MUGGLETON AND L. DE RAEDT

E, = vies(oEiver)}. Given this modified Er , hypothesis H1 cannot contribute to a solution
in the normal setting. If, on the other hand, we ignore the difference between background
theory and examples and define B2 = 0, and E: = B1 A ET and ET = EF, then clause
Hz can also be part of a solution in the normal setting. Intuitively, this shows that solutions
to problems in the normal setting, where the closed world assumption is applied, are also
valid in the nonmonotonic setting.

Theorem 3.1. Any hypothesis H posterior s@icient and posterior satisfiable for a back-
ground theory B, and examples E such that E- = M-(B A E+), is valid in the
nonmonotonic setting if I3p = f?(B A H) = B(B A E+).

PROOF. We prove that, under these assumptions, M+(B A E+) = M+(B A H).
Define t3p as B(B A H)
1) M+(B A E+) c M+(B A H) because E+ is true in M+(B AH) (posterior sufficiency)
and B is true in M+(B A H)
so EC A B is true in M+(B A H)
so M+(E+ A B) c M+(B A H)
2) M+(B A H) c M+(B A Ef) because B A H A E- k 0 (posterior satisfiability)
so M+(B A H) n M+(E-) = 0
so M+(B A H) n M-(B A E+) = 0
so M+(B A H) C t3p - M-(B A E+)
so M+(B A H) c M+(B A E+) 0

The opposite does not always hold, and this reveals the other main difference between the
two settings. In the normal setting, the induced hypothesis can always be used to replace
the examples because theory and hypothesis entail the observed examples (and possibly
other examples as well). In the nonmonotonic setting, the hypothesis consists of a set of
properties holding for the example set. When using a language bias (cf. Section 7), which
further restricts the (syntactic) form of clauses, there is no explicit guarantee concerning
prediction. For instance, in the nonmonotonic setting (with a language bias restricting
hypotheses to single clauses), hypothesis Hz is a solution for B1 and Ef. Nevertheless, it

cannot be used to predict the example in ET.
The nonmonotonic semantics do not require the closed domain assumption to hold for

the background theory and evidence. Indeed, for example, in a medical application, all
patients should be completely specified, which means that all their symptoms and diseases
should be fully described. Notice that this is different from requiring that the complete
universe is described (i.e., all possible patients).

Although the nonmonotonic and the normal semantics appear to be quite different, it will
turn out that some ILP techniques, such as refinement, apply to both frameworks. Also, the
two semantics allow for a different kind of application; see also Section 11.2.

4. A GENERIC ILP ALGORITHM

In this section, we present a generic ILP algorithm based on the GENCOL model of [1121.
The generic ILP algorithm makes abstraction of specific ILP algorithms and aims at pro-
viding the reader with a general understanding of ILP algorithms and implementations.

A first key observation leading towards a generic ILP algorithm is to regard ILP as
a search problem. This view of ILP follows immediately from the model-theory of ILP

INDUCTIVE LOGIC PROGRAMMING 639

presented in Section 3. Indeed, in ILP, there is a space of candidate solutions, i.e., the set
of “well-formed” hypotheses (which constitutes the syntactic bias or the language bias of
the problem, cf. Section 7), and an acceptance criterion characterizing solutions to an ILP
problem. Following general artificial intelligence principles, one can solve ILP using a naive
generate and test algorithm. This approach is known in the literature as the enumeration
algorithm. However, as for other artificial intelligence problems, the enumeration algorithm
is computationally too expensive to be of practical interest. Therefore, the question arises
of how the space of possible solutions can be structured in order to allow for pruning of
the search. In concept-learning and ILP [72, 125, 74, 1121, the search space is typically
structured by means of the dual notions of generalization and specialization.

In our view, generalization corresponds to induction, and specialization to deduction,
implying that induction is viewed here as the inverse of deduction.3

De$nition 4.1. A hypothesis G is more general than a hypothesis S if and only if G /= S.
S is also said to be more specific than G.

In search algorithms, the notions of generalization and specialization are incorporated
using inductive and deductive inference rules:

Dejinition 4.2. A deductive inference rule r E R maps a conjunction of clauses G onto a
conjunction of clauses S such that G b S; r is called a specialization rule.

As an example of deductive inference rule, consider resolution. Also, dropping a clause
from a hypothesis realizes specialization.

Definition 4.3. An inductive inference rule r E R maps a conjunction of clauses S onto a
conjunction of clauses G such that G + S; r is called a generalization rule.

An example of an inductive inference rule is Absorption:

Absorption:
p+A,B q+A

P +-9,B 9-A

In the rule of Absorption, the conclusion entails the condition. Notice that applying the
rule of Absorption in the reverse direction, i.e., applying resolution, is a deductive inference
rule. Other inductive inference rules generalize by adding a clause to a hypothesis, or by
dropping a negative literal from a clause. Inductive inference rules, such as Absorption, are
clearly not sound. The fact that they cannot be applied in an unrestricted fashion is against
the spirit of logical inference.

This soundness problem can be circumvented by associating each hypothesized conclu-
sion H with a label L = p(HIB A E) where L is the probability that H holds given that
the background knowledge B and evidence E hold. A Bayesian approach to computing
this conditional probability is given in Section 6.

31n this paper, we stick to this-probably controversial-view because it offers a clear and operational
framework for induction. This contrasts with alternative frameworks, which mainly rest on philosophical
intuitions and have less clear logical formalizations.

640 S. MUGGLETON AND L. DE RAEDT

Assuming the subjective assignment of probabilities to be consistent, labeled rules of in-
ductive inference are as sound as deductive inference. The conclusions are simply claimed
to hold in a certain proportion of interpretations.4

Generalization and specialization form the basis for pruning the search space. This is
because

l When B A H w e, where B is the background theory, H is the hypothesis, and e is
positive evidence, then none of the specializations H’ of H will imply the evidence.
Each such hypothesis will be assigned a probability label p(H’I B A E) = 0. They
can therefore be pruned from the search.

a When B A H A e b 0, where B is the background theory, H is the hypothesis, and
e is negative evidence, then all generalizations H’ of H will also be inconsistent
with B A E. These will again have p(H’IB A E) = 0.

For example, in the family example of Section 2.1, one should not consider specializations
of B as they will not imply the positive examples. On the other hand, in the sorting example
of Section 2.3, one should not consider generalizations of the hypothesis qsort(X,X) t as

it is inconsistent with some negative examples.
Given the above key ideas of ILP as search, inference rules, and labeled hypotheses, a

generic ILP system can now be defined:

Algorithm 4. I.

QH := Initialize
repeat

Delete H from QH
Choose the inference rules r-1, rk E R to be applied to H

Apply the rules t-1, rk to H to yield HI, Hz, H,,

Add HI, H,, to Q H

Prune QH

until stop-criterion(QH) satisfied

The algorithm works as follows. It keeps track of a queue of candidate hypotheses Q H.

It repeatedly deletes a hypothesis H from the queue and expands that hypotheses using
inference rules. The expanded hypotheses are then added to the queue of hypotheses Q H,

which may be pruned to discard unpromising hypothesis from further consideration. This
process continues until the stop-criterion is satisfied.

In the above algorithm, the generic procedures are typewritten. The algorithm has
the following generic parameters:

l Initialize denotes the hypotheses started from.
l R denotes the set of inference rules applied.
l Delete influences the search strategy. Using different instantiations of this pro-

cedure, one can realize a depth-first (Delete = LIFO), breadth-first (Delete =

FIFO), or best-first algorithm.

41n the learning literature, assignments of degrees of belief are usually more ad hoc than in Section 6
and are known as “inductive bias.” Inductive bias is often taken to be a binary (accept/reject) assignment.
However, “reject” can simply be viewed as a prior probability of zero.

INDUCTIVE LOGIC PROGRAMMING 641

l Choose determines the inference rules to be applied on the hypothesis H.
l Prune determines which candidate hypotheses are to be deIeted from the queue.

This is usually realized using the labels (probabilities) of the hypotheses on QH

or relying on the user (employing an “oracle”). Combining Delete with Prune,
it is easy to obtain advanced search strategies such as hill-climbing, beam-search,
best-first, etc.

. The Stop-criterion states the conditions under which the algorithm stops.
Some frequently employed criteria require that a solution be found, or that it is
unlikely that an adequate hypothesis can be obtained from the current queue.

Notice that the above algorithm searches for solutions at the hypotheses level rather than at
the clause level, as done by several algorithms such as FOIL [1051 and GOLEM [90]. We
take the more general approach here.

As an example of an instantiation of this algorithm, consider the DUCE and CIGOL
algorithms of [79, 891, which realize a hill-climbing search strategy. At the time Delete
is invoked, the queue always contains a single hypothesis. Initially, this hypothesis is
B A E+. The inference rules are based on inverting resolution (see Section 5.4 for more
details) and include the Absorption rule. In the Pruning phase, only the best hypothesis
is kept; the others are discarded from the queue Q H. Pruning is realized using a mixture
of the minimal description length principle (see Section 6) and relying on the user (the
“oracle”) to decide whether a clause is true in the intended model or not.

The DUCE and CIGOL systems are representatives of the class of “specific-to-general”
systems. These systems start from the examples and background knowledge, and repeatedly
generalize their hypothesis by applying inductive inference rules. During the search, they
take care that the hypothesis remains satisfiable (i.e., does not imply negative examples).
Other representatives of this class include ITOU [12 11, CLINT [1071, MARVIN [1241,
GOLEM [90], and PGA [20].

The dual class of systems, which searches “general-to-specific,” starts with the most
general hypothesis [i.e., the inconsistent clause 0) and repeatedly specializes the hypothesis
by applying deductive inference rules in order to remove inconsistencies with the negative
examples. During the search, care is taken that the hypotheses remain sufficient with regard
to the positive evidence. Systems of this type include FOIL [105 1, CLAUDIEN [1131, MIS
[1251, MOBAL [54], GRENDEL 1241, and ML-SMART [9].

The same search strategies are also valid in the nonmonotonic setting (cf. [47, 1131).
Indeed, in the nonmonotonic setting, one is interested in the boundary of maximally general
hypotheses, true in the minimal model. Above the boundary, the hypotheses will be false,
and below that boundary, they will either be false or nonmaximal. To locate the boundary,
one can search again specific-to-general or general-to-specific.

In the next two sections of this paper, we will give a detailed overview of the different
types of inductive inference rules applied in ILP (the proof-theory of ILP, see Section 5), and
provide a unifying framework that makes abstraction of specific labeling schemes employed
in ILP (the probabilistic semantics of ILP, see Section 6). These two aspects lie at the heart
of ILP Other implementation aspects (such as search-strategy) usually follow from these
two using general artificial intelligence principles.

5. PROOF-THEORY OF ILP

In this section, we give a detailed overview of different frameworks for inductive inference
rules. Remember from Section 4 that induction was viewed as the inverse of deduction.

642 S. MUGGLETON AND L. DE RAEDT

Given the formulas B A H + E’, deriving E+ from B A H is deduction, and deriving
H from B and E+ is induction. Therefore, inductive inference rules can be obtained by
inverting deductive ones. Since this “inverting deduction” paradigm can be studied under
various assumptions, corresponding to different assumptions about the deductive rule for
+ and the format of background theory B and evidence Et, different models of induc-
tive inference are obtained. In the simplest model, 8-subsumption (see Section 5.2), the
background knowledge is supposed to be empty, and the deductive inference rule corre-
sponds to 0-subsumption among single clauses. Since the deductive inference rule based
on t9-subsumption is incomplete with regard to implication among clauses, extensions of
inductive inference under 8-subsumption have been recently studied under the header “in-
verting implication” (see Section 5.5). Extensions of 8-subsumption that take into account
background knowledge are studied in Section 5.3. Finally, the most attractive but most
complicated framework for inductive inference is studied in Section 5.4. This framework
takes into account background knowledge and aims at inverting the resolution principle,
the best-known deductive inference rule.

Before going into details about these different frameworks, we discuss the difference
between inference rules and inference operators, which is important when searching the
space of hypotheses.

5.1. Rules of Inductive Inference and Operators

Recall from Section 4 that inference rules basically state what can be inferred from what.
A well-known problem in artificial intelligence is that the unrestricted application of infer-
ence rules results in combinatorial explosions. To control the application of inference rules,
artificial intelligence employs “operators” that expand a given node in the search tree into
a set of successor nodes in the search. This, together with the above properties of gener-
alization and specialization discussed earlier, motivates the introduction of specialization

and generalization operators (see also [1121):

Definition 5.1. A specialization operator maps a conjunction of clauses G onto a set of
maximal specializations of S. A maximal specialization S of G is a specialization of G
such that G is not a specialization of S, and there is no specialization S’ of G such that
S is a specialization of S’.

Dejinition 5.2. A generalization operator maps a conjunction of clauses S onto a set of
minimal generalizations of S. A minimal generalization G of S is a generalization of S
such that S is not a generalization of G, and there is no generalization G’ of S such that
G is a generalization of G’.

In the spirit of restricting the application of inference rules, one usually imposes further
conditions on the operators. Such conditions (see also below) require, for instance, that the
generated hypotheses satisfy the language bias, that the operators be complete (generate all
clauses in the language), etc.

INDUCTIVE LOGIC PROGRAMMING 643

5.2. 8-Subsumption

We start discussing the simplest model of deduction for ILP: 0-subsumption as introduced
by Plotkin.

Definition 5.3. ([99, IOO]) A clause ct Q-subsumes a clause c2 if and only if there exists a
substitution 8 such that cl@ E ~2. ct is a generalization of c2 (and c:! a specialization of
cl) under 8-subsumption.

In this definition, clauses are seen as sets of (positive and negative) literals.
The f?-subsumption inductive inference rule is thus

8-subsumption: -$ where cl0 C ~2.

For example, father(X, Y) t parent(X, Y), male(X) &subsumes father[jeJpaul) t par-
ent(jef;paul), parent(jeJann), male(jef), female(ann) with 0 = {X = jef; Y = arm}.

5.2.1. PROPERTIES. Some properties of 8-subsumption include (see [100,991)

Implication. If ct e-subsumes c2 then ct b ~2. The opposite does not hold for self-
recursive clauses: let CJ = p(f(X)) t p(X); c2 = p(f(f(Y))) t p(Y); cl +
122, but ct does not Q-subsume ~2. Therefore, deduction using 0-subsumption is not
equivalent to implication among clauses; see also Section 5.5.

Infinite Descending Chains. There exist infinite descending chains, e.g.,

MXt , X2) +

h(Xl, X2) +- P(XI, X2)

WXl, X2) + PCXI 3 X~)>PWZ, X3)

. . .

This series is bounded from below by h(X,X) t p(X,X).
Infinite Ascending Chains. There exist rather complicated infinite ascending chains, see

[991.
Equivalence. There exist different clauses that are equivalent under &subsumption, e.g.,

parent(X, Y) +- mother(X, Y), mother(X,Z) &subsumes parent(X, Y) t mother(X, Y)
and vice versa. Because two clauses equivalent under 0-subsumption are also log-
ically equivalent (implication), ILP systems should generate at most one clause of
each equivalence class. For an extended discussion of equivalence, see [69].

Reduction. To get around this problem, Plotkin defined equivalence classes of clauses,
and showed that there is a unique representative (up to variable renamings) of each
clause, which he named the reduced clause. The reduced clause r of a clause c is a
minimal subset of literals of c such that r is equivalent to c. An algorithm to reduce
clauses follows from this. ILP systems can get around the problem of equivalent
clauses when working with reduced clauses only.

Lattice. The set of reduced clauses form a lattice, i.e., any two clauses have a unique lub
(the least general generalization-Zgg, see also below) and any two clauses have a
unique glb.

5.2.2. OPEJLAIQES

5A simplified form of 8-subsumption has been studied by Steven Vere [142].

644 S. MUGGLETON AND L. DE RAEDT

Let us first discuss specialization under &subsumption. Shapiro [1251 introduced the
notion of a refinement operator p for clauses, which corresponds to our notion of a special-
ization rule under 0-subsumption with the restriction that G and S contain a single clause.
Refinement operators basically employ two operations on a clause:

1. apply a substitution 6 to the clause,
2. add a literal (or a set of literals) to the clause.

There are several issues in designing refinement operators. In the next definition, we
assume a specific language bias L: is used (see Section 7). Without loss of generality, we
assume C has a most general element T.

Dejinition 5.4. (properties of refinement operators)

Global completeness. A refinement operator p (with transitive closure p*) is globally
complete for a language JZ if and only if p*(T) = C, where T is the most general
element in C.

Local completeness. A refinement operator p (with transitive closure p*) is locally com-
plete for a language _C if and only if Vc E L: : p(c) = {c’ f C 1 c’ is a maximal
specialization of c}.

Optimality. A refinement operator p (with transitive closure p*) is optimal for a language
C if and only if Vc, cl, c2 E L : c E p*(q) and c E p*(q) + cl E P*(Q) or

c2 E p*6-3>.

First, for reasons discussed above, it is desirable that only reduced clauses are generated
by the refinement operators; such a refinement operator for full clausal logic was recently
developed by Patrick van der Laag [61]. Second, to consider all hypotheses, operators
should be globally complete (preferably, for a language containing only reduced clauses).
Third, if a heuristic general-to-specific search strategy (such as hill climbing in FOIL [1051)
is employed, the operator should be locally complete. If the operator is not locally complete,
not all successors of a node (hypothesis) in the search space are considered. On the other
hand, if a complete search strategy is used (such as breadth-first [1251 or depth first iterative
deepening [113]), it is desirable that the operator be optimal because they generate each
candidate clause exactly once. Nonoptimal refinement operators, such as in Shapiro’s MIS
[1251, generate all candidate clauses more than once, getting trapped in recomputing the
same things again and again. Recently, an optimal refinement operator for full clausal logic
was developed by Wim Van Laer [1411 for use in the nonmonotonic setting of CLAUDIEN
[113].

The definitions of the properties of generalization operators (for 8-subsumption and
single clauses) can be derived from those of refinement operators. Neither a locally nor a
globally complete generalization rule for full clausal logic (and also definite clause logic)
exists because of the infinite descending chains. Indeed, without additional assumptions
about the language bias, the most specific generalization of h(X,X) +- p(X,X) under 8
subsumption contains an infinite number of literals. Generalizat.ion operators thus depend
very much on the language bias employed. Therefore, we do not discuss them any further
here.

Although generalization operators under t!?-subsumption for single clauses under 8-
subsumption do not exist for full clausal logic, a generalization rule that starts from pairs of
clauses does exist. This is the well-known least general generalization rule of Plotkin [99],

INDUCTIVE LOGIC PROGRAMMING 645

which computes the greatest lower bound of the two input clauses under B-subsumption. To
compute the lgg of two clauses, consider the following. The lgg of the terms f(sr , ,.., sn)
and f(tr, r,) is f(lgg(sr, tl), Zgg(s,, t,)). The Zgg of the terms f(sr, s,) and
g(tl , tm) where f # g is the variable u where IJ represents this pair of terms through-
out. The lgg of two atoms ~($1, s,,) and ~(tr, t,J is p(Zgg(sr , tl), Zgg(s,, t,)),
the lgg being undefined when the sign or the predicate symbols are unequal. Finally, the
Zgg of two clauses cl and c2 is then {Egg(lt, E2) 1 11 E cl and 12 E Q}. For example, the
lgg offather(tom,ann) t parent(tom,ann), male(tom), female(ann) and father(jejpaul) t

parent(jeJpaul), male(jefl, male(pau1) is father(X, Y) t parent(X, Y), male(X), male(Z).

5.3. Relative Subsumption

Plotkin [IOO] extended the notion of &subsumption to that of relative subsumption as
follows. First, he defines c-derivations, which defines the deductive inference rule, i.e., the
way t is implemented.

Dejnition 5.5. A resolution-based derivation D of the clause c from the conjunction of
clauses T is called a c-derivation if and only if each clause in T appears at most once in
D.

Plotkin then defines relative subsumption as follows.

Dejinition 5.6. The conjunction of clauses T relatively subsumes the clause c if and only
if there exists a c-derivation of a clause d from T such that d 8-subsumes c.

Like 8-subsumption, it is straightforward to define relatively reduced clauses using a
straightforward definition of relative clause equivalence. Relative subsumption forms a lat-
tice over relatively reduced clauses. Plotkin defines the relative least general generalization
(rlgg) as follows.

Dejinition 5.7. The least general generalization of clauses c and d relative to T is the lub

of c and d within the relative subsumption ordering.

Plotkin shows that the rlgg of two clauses is not necessarily finite. However, under the
language bias of ij-determinacy introduced in [90], a unique, finite rlgg can be constructed.

Buntine [21] defined a special case of relative subsumption which he called generalized

subsumption. Generalized subsumption is only applicable to definite clauses.

5.4. Inverting Resolution

As stated in Section 5.1, inductive inference rules can be viewed as the inverse of deductive
rules of inference. Since the deductive rule of resolution is complete for deduction, an
inverse of resolution should be complete for induction. This idea of “inverse resolution”
was first introduced for first-order logic in [89]. Several authors have expanded on these
ideas [144, 49, 121, 1361. Four rules of inverse resolution were introduced in [79].

646 s. MUGGLETON AND L. DE RAEDT

FIGURE 1. Absorption as a V-operator.

Absorption:

Identification:

Intra-Construction:

Inter-Construction:

q+A p+A,B
q+A p +q,B

p+A,B P +A,9
q+B P +-A,9

p+A,B p+-A,C
9+-B P +A,9 9+-c

P+-A,B q+A,C
p+r,B ?-+A 4 +r,C

In these rules, lower-case letters are atoms and upper-case letters are conjunctions of
atoms. Both Absorption and Identification invert a single resolution step. This is shown
diagrammatically in Figure 1 as a “V” with the two premises on the base and one of the
arms. The new clause in the conclusion is then the clause found on the other arm of the V.
For this reason, Absorption and Identification were called collectively V-operators.

The rules of Inter- and Intra-Construction introduce a new predicate symbol. Inductive
inference rules which introduce new predicates are said to carry out “predicate invention”
(see Section 9). When constructing logic programs such as “insertion sort,” ILP systems
such as CIGOL [89] use Intra-Construction to introduce a new predicate “insert.” The
new predicate can then be generalized using a V-operator. Diagrammatically (see Figure
2), the construction operators can be shown as two linked V’s, or a W, each representing a
resolution. The premises are placed at the two bases of the W and the three conclusions at the
top of the W. One of the clauses is shared in both resolutions. Intra- and Inter-Construction
are collectively called W-operators.

The V- and W-operators have most specific forms (see Definition 2) as shown below (see

also [Sl]).

INDUCTIVE LOGIC PROGRAMMING 647

PfA,Cl qec

pf A,B p+ AC

FIGURE 2. Intra-Construction as a W-operator.

AbsorptionJ: q+A P+-A,B

q+A P +- 4, A, B

IdentificationJ : p+A,B P +-A,q
q+A,B P +A,q

Intra-Construction&: p + A, B P+-A,C

q +A,B p+-A,q q +A,C

Inter-ConstructionJ: p t A, B q-+A,C

p +-r,A,B rtA q +r,A,C

Note that, in this form, the V-operators realize both generalization and specialization
since the conclusions entail the premises. Use of most specific operators is usually imple-
mented [122, 901 by having a two-stage operation. In the first phase, inverse resolution
operators are applied to examples (this is called saturation in [1221). In the second phase,
clauses are reduced by generalization through the 8-subsumption lattice (see Section 5.2).

In [81], it was shown that the lgg of two examples el and e2 saturated relative to back-
ground knowledge B is equivalent to the rlgg of el and e2 relative to B. This result
established a relationship between generalizations based on subsumption and those based
on inverse resolution.

5.4.1. MATCHING SUBCLAUSES. Just as resolution requires unification to match terms,
inverse resolution operators require a matching operation. In [1221, all clauses, including
the examples, are “flattened.” This involves introducing a new (n+l)-ary predicate for every
n-ary function symbol. Thus, the clause member(a, [a, b]) t becomes

member(U, V) t a(U), dot(V, U, X), dot(X, Y, Z), b(Y), niE(Z).

Each new predicate symbol is then separately defined. For instance,

dot([XIYl, X, Y> +

648 S. MUGGLETONANDL,DERAEDT

After flattening, the problem of matching clauses when applying the inverse resolution
operators reduces to one-sided matching of clause bodies. In [81], saturation using most
specific operations is shown to be complete with respect to Plotkin’s c-derivations (see
Section 6). This kind of completeness result was demonstrated independently in [121].
However, c-derivations do not cover all cases in which B + c. The latter problem is known
as inverting implication.

5.5. Inverting Implication

Plotkin [loo] was the first to show that 8-subsumption and implication between clauses
are not equivalent. The difference between the two is important since almost all inductive
algorithms which generalize first-order clauses invert 0-subsumption rather than implica-
tion. This inevitably leads to a form of incompleteness in these algorithms. In this section,
methods of constructing the inverse implicants of clauses are explored. In Section 55.4, it
is shown how these methods can be extended to the problem of inverting implication in the
presence of background knowledge. First, the difference between Plotkin’s &subsumption
and implication between clauses will be reviewed.

Remember from Section 5.2 that, whenever clause c &subsumes clause d, it also implies
d. However, the converse does not hold. For instance, Plotkin shows that with clauses

c = P(f(X)) +- P(X)

d = ~(f(fG>>) + P(X)

c implies d since d is simply c self-resolved. However, c does not B-subsume d. In
discussing this problem, Niblett [93] proves various general results. In particular, he shows
that there is not always a unique least generalization under implication of an arbitrary pair
of clauses. For instance, the clause d above and the clause d’ = p(f(f(f(X)))) t p(X)

have both c and the clause p(f (X)) t p(Y) as least generalizations. Although Niblett
claims that implication between Horn clauses is decidable, this has since been shown to be
false by Marcinkowski and Pacholski [70].

Gottlob [42] also proves a number of properties concerning implication between clauses.
Notably, let c+ , c- be the positive and negative literals of c and d+ , d- be the same for d.

Now, if c + d, then cf Q-subsumes d+ and c- 6-subsumes d-.

5.5.1. SUBUNIFICATION. The problem of inverting implication is discussed in a paper
by Lapointe and Matwin [63]. They note that inverse resolution (Section 5.4) is incapable
of reversing SLD derivations in which the hypothesized clause is used more than once.
In fact, Plotkin [lOO] showed that the same problem appears in the use of relative least
general generalization of clauses (see definition of c-derivations). Lapointe and Matwin
go on to describe subunification, a process of matching subterms. They demonstrate that
subunification is able to construct recursive clauses from fewer examples than would be
required by ILP systems such as Golem [90] and FOIL [1051. For instance, given the atoms
append([], X, X) and append([a, b, Y], [l, 21, [a, b, Y, 1,2]), subunification can be used
to construct the recursive clause

appendWlV1, W, [XIYI) -+ appendO’, W, Y>

Unlike the approach taken originally with inverse resolution 1891, Lapointe and Matwin
do not derive subunification from resolution. Instead, subunification is based on a definition

INDUCTIVE LOGIC PROGRAMMING 649

of most general subunifiers. Although the operations described by Lapointe and Matwin

are shown to work on a number of examples, it is not clear how general the mechanism is.
A complete though nondeterministic algorithm is given for inverting implication in [85].

A complete and deterministic method is given by Idestam-Almquist [50]. A new and simple
inverse implication technique called “forced simulation” is described in [26].

55.2. IMPLICATION AND RESOLUTION. In this section, the relationship between reso-
lution and implication between clauses is investigated. Below, a definition equivalent to
Robinson’s [I201 resolution closure is given. The function RC below contains only the
linear derivations of Robinson’s function R. However, the closure is equivalent up to re-
naming of variables given that linear derivation (as opposed to input derivation) is known
to be complete.

Definition 5.8. (Resolution closure)
Let T be a set of clauses. The function R.C is recursively defined as

R&(T) = T

KY”(T) = (c (cl E RLCn-‘(T), c2 E T, c is the resolvent of ct and ~2)

the resolution closure XL*(T) is RC’(T) U RL2(T) U . .

5.5.3. NTH POWERS AND NTH ROOTS OFCLAUSES. The set of clauses constructed by self-
recursing c, RL*({c]), is partitioned into levels by the function 7213. By viewing resolution
as a product operation, Muggleton and Buntine [89] stated the problem of finding the inverse
resolvent of a pair of clauses as that of finding the set of quotients of two clauses. Following
the same analogy, the set c 2 = RL’({c}) might be called the squares of the clause c and
c3 = 7X3({c}) the cubes of c. The following definition from [85] captures this idea.

Dejinition 5.9. (nth powers of a clause)
Let c and d be clauses. For n 1 1, d is an nth power of c if and only if d is an alphabetic
variant of a clause in %XY((c}).

Taking the analogy a bit further, one might also talk about the nth roots of a clause.

Definition 5.10. (nth roots of a clause)
Let c and d be clauses. d is an nth root of c if and only if c is an nth power of d.

We now have: in terms of nth roots of a clause:

Corollary 5.1. (Implication between clauses in terms of nth roots) Let c be an arbitrary
clause and d a nontautological clause. c k d if and only iffor some positive integer n,
c is an nth root of a clause e which O-subsumes d.

It is fairly straightforward to enumerate the set of clauses which &subsume a given
clause. Therefore, the problem of finding the set of clauses which imply a given clause
c reduces to that of enumerating the set of nth roots of clauses which 8-subsume c. The
special case of clauses which immediately &subsume c occurs with n = 1. An algorithm
for constructing nth roots is given in [85].

650 S. MUGGLETGN ANDLDERAEDT

5.5.4. IMPLICATION AND BACKGROUND KNOWLEDGE. In the normal setting of Induc-
tive Logic Programming (Section 3.1), generalization is carried out in the presence of back-
ground knowledge. In this section, the solution to inverting implication between clauses is
extended to the case in which background knowledge is present.

Assume a background clausal theory B and a clause (or example) c which is not entailed
by B. Assume that there is a single clause d such that

This problem can be transformed to one involving implication between single clauses as
follows.

Br\d+c

d I= (B + c>
bd -+ (B + c)

bd+ (BAT)

+ d -+ (11 A /2 A . .)

In the last line, (B A F) is replaced with a conjunction of all ground literals which can be
derived from (B A C). This can be viewed as replacing the formula with a model of the
formula. Since (II A 12 A . . .) is a conjunction of literals, the last line above represents
implication between two clauses. The clause (II v 12 v . . .) can be constructed to be of
finite length if B is range-restricted or generative (see [go]) and elements of the model are
only constructed to a finite depth of resolution. This clause can then be used to construct c
using an algorithm for constructing nth roots.

6. PROBABILISTIC SEMANTICS: CONFIRMATION AND BELIEF

According to Utgoff and Mitchell [1391, bias is anything which influences how the concept-
learner draws inductive inferences based on the evidence. There are two fundamentally
different forms of bias: declarative bias, which defines the space of hypotheses to be
considered by the learner, i.e., what to search, and preference bias, which determines how

to search that space, which hypotheses to focus on, and which ones to prune, etc. In this
section, we will discuss the probabilistic semantics of ILP, which underly any preference
bias. The next section presents different forms of declarative bias.

Since there will generally be more than one candidate hypothesis which explains all the
examples, we need a sound basis for grading hypotheses, i.e., a preference bias. Many ILP
algorithms, such as FOIL [1051, use information-based techniques to guide search. In this
section, the information compression techniques described in [80, 92, 271 are presented
within a unifying Bayesian approach to confirmation and corroboration of hypotheses.
The relationship between the probabilistic view and information view are shown from first
principles. This general approach has the advantage of being applicable even when only
positive examples are available.

6. P. Probability Calculus

Unlike deductive inference, the conclusions of inductive inference are not assured to follow
from what is known. Thus, each inductively inferred logical statement is accompanied by

INDUCTIVE LOGIC PROGRAMMING 6.51

U

FIGURE 3. Venn diagram for probabilities.

a degree of belief, or probability value (see Section 4).
The probability calculus, like the predicate calculus, has its basis in set theory. Figure 3

is a Venn diagram depicting the intersecting sets P and Q within the universal set U.
The probability of a randomly chosen element of U being in P, written p(P) is defined

as follows.

Similarly for Q. Given that a randomly chosen element of U is found within Q, the proba-
bility that it is also found within P, written p(PJQ), is

p(PIQ), or the probability of P given Q, is known as a conditional probability. Noting that

P@ n Q> = M’IQ).p(Q) = P(QIP).P@‘)

and rearranging gives Bayes’ theorem,

p(PIQ) = P(V.P(QIP)

P(Q)

Suppose that in Figure 3 P represents the set of all Herbrand models of the well-formed
formula P, Q, the same for the well-formed formula Q and U= 2”(“‘Q) the set of all
Herbrand interpretations of P A Q. Then p(P) = p(P) is simply the proportion of inter-
pretations of P which are models of P. This is also the probability that a randomly chosen
interpretation is a model of P. p(P l Q) is the proportion of models of Q which are models
of P. This probabilistic interpretation of first-order predicate calculus was suggested by

652 S. MUGGLETON AND L. DE RAEDT

the Philosopher of Science Carnap [22,78] in the 1950s. It has the properties that

p(O) = 0,
pm = 1,
P(P A Q> = p(Pn Q>,
P<P” Q> = PF u Q>,
p(P) = 1 - p(P) and

P(P) 5 p(Q) if P I= Q.

However, p(P) is undefined when P has an infinite set of Herbrand models.

6.2. Justijication

Suppose we are attempting to induce a definition of the predicate p from positive examples
only. Abduction will have two extreme solutions.

H = T = p(xl, .., x,) t

H=I=E+

When negative examples are present, application of the posterior satisfiability condition
(Section 3) will replace the unique topmost element by a set of topmost elements. In the
following, let

T=Br\H

Let us assume that our degree of belief in a formula can be represented as a subjective
probability. We can therefore make use of Bayes’ Theorem as follows.

P(TIE) =
P(T).P(EIT)

P(E)

Below, we assume that the evidence is correct, and therefore p(E) = 1. As already
mentioned, Catnap took the view that p(T) is the proportion of interpretations which are
models of T. This leads to the paradox that if T has a finite set of models among an infinite
set of interpretations, then p(T) = 0, i.e., T is necessarily false. Solomonoff [128] took
an alternative approach to these probabilities by re-interpreting them in information terms.
Any recursively enumerable set must have finite information since it can be denoted by a
finite formula. However, a theory T for which p(T) = 0 has infinite information. In all
other ways, Solomonoff’s syntactically-oriented approach provides a usable approximation
to Carnap’s probabilistic interpretation of logic formulas.

Like Carnap’s interpretation, Solmonoff’s approach can be used to ascribe prior proba-
bilities to logic programs. However, in Solomonoff’s case, p(P) = 2-U(p) where o(P) is
the number of bits in the minimum encoding of P (the information content of the formula
P). In both Carnap and Solomonoff’s case, since the number of logic programs is large
and prior probabilities must sum to 1, the prior probability of any particular logic program
will be very small. Larger logic programs can be composed of smaller logic programs
by conjunction. When the models of two logic programs P and Q are independent (the
“average” case), p(P A Q) = p(P).p(Q). Even when P and Q are not independent,

INDUCTIVE U)GIC PROGRAMMING 653

p(P A Q) must be less in Carnap’s interpretation than both p(P) and p(e) (see Figure
3). According to Shannon’s information theory, the information content of logic program
P is Z(P) = -Zog2p(P). Using this definition, we have the following properties for the
information content of logic programs.

Empty program. (Z(W) = 0) since (p(M) = 1).
Empty clause. (Z(D) = 00) since (p(O) = 0).
Additive composition. (p(P A Q) = p(P).p(Q)) implies (Z(P A Q) = Z(P) + Z(Q)).

Note that additive composition assumes independence of P and Q. We have the following
corollary of Bayes’ Theorem.

Corollary 6.1. Information Bayes. Let E represent the evidence for theory T. Then, if
T + E, then

Z(TIE) = Z(T) + Z(EIT) - Z(E)

PROOF. Simply the log form of the Bayes’ formula. 0

It is possible that for certain T, Z(T 1 E) 1 Z(B A E). In this case, we might say that T
does not “compress” the examples since it has greater information content than the examples
themselves. Random data (sometimes called noise) cannot be compressed. The principle of
choosing the theory which minimizes Z (T 1 E) is known as Rissanen’s minimum description

lengthprinciple (MDL)[1 19].6The MDL principle has been made use of in machine learning
by Quinlan and Rivest [1041. MDL has been used in ILP in [80,92,27] and [1051. It is a
generalization of other Bayesian confirmation techniques such as those used in [32].

The following result shows that the choice of the theory with minimum description is
equivalent to choosing the theory which has maximum Bayes’ posterior probability. This
is the same as Fisher’s maximum likelihood principle (maximize Z(E (T)) when the prior
probability p(T) is assumed to be the same for all T.

Theorem 6.1. Equivalence of minimum description and maximum posterior probabil-
ity. Let E be evidence for a set of potential theories chosen from C.

minraz(TIE) = -~og~~~~c~(TlE)

PROOF. Follows trivially from the fact that log2 is monotone and Z(TI E) =

-logzp(TlE).

Solmonoff’s cr function is not computable due to halting. However, a variety of good
approximations to this approach are given in [105,80,92,27]. The fine details of functions
used are beyond the scope of this paper.

6Rissanen’s principle is a variant of Jayne’s maximum en~opy principle, but more sophisticated than
William of O&ham’s (1290-1349) razorprinciple which advocates minimizing I(T) rather than Z(T(E).

654 S. MUGGLETON ANDLDERAEVT

7. DECLARATIVE BIAS

In this section, we will briefly discuss the most important forms of declarative bias. Current
ILP systems distinguish two kinds of declarative bias: syntactic bias (sometimes also called
language bias) and semantic bias. Syntactic bias imposes restrictions on the form (syntax)
of clauses allowed in hypothesis. To illustrate syntactic bias, let us consider abduction as it
is usually perceived in logic programming. Roughly speaking, abduction can be considered
the special case of the normal setting in inductive logic programming, where the syntactic
bias restricts the hypotheses to positive ground unit clauses, where the positive evidence is
a true ground fact, and the negative evidence a set of integrity constraints. Semantic bias
imposes restrictions on the meaning, or the behavior of hypotheses. To illustrate semantic

bias, consider types and modes.

7.1. Syntactic Bias

Formally speaking, a syntactic bias defines the set of well-formed hypotheses IH. The set
of well-formed hypotheses 1-I is usually defined from a language bias C, which is the set of
syntactically acceptable clauses.

Since the syntactic bias of an ILP system determines the actual result, it is a very important
parameter of an ILP system. Whereas, previously, most ILP systems employed an implicit
built-in syntactic bias, there is a growing interest in general formalisms to specify syntactic
bias. The advantage of such general formalisms is that language bias can be decoupled from
particular ILP implementations. Hence, it becomes a true portable parameter of the system,
which facilitates the comparison of different systems. In the remainder of this section, we
first present four different frameworks for bias specification, and then briefly study the link
between syntactic bias and the efficiency of ILP algorithms.

7.1.1. GENERAL FRAMEWORKS FOR BIAS-SPECIFICATION. At present, there exist four
more or less general frameworks to specify language bias, i.e., to specify the set of clauses
allowed in hypotheses. This includes: the inductive logic programming language of
Bergadano [8, lo], the antecedent description grammars of Cohen [24,23], the schemata of
the BLIP-MOBAL team [35,54], and their variants [111,127,135]. The fourth framework,
parametric languages as defined by [90, 107,20,25], will be presented when discussing the
link to the complexity of learning.

Bergadano’s inductive logic programming language uses a notation close to PROLOG
as it aims mainly at applications in programming. It extends PROLOG by means of clause
sets and predicate sets. As an example, consider the following expression:

(father(X, Y) t {maZe(X),female(X)}, parent(X, Y);
mother-(X, Y) + {male(X),female(X)}, parent(X, Y) }

Set expressions, denoted using [}, are used to express that a subset of the literals or clauses
may be present in the final hypothesis. The above expression denotes the hypotheses space
consisting of all subsets of the following set of clauses:

(father(X, Y) + male(X),femule(X), parent(X, Y);
father-(X, Y) t female(X), parent(X, Y);
father-(X, Y) t male(X), parent(X, Y);
father(X, Y) t parent(X, Y);

INDUCTIVE LOGIC PROGRAMMING 655

mother(X, Y) + male(X),female(X), parent(X, Y);

mother(X, Y) t female(X), parent(X, Y);

mother(X, Y) t male(X), parent(X, Y);

mother(X, Y) t parent(X, Y)}

Whereas the framework introduced by Bergadano aims at readability, the framework of
Cohen aims at generality and computing power. Cohen employs a kind of definite clause
grammar, which he calls antecedent description grammars, to describe the set of well-
formed clauses. The above clauses can be encoded in this formalism as follows:

goal_formula(father(X, Y))).

goal_formula(mother(X, Y))).

body(father(X, Y) + m(X),flX), [parent(X, Y)]
body(mother(X, Y) + m(X),f(X), [parent(X, Y)]
NW -+ [I
m(X) + [~WJI
f(X) + [I
f(X) + [female(X)]

In this notation, goal-formula defines the predicates to be learned, and body(P) is the
starting symbol of a grammar for learning clauses with as head P. As for definite clause
grammars, square brackets enclose terminal symbols.

Another type of syntactic bias that is often used in inductive logic programming is a form
of second-order schemata. Here, we present the formalism first introduced by Emde et al.

[35] and later adapted or employed by [77,147,137,111,127,54,135]. Slightly different but
related formalisms have been considered by [149,381. A second-order schema is basically a
clause, where some of the predicate names are (existentially quantified) predicate variables.
One such second-order schema is, e.g.,

S = 3P, 4, r : p(X, Y> +- 4(X, XW), q(YW, Y), r(XW, YW)

A set of second-order schemata defines a language bias as the set of all clauses that can
be obtained by instantiating a second-order schema with a second-order substitution. A
second-order substitution is a substitution that replaces predicate-variables by predicate-
names.

For schema S, 0 = { p = connected, q = part-oj r = touches} is a second order
substitution. The instantiated schema SO yields

connected(X, T) + part-of(X,XW), part-ox Yu: Y), touches(XW YW)

The above three ways of specifying bias have the advantage that the specification is
closely connected to the structure on the search space under 8-subsumption. Indeed, Kietz
and Wrobel [54] showed, both theoretically and also in their MOBAL system, that second
order schemata can be partially ordered and effectively searched using an extension of
f3-subsumption, Cohen showed that generality can be determined at the sentential level
(which are sentences containing both terminals and nonterminals) and effectively used to
guide the search, and for Bergadano’s formalism, the structure of the search-space follows
directly from the set notation. The three formalisms can therefore be easily used in the
general-to-specific framework under 8-subsumption.

656 S. MUGGLETON AND L. DE RAEDT

Finally, let us note that Cohen’s formalism is the most powerful but least declarative
framework, and that both Bergadano’s framework and that of BLIP-MOBAL are comple-
mentary. Indeed, using Bergadano’s framework, it is easy to make abstraction of the number
of literals in a clause, whereas a language bias having a fixed number of literals would re-
sult in a huge number of expressions. Schemata are complementary in that the opposite is
true. Therefore, it might be interesting to consider a straightforward generalization of both
models, where the set expressions also allow for predicate variables.

7.1.2. SYNTACTIC BIAS AND THE COMPLEXITY OF THE SEARCH. Earlier approaches
[107, 90, 201 to bias specification employed a parametric approach, where a number of
parameters determined the syntax of clauses in the hypotheses. The parametric approach
has the advantage that it is easy to implement a shif of bias [1071, which occurs when the
learner changes the language bias. Changing the language bias may be necessary when there
exists no solution within a certain syntactic bias. Using a parametric approach, shifting the
bias can be realized by modifying the parameters in such a way that the language becomes
more expressive.

In the parametric approach, various parameters have been employed; many of them are
rather straightforward and include criteria such as restrictions on the maximum number of
variables in a clause, the maximum number of literals in a clause, the predicates allowed in

the hypotheses, etc.
Before presenting some of the more advanced notions, we introduce “linked” clauses

[481.

Dejinition 7.1. A clause is linked if all of its variables are linked. A variable v is linked in
a clause c if and only if v occurs in the head of c, or there is a literal 1 in c that contains
the variables v and w (v # w) and w is linked in c.

The linkage requirement is meant to exclude usually useless clauses such as, for instance,
p(X) t r(Z). A linked clause is, for instance, p(X) t q(X, Y),r(xZ),t(Z,W).

The following parameters are important as they determine the computational complexity
of the learning.

Definition 7.2. (depth of term) The depth d(V) of a variable V is 0. The depth d(c) of a
constant c is 1. The depth d(f(tl, t,)) of a term f(tl, tn) is 1 + max d(ti).

Limiting the depth of terms in hypotheses to 1 corresponds to working with functor-free
clauses.

Dejinition 7.3. (level of a term) The level l(t) of a term t in a linked clause c is 0 if t occurs
as an argument in the head of c, and 1 + min l(s) where s and t occur as arguments in
the same literal of c.

The variable F in father t male(F), parent has level 0, the variable C in
father(F) t male(F), parent has level 1, the variable G in grandfather(F) t male(F),

parent(EC),parent(C,G) has level 2, etc. The level of a term corresponds to Muggleton and
Feng’s i parameter [90] and De Raedt’s level of existential quantification [1071.

Both the level and the depth of terms are frequently employed by ILP learners to define
language restrictions; see, for example, [90,107,109,25,56]. The two notions are especially
important in the context of specific-to-general ILP systems such as ITOU [121], GOLEM

INDUCTIVE LOGIC PROGRAMMING 657

[90], CLINT [107], and PGA [20] because this class of learners starts learning from a
so-called starting clause. The starting clause SC(B, L, e) is a function of the background
theory B, the language bias L, and a positive example e. SC(B, L, e) yields a most specific
clause c E L such that B A c + e.

For linked languages with maximum depth 1 and level > 1, the starting clause is unique,
but the number of literals can grow exponential with its level; see Example 7.1.

Example 7.1. Let B be defined as follows:

B=

I

parent (jef, Paul) +

parent(jef, ann) t

male(pau1) +-
f emale(ann) t

let e = is-a-father(jef), and let the clauses in the languages have a maximum depth 1 and
maximum level 2. The only starting clause is then

is-a-father(jef) t parent(jef;ann), parent(je~paul),fefemle(ann),rnale(paul)

Therefore, specific-to-general systems being complete for these languages-without
using additional (semantic) restrictions-are inefficient; cf. [56].

Also, starting clauses are not necessarily unique, and the number of starting clauses can
be exponential in the maximum number of variables allowed in clauses. This is illustrated
in Example 7.2.

Example 7.2. Given the same background knowledge and example as in Example 7.1 and
clauses having a maximum of two variables, the following clauses are legal starting clauses:

is-a-father(F) t parent(F;C), male(C)

is-a-father(F) t parent(lj;C), female(C)

It is easy to extend this example and show that the number of starting clauses can grow
exponentially in the number of variables.

7.2. Semantic Bias

Although modes and types are usually employed to optimize the efficiency of Prolog com-
pilers [7 1,73, 181, they are also relevant to bias the set of acceptable hypotheses in inductive
logic programming. Indeed, since Shapiro’s MIS [125], it has become quite standard in
inductive logic programming to provide the learner with type and mode declarations (cf.,
e.g., [65,90, 130,54, 1451).

Since modes and types are well-known in logic programming, we do not formalize them
here, but rather illustrate their use on an example.

For example, the ILP system Progol [88] allows the user to specify declarations of the
predicates in the background theory such as

mode(1, append(+list, +list, --list))

658 S. MUGGLETON AND L. DE RAEDT

mode(*, append(-list, -list, +Zist))

list (nil) t

list([XIT]) t integer(X), list(T)

The first mode states that the predicate append will succeed once (1) when the first two
arguments are instantiated with lists, and on return the third argument will be instantiated
by a list. Types such as list are user-defined as monadic background predicates. The second
declaration states that append will succeed finitely many times (*) when the third argument
is instantiated by a list. The specified limit on the degree of indeterminacy of the call can
be any natural number or *.

Modes are useful for inductive logic programming for two reasons. First, if we are
in a single-predicate learning context, and the background predicates and their modes are
correctly specified, the learner can guarantee termination by assuring that the queries it
generates are mode-conform. Second, the learner can optimize its search when answering
queries. Indeed, given the first declaration for append, the learner does not need to backtrack
after having found a first solution to a query matching the declaration.

Given type declarations of the predicate to be learned, the learner need only consider the
type-conform subset of its hypothesis space. This can drastically reduce the computation
needed.

Another semantic bias, employed by the ILP systems GOLEM [901, FOIL [103], and
LINUS [65], is the notion of determinate clauses. Here, we adopt the simpler definition of
[33] instead of the original one of 1901.

Dejinition 7.4. (adapted from [33]) A definite clause h t It, 1, is determinate (with
respect to background knowledge B and examples E) if and only if, for every substitution
8 for h that unifies h to a ground instance e E E, and for all i = 1, . . . , n, there is a
unique substitution 8~ such that (11 A . . . A li)B8i is both ground and true in M+(B).

Roughly speaking, a clause is determinate if all of its literals are determinate; and a literal
is determinate if each of its variables that does not appear in preceding literals has only one
possible binding given the bindings of its variables that appear in preceding literals.

To illustrate determinacy, reconsider the background theory B of Example 7.2. Here,
the clause has-father(Y) +- parent is determinate as given a Y, there is a unique
instantiation of F that is true. On the other hand, the clause is-father(F) c parent(E Y) is
not determinate as there exist two true instantiations of Y given F. Notice also that none
of the clauses shown in Example 7.2 is determinate.

Determinate clauses are one way to get around some of the problems indicated in Ex-
amples 7.2 and 7.1. Indeed, some of the results in computational learning theory show that
certain classes of determinate clauses can be learned efficiently (cf. [33] and Section 8).
This, however, is at the cost of losing completeness.

8. LEARNABILITY

The discussion in the sections so far has revolved around the process of hypothesis for-
mation and justification. However, it was noted in Section 2.5 that this is only a part of a
larger scientific setting in which facts are gathered, experiments planned, and alternative
theories tested. A simplified scenario of this kind is studied in the theory of “learnability.”
Learnability concerns itself with the convergence properties of a process of forming and

INDUCTIVE LOGIC PROGRAMMING 659

revising predictive hypotheses. Two main approaches to learnability will be discussed in
this section. These are

Gold’s [41] identification in the limit. This approach is derived from computability
theory. It deals with finite time convergence of a computational learning procedure.
Valiant’s [1401 Probably-Approximately-Correct(PAC) learning. This is derived
from computational complexity theory and deals with the expected rate of conver-
gence.

Current learnability results address only the definite and the example settings of inductive
logic programming.

8.1. Identijkation-in the-Limit

Both identification-in the-limit and PAC-learnability assume a predefined class of hypoth-
esized theories 7-1, derived from the syntactic bias C which defines the clauses that can be
part of a hypothesis. Here, IFt will be assumed to contain only sets of definite clauses. A
presentation of a definite clause theory T is defined as follows. Let Q+(T) be the set of
clauses true in M+(T) and using the same alphabet as T; let Q-(T) be the set of clauses
false in M+(T) and using the same alphabet as T; Q = Q- U Q+.

De$nition 8.1. E, = (Eo, El, E2,. . .) is a presentation of T if and only if Eo = 0 and
for all i 2 1, Ei = Ei-1 U {ei} for an ei E (Q+(T) U Q-(T)) such that M+(E,) =

M+(T).7

The following is an ILP-oriented variant of Gold’s definition.

De$nition 8.2. Let B be a definite clause background theory and l-i(B) a class of definite
clause theories. Let A be an ILP algorithm which, given positive and negative evidence
E = E+ U E-, returns a hypothesis H’ = A(B, E) such that posterior satisfiability
and posterior sufficiency hold. Algorithm A identifies the class 7-t(B) in the limit if and
only if, for each H in ‘H(B) and presentation Em = (Eo, El, . . .) of H, there is a finite
i such that M+(B A H) = M+(B A (A(B, Ej))) for all j > i.

The intuition behind Gold’s formalism is that a certain class of learning tasks is “learn-
able” when there exists an algorithm that will find a correct hypothesis in finite time for all
of these learning tasks if the algorithm is provided with enough evidence.

Gold gives various results showing that certain classes of theories can or cannot be
identified in the limit.

The main results in identification in the limit in ILP are due to Shapiro [12.51 and De Raedt
[107, 1 lo]. Shapiro proves that his MIS system (equipped with the eager search strategy)
identifies any h-easy definite clause theory from a presentation consisting of (positive and
negative) examples and an oracle to answer membership and existential questions. Roughly
speaking, an h-easy definite clause theory is a definite clause theory for which there exists
a function h from the Herbrand base to the natural numbers, which returns, for a given
fact, the maximum depth of the SLD-proof tree needed to prove that the fact is true. The

7Here, we implicitly assume that a unique minimal Herbrand model of E, exists, even though E, may
contain general clauses.

660 S. MUGGLETON AND L. DE RAEDT

value returned by h is used as a depth bound on the proof of the fact in order to guarantee
termination. A membership question asks the oracle for the truth-value of a ground fact,
and an existential question asks the oracle for the truth-value of a nonground fact. For
membership questions, the oracle has to answer true or false. For existential questions,
the oracle must answer with ground substitutions for which the fact is true, or with false,
meaning that no instantiation of the fact is true.

De Raedt and Bruynooghe [1 lo] upgraded Shapiro’s result towards presentations using
any presentation containing positive cZuusa1 evidence only.‘In their adaptation of Shapiro’s
MIS, they restrict their attention towards functor-free clauses. In [107], this restriction
is-under certain conditions-lifted for the CLINT system. Other results in identification
in the limit are due to Plotkin [1001 and Banerji [4].

8.2. PAC-Learnability

The following is a variant of Valiant’s definition of PAC-learnability.

Dejiinition 8.3. Let B be adefinite clause theory and X(B) aclass of definite clause theories.
Let A be an algorithm which, given positive and negative examples E = E+ U E-,
returns a hypothesis H’ = A(B, E) in E(B) such that posterior sufficiency and posterior
satisfiability hold. Let error(B A H’, B A H) be the probability that an example drawn
from 23(H) (see Section 3.2) according to distribution D is true in M+(B A H’) and
false in M+(B A H) or vice versa. Algorithm A PAC-learns the class X(B) if and
only if, for each H in X(B) and every probability distribution D of a(H), and all E
and 6, 0 < E, S < 1, there is a polynomial function f such that, for a random sample
of examples E C f3(H) of size at least f(l/cr, l/6) drawn from distribution D, the
probability that H’ = A(B, E) has error(B A H’, B A H) 5 E is at least 1 - 6.

8.3. PAC-Learnability Results in ILP

Learning-in-the-limit results are well-established in the ILP literature, both for full-clausal
logic [1001 and definite clause logic [125,4, 110, 1071. These results tell one little about the
efficiency of learning. In contrast, Valiant’s [1401 PAC (Probably-Approximately-Correct)
framework is aimed at providing complexity results for machine learning algorithms. Fur-
thermore, the PAC-framework does not require convergence to a correct hypothesis, but
rather to a hypothesis that is with high probability (1 - S) approximately correct (1 - E),
hence resulting in a more realistic framework.

Haussler’s [46] negative PAC result concerning existentially quantified formulas seemed
initially to exclude the possibility of PAC results for first-order logic. The situation has
been improved by recent positive results in significant sized subsets of definite clause logic.
These results have been possible for particular language biases (see Section 7). Namely,
single constrained Horn clauses [94] (depth = 0, level = 0 in Section 7.1) and k-clause ij-
determinate nonrecursive single-predicate logic programs [33] under simple distributions.
(k denotes the maximum number of clauses in hypotheses, i denotes level, j denotes the
maximum arity of predicates in the background knowledge, and simple distributions are
limited to those which are computable.) Recursive ij-determinate predicates were shown to
be PAC-learnable when membership queries are allowed. Thus, the definition of quick-sort
is PAC-learnable using membership queries.

8Notice that a negative example n in the definite setting can be expressed as positive evidence t n.

INDUCTIVE LOGIC PROGRAMMING 661

Kietz [56] showed that the following languages are not PAC-learnable:

l one-clause j-determinate programs, even without recursion
l one-clause ij-indeterminate programs, even without recursion

The second result disables the learning of the following simple nondeterminate clause.

male(X) : -brother(X, Y).

However, Cohen [25] recently showed that single definite clauses with bounded indetermi-
nacy and polynomial literal support are PAC-predictable (the same as PAC-learnable, except
that hypotheses do not have to be within K(B)). Cohen’s restriction on the indeterminacy
of a single clause hypothesis is as follows.

De$nition 8.4. (l-indeterminate) A clause h t bl , . . . , b, is called Z-indeterminate (with
respect to background knowledge B and E) if and only if, for every possible substitution
0 of h to some ground instance e E E and for all i = 1, . . . , r, there are at most 1 distinct
substitutions Q such that (bl A . . A bi)Oa is both ground and true in M+(B).

Thus, the clause above for defining male could be learned if a bound could be put on the
maximum number of brothers and sisters any individual might be expected to have.

9. PREDICATE INVENTION

The following theoretical characterization of predicate invention follows that in [86]. If P
is a logic program, then the set of all predicate symbols found in the heads of clauses of P
is called the definitional vocabulary of P or P(P). KLP has the following three definitional
vocabularies.

Observational vocabulary: 0 = P(E+ U E-)
Theoretical vocabulary: 7 = P(B) - 0
Invented vocabulary: Z = P(H) - (7 U 0)

The learner carries out predicate invention whenever I # 0.

9.1. Necessary Predicate Invention

Ling [68] discusses the conditions under which predicate invention is necessary. This
requires the following addition to the satisfiability, necessity, and sufficiency requirements
of Section 3.

Necessary invention: Z # 0 for each H which provides sufficiency and consistency.

In other words, predicate invention is only necessary when there does not exist a finite
axiomatization of the predicates in 0 containing only predicate symbols from 7 U 0. The
following theorem is from Stahl [1291.

662 S. MUGGLETON AND L. DE RAEDT

Theorem 9.1. Decidability with fixed vocabulary. Given a recursively enumerable, de-
ductively closed set offormulas C in a$rst-order language Is, it is undecidable whether
C isJinitely axiomatizable in C.

Stahl’s proof is based on an application of Rice’s Theorem [1171 on the undecidability of
nontrivial index sets being recursively enumerable. This result means that the necessity of
invention must by needs be heuristic in the general case. However, if constraints on the
language and depth of inference such as those discussed in Sections 7 and 8 are applied,
this problem becomes decidable.

The following result due to Kleene [60] shows the importance of the introduction of new
predicates in constructing finite axiomatizations.

Theorem 9.2. Finite axiomatization given additional vocabulary. Any recursively enu-
merable, deductively closed set C of formulas in a first-order language L is finitely

axiomatizable using additional predicate symbols other than those in C.

Although Kleene’s proof is constructive, it introduces new predicates regardless of whether
they are necessary. Clearly, any one of a potentially infinite set of new predicates could
be introduced. It seems reasonable that when it is necessary to extend the vocabulary, this
should be done in as conservative a manner as possible. To do so requires a notion of
ordering over invented predicates.

In [86], a lattice of utility of invented predicates is introduced. The lattice has a unique
topmost and bottommost element. An equivalence class over the set of all possible invented
predicates allows one to investigate only one of a set of invented predicates which are
equivalent up to re-ordering of arguments and removal of redundant arguments. By making
use of least-upper-bound and greatest-lower-bound operators, this utility lattice should
provide a sound and complete approach to searching for invented predicates.

9.2. Predicate Invention Techniques

Most ILP systems which carry out predicate invention [79, 89, 122, 5, 681 are based on
the use of the inverse resolution W-operators (see Section 5.4). This necessarily involves a
specific-to-general search.

An exception to this approach is found in [1451 and [1471 in which a general-specific
search is employed. The search is guided by the use of mode declarations in [145] (see
Section 7.2).

In [62], the authors use W-operators to introduce new predicates. The auxiliary subpred-
icates are then generalized using inverse implication (see Section 5.5). This allows certain
subpredicates to be learned which could not have been learned otherwise.

10. ILP IMPLEMENTATIONS

Up to now, we discussed-what are in our view-the foundations of the field of inductive
logic programming, in particular, the model-theory, the proof-theory, the probabilistic se-
mantics, the bias, and the notions of predicate invention and learnability. The underlying
assumption is that these foundations lie at the heart of ILP and are sufficient for understand-
ing ILP. As a consequence, we ignored several other issues in ILP, mainly because they are
closely connected to particular ILP implementations and applications. This includes, for

INDUCTIVE LOGIC PROGRAMMING 663

instance, the use of an oracle, theory revision, and the handling of numerical data. At the
same time, we also did not study any particular ILP system in detail. In this section, we will
briefly touch on these two matters. First, we will discuss some dimensions and issues of
ILP as perceived by users of ILP systems. Second, we will give a short overview of some
selected ILP systems.

IO. 1. Characteristics of ILP Systems

Practical ILP systems can be classified along different dimensions as perceived by users
of ILP systems. Obvious characteristics, studied earlier in this paper, include the types of
bias employed, the ability to invent new predicates, and the heuristics employed to handle
imperfect data and noise.

10.1.1. INCREMENTAL/N• NINCREMENTAL. This dimension describes the way the evi-
dence E (examples) is obtained. In nonincremental or empirical ILP, the evidence is given
at the start and not changed afterwards; in incremental ILP, the examples are input one by
one by the user, in a piecewise fashion. Nonincremental systems search typically either
specific-to-general or general-to-specific. Incremental systems usually employ a mixture
of these strategies as they may need to correct earlier induced hypotheses. Incremental
ILP systems include MIS [125], CLINT [107], MOBAL [54], FORTE [118], RX [134],
LFP [144], and CIGOL [89]. Nonincremental systems include GOLEM [90], FOIL [105],
FOCL [95], GRENDEL [24], CLAUDIEN [1131, mFOIL [32], and LINUS [66].

10.1.2. INTERACTIVE/N• NINTERACTIVE. In interactive ILP, the learner is allowed to

pose questions to an oracle (i.e., the user) about the intended interpretation. Usually, these

questions query the user for the intended interpretation of an example or a clause. The
answers to the queries allow us to prune large parts of the search space (in the generic
algorithm, queries would normally be generated in the procedure Prune). Obviously, in-
teractiveness implies incrementality. Most systems are noninteractive. Interactive systems
include CIGOL [89], MIS [1251, and CLINT [1071.

10.1.3. SINGLE/MULTIPLE PREDICATE LEARNING/THEORY REVISION. Suppose P(F)

represent the predicate symbols found in formula F. In single predicate learning from
examples, the evidence E is composed of examples for one predicate only, i.e., P(E) is a
singleton. In multiple predicate learning, P(E) is not restricted as the aim is to learn a set of

possibly interrelated predicate definitions. Theory revision is usually a form of incremental

multiple predicate learning, where one starts from an initial approximation of the theory.

Although theory revision systems have been around ever since MARVIN [1241, MIS [1251,
followed by Banerji [4], BLIP-MOBAL [147], ML-SMART [9], CIGOL [89], and CLINT
[1081, there has recently been a renewed interest in theory revision and multiple predicate
learning, cf. [2, 1, 6, 115, 118, 146, 28, 10, 134, 113, 148, 1101. These newer approaches
differ from the previous ones in the sense that they try to learn without requiring an oracle.
Note that also ML-SMART and BLIP-MOBAL did not require an oracle. Although it
is commonly believed that theory revision and multiple predicate learning algorithms are
fundamentally different from single predicate learners, both types of systems fit in a natural
way in the generic algorithm outlined in Section 4. The main differences between theory
revision systems and single predicate learners are the following. Theory revision systems
typically use a variety of deductive and inductive inference rules, e.g., combining abduction
with specialization and generalization. Second, as for incremental systems, they can both

664 S. MUGGLETON AND L. DE RAEDT

generalize and specialize. Specialization occurs when a negative example is implied by the
hypothesis, and generalization when a positive example is not implied. Finally, in theory
revision, it is important to modify the theory as little as possible, and to stay as close to the
original theory as possible. This issue is formalized in the recent work of Stefan Wrobel
[148].

10.1.4. NUMERICAL DATA. The mesh domain (Section 11.1 .S) involves predicting the
number of sections that an edge of a CAD object should be broken into for efficient finite-
element analysis. The rules developed by GOLEM [90] have the following form.

mesh(Obj, 8) +- connected(Obj, Objl), . . .

With a small number of examples, it is hard to get enough examples in which the prediction
is an exact number, such as 8. Instead, we would like the rules to predict an interval such as

mesh(Obj, X) t 7 5 X 5 9, connected(Obj, Objl), . .

This kind of construction is not handled elegantly by existing systems (although LINUS
[66] and more recently FOIL [103] can use TDIDT-extensions [1011 to introduce tests such
as X 5 9). In statistics, this problem of numerical prediction is known as regression. Many
efficient statistical algorithms exist for handling numerical data. ILP system designers are
starting to look at smoothly integrating such approaches into their systems. Recent work on
introducing linear inequalities into inductively constructed definite clauses [75,53] provides
an elegant logical framework for this problem. This approach also allows the introduction
of Constraint Logic Programming (CLP) techniques into ILP.

10.2. ILP Systems

In this section, we give an overview of a number of important inductive logic programming
systems. It is clear that a complete overview of all systems is outside the scope of this
paper, given the very large number of ILP systems and implementations. Instead, the
overview centers around the following six systems: MIS [1251, MOBAL-BLIP [54], CIGOL
[89], GOLEM [90], FOIL [105], and CLAUDIEN [113]. These systems were selected
because they are fundamentally different, and contributed significantly to inductive logic
programming. Furthermore, most of the other systems are very much related to these six.

One of the first real inductive logic programming systemsgin the sense that it was related
to I as well as L P and involved both theory and implementation, is the MIS system of Ehud
Shapiro [1251. The MIS system introduced several important techniques in inductive logic
programming. These include refinement graphs (see Section 5.2.2) for general-to-specific
search, the backtracing algorithm to locate incorrect clauses in programs, identification in
the limit of h-easy programs (see Section S), the handling of multiple predicates (realizing
theory revision), and coping with functors in definite clause programs (i.e., realizing pro-
gram synthesis from examples). Many other systems and techniques are related to MIS,
e.g., LFP [143], CLINT [107], SIERES [145], FORTE [118], AUDREY [146], MIST [59],
TR [11, those of [4,1 lo], RX [1341, MARKUS [43], and others. Important developments in

9A full historic overview of inductive logic programming is outside the scope of this paper. However, a
personal view (by Claude Sammut) of the developments that led to inductive logic programming is contained
in [123].

INDUCTIVE LOGIC PROGRAMMING 665

MIS type systems include: the introduction of the definite semantics (using clausal evidence
instead of merely examples) by [110, 1071, relating the MIS to intensional knowledge-base
updating [1 lo] (see also Section 11.2), the introduction of predicate invention techniques
in [1451, the elimination of the questions to the user (oracle) in [118, 146, 1, 1341, and the
introduction of specific-to-general search in [1071.

Whereas the MIS originated from an interest in (logic) program synthesis and computa-
tional learning theory (or inductive inference), the MOBAL system [54] and its predecessors
BLIP [77, 147, 137, 341 and METAXA [35] originate from a knowledge acquisition and
knowledge discovery perspective. The main contribution of this line of research is the
introduction of second-order schemata and the associated theory of model driven learning,
which now yields practical knowledge acquisition tools. Although schemata were origi-
nally only meant to specify syntactic bias, schemata (and their variants) have proven to be
useful for other purposes as well. This includes the learning of syntactic bias, i.e., higher
order logic learning [38, 11 I], predicate invention [11 I], intelligent (general-to-specific)
search aids [1271, and analogical reasoning mechanisms [1491.

The first real “inverse resolution” operator (see Section 5.4) was the absorption operator,
employed by the MARVIN system [1241. However, in MARVIN, the underlying theory of
inverting resolution was not yet formalized. This was first done for propositional logic in
DUCE [79], and later for definite clause logic in CIGOL [89] and LFP [1431. This paradigm
was further explored by [144, 122, 121, 811. However, in many ways, the most innovative
extension introduced in DUCE and CIGOL was the concept of predicate invention. This
was not present in the earlier frameworks of either Plotkin [IOO] or Shapiro [1251. One of
the new departures in this line of research has come from the LOPSTER system [63], which
was the first to make use of inverting implication (see Section 5.5).

The GOLEM system [90] was based on a special case of inverse resolution which corre-
sponds to the rlgg operator of Gordon Plotkin [98, 1001; see also [8 I]. This special case of
inverse resolution, restricted to determinate clauses (cf. Section 7), proved to be much more
tractable than the more complicated inverse resolution paradigm. It is in part because of the
increased efficiency that GOLEM could be applied to real scientific discovery tasks [58,91].
The determinacy restriction also proved to be relevant for the computational complexity of
the learner [56, 33,251.

The FOIL system [1051 is based on traditional concept-learning techniques. In partic-
ular, it relates to the greedy TDIDT-algorithms [loll and the AQ family of algorithms of
Michalski [72]. As a matter of fact, the use of relations to express background knowledge
when learning concepts was already present in the Induce algorithm of [72] and in the ML-
Smart system of [9]. However, these algorithms-adopting the classical concept-learning
framework-produced rules for a fixed number of classes only. As a consequence, AQ
and Induce learned a kind of functor-free definite clause with propositions in the condition
part. Furthermore, AQ and Induce employed a nonstandard logic to represent concepts and
examples. The main contribution of Quinlan in FOIL was to recognize the power of logic
programming as a representation language for inductive learning and to upgrade machine
learning techniques towards the much more expressive DATALOG representation. Further-
more, the FOIL system was the first widely known demonstration that first-order learning
could really work, in the sense that it works efficiently on a broad range of problems involv-
ing large and noisy datasets. More recently [1021, FOIL incorporated the ij-determinate
constraint introduced first in [90]. Many variants and refinements of FOIL have been devel-
oped, including FOCL [171, mFOIL [32], and CHAM [57]. Related to traditional concept-
learning techniques and FOIL is also LINUS of [65], which transforms certain classes of
ILP problems into attribute value form, then runs classical algorithms and transforms the

666 S.MUGGLETONANDL.DERAEDT

result back into logical clauses.
The CLAUDIEN system [1131 is the first efficient inductive logic programming working

in the nonmonotonic setting deriving full clausal theories from databases. CLAUDIEN is
based on a simple general-to-specific iterative deepening search using refinement under 0-
subsumption. At the same time, it offers a natural approach to empirically learning multiple
predicates, which requires interaction with the user, or “good” presentations in the normal
setting (see [114, 1151). Indeed, in the nonmonotonic setting, it is easy to learn multiple
predicates because if two clauses ct and c:! are valid, then their conjunction is also valid.
This is in contrast to the normal setting, where the conjunction of two clauses (contributing
individually to a solution) may violate the posterior satisfiability requirement. It remains,
however, to be seen whether this new approach will yield as successful applications as
GOLEM, MOBAL, and FOIL.

11. APPLICATION AREAS

Other computational techniques, such as neural networks, are said to mimic human learn-
ing. In a sense, neural networks, along with techniques such as statistical regression, can be
viewed as making use of a form of inductive inference. However, unlike neural networks,
ILP algorithms output rules which are easily understood by people. This makes ILP par-
ticularly appropriate for scientific theory formation tasks in which the comprehensibility of
the generated knowledge is essential to the advancement of scientific subjects.

The use of a relational logic formalism has allowed successful application of ILP systems
in a number of domains in which the concepts to be learned cannot easily be described in an
attribute-value language. These applications include structure-activity prediction for drug
design [58, 1311, protein secondary-structure prediction [91], finite element mesh design
[31], and automatic construction of qualitative models [16]. It is worth noting that the
results produced by ILP 1) did produce new knowledge publishable in refereed journals
of the application area (as for the drug design and protein folding); 2) are understandable
and meaningful for scientists in the application domain; and 3) were realized using general
purpose ILP systems. There are very few other examples within AI where this combination
has been achieved.

Programming assistants are tools that assist a programmer in the design and implemen-
tation of software. The most straightforward application of ILP to this area is program
synthesis from examples, bias, and partial specifications (see, e.g., [125, 103,59, 107,401).
Other applications include algorithmic debugging [1251, program testing and verification
[36, 1161, the automatic derivation of properties of programs and/or databases [15, 1131,

reverse engineering [151, and knowledge-base updating [1101.

1 I. 1. Scientific Discovery and Knowledge Acquisition

11.1.1. DRUG DESIGN. The majority of pharmaceutical R&D is based on finding slightly
improved variants of patented active drugs (292 out of 348 U.S. drugs introduced between
1981 and 1988 were of this kind). This involves laboratories of chemists synthesizing and
testing hundreds of compounds almost at random. The ability to automatically discover
the chemical properties which affect the activity of drugs could provide a great reduction
in pharmaceutical R&D costs. The average cost of developing a single new drug is $230
million.

INDUCTIVE LOGIC PROGRAMMING 667

In [58], it was shown that ILP techniques are capable of constructing rules which predict
the activity of untried drugs. Rules are constructed from examples of drugs with known
medicinal activity. The accuracy of the rules was found to be higher than for traditional
statistical methods. More importantly, the easily understandable rules can provide key
insights, allowing considerable reductions in the numbers of compounds that need to be
tested.

11.1.2. PROTEIN PRIMARY SECONDARY SHAPE PREDICTION. Predicting the three-dimen-
sional shape of proteins from their amino acid sequence is widely believed to be one of
the hardest unsolved problems in molecular biology. It is also of considerable interest
to pharmaceutical companies since shape generally determines the function of a protein.
ILP techniques developed at the Turing Institute have recently had considerable success
within this area. Over the last 20 years, many attempts have been made to apply methods
ranging from statistical regression to decision tree and neural net learning to this problem.
Published accuracy results for the general prediction problem have ranged between 50 and
60%, very close to random prediction. In [91], it was found that the ability to make use of
biological background knowledge, together with the ability to describe structural relations,
boosted the predictivity for a restricted subproblem from about 70% to about 80% on an
independently chosen test set.

11.1.3. SATELLITE DIAGNOSIS. ILP techniques have been applied to problems within
the Aerospace industry. In this case, a complete and correct set of rules for diagnosing
power supply failures was developed by generating examples from a qualitative model of
the power subsystem of an existing satellite [37]. The resulting rules are thus guaranteed
complete and correct for all single faults since all examples of these were generated from
the original model. Rules were described using a simple temporal formalism in which each
predicate had an associated time variable.

11.1.4. RHEUMATOLOGY. An application [67] of the LINUS system [66] to the learn-
ing of medical rules for the early diagnosis of rheumatic diagnosis showed that relational
background knowledge provided by a domain expert substantially improved the quality of
the induced rules as compared to results with attribute value learning techniques.

11.1.5. FINITE ELEMENT MESHES. Successes [3 11 achieved in applying Golem to Finite
Element Mesh design have drawn interest from industry in applying these techniques within
state-of-the-art CAD packages. Finite element methods are used extensively by engineers
and modeling scientists to analyze stresses in physical structures. These structures are
represented quantitatively as finite collections of elements. The deformation of each element
is computed using linear algebraic equations. In order to design a numerical model of a
physical structure, it is necessary to decide the appropriate resolution for modeling each
component part. Considerable expertise is required in choosing these resolution values.
Too fine a mesh leads to unnecessary computational overheads when executing the model.
Too coarse a mesh produces intolerable approximation errors. ILP techniques have been
used to develop rules for deciding on appropriate resolution values inductively from expert-
provided examples.

In this case, a relational language was required to reflect the relations between elements
of the physical structure being modeled.

668 S. MUGGLETONANDL.DERAEDT

11.2. Programming Assistants

Here, we study the relation between interests in logic programming and ILP At several
places, we argue for a tighter interpretation of the ZLP = Z n LP paradigm. Such an
interpretation allows us to import ILP into LP, and to export LP to inductive techniques in
general, thus permitting cross-fertilization. We discuss the application of this claim in logic
program synthesis, reverse engineering, algorithmic debugging, deductive databases, and
program testing and verification.

11.2.1. LOGIC PR~CRAM SYNTHESIS. Logic program synthesis and transformation [30,
641 try to develop techniques to derive efficient programs from a specification (synthesis)
or an inefficient implementation (transformation). Usually, logic program synthesis and
transformation employ deductive techniques to achieve this aim. Here, we will show that,
alternatively, one could use induction. This has the advantage that logic program synthesis
from incomplete specifications is plausible.

Let us briefly illustrate this on the sorting example. In a logic program synthesis or
transformation setting, the predicate sort might be specified by

S = sort(X, Y) ++ permutation(X, Y}, sorted(Y)

with corresponding definitions of permutation and sorted (see Section 2.3) in the back-
ground theory B. The aim would then be to improve the definition of permutation sort
towards a more efficient sorting predicate such as quicksort, insertion sort, or bubble sort.
The techniques to achieve this aim in logic program synthesis and transformation are basi-
cally deductive, for instance, using fold-unfold or mathematical induction techniques.

In the lLP setting, one could tackle the same problem by taking

permutation(X, Y) +- serf (X, Y)

E+ = sorted(Y) + sort(X, Y)
sort(X, Y) t permutation(X, Y), sorted(Y)

B then includes sorted and permutation and possibly other predicates such as partition,
append, member, etc., and the language bias is such that permutation and sorted are not to
be used in hypotheses. Any definition of sort satisfying the requirements will be equivalent
to the specification (i.e., permutation sort) and therefore correct. Also, depending on the
predicates in the background theory and the bias, different definitions for sort could be
derived. For example, if partition is in the background theory, one could induce quicksort.
This shows that ILP can be used to derive logic programs from complete specifications.
On the other hand-and this shows the flexibility of ILP-by relaxing the evidence, ILP
can also induce programs from incomplete specifications, which is not possible by most
synthesis approaches (but see [40]). For instance, the third clause in E+ could be replaced
by a few positive examples. A disadvantage of using ILP techniques for logic program
synthesis is that there is no guarantee that the induced hypothesis will be more efficient in
use than the original specification. This should be verified empirically.

An extreme case of the application of ILP to this area is programming synthesis from
examples only. Although such automatic programming has been used by many ILP re-
searchers (cf. [90, 125, 107, 1031) to test and illustrate their techniques, we do not believe
program synthesis from examples only to be a promising direction for ILP. This is because
too many examples are needed before the correct definition can be induced (cf., e.g., [103]).

INDUCTIVE LOGIC PROGRAMMING 669

Therefore, automatic programming from examples only will never be practical because it
is much easier to program manually than to specify hundreds (thousands) of examples. At
the same time, it follows that upgrading the representation of examples as ground facts to
more general formulas should be one of the prime concerns in ILP (cf. [110, 1071).

11.2.2. INDUCING PROPERTIES OF PROGRAMS/DATABASES. Given a database or a pro-
gram, one is often interested in the regularities in the database or program. High-level
regularities satisfying a program can be regarded as (partial) specifications of that program.
Such specifications can then be used to judge the correctness of the program. Regularities
satisfying a database can be relevant as integrity constraints and as new knowledge discov-
ered (cf. [97] and higher). Inducing properties of programs or databases thus corresponds
to a form of reverse engineering.

Although, in principle, one could use the normal setting of ILP to discover high-level
regularities in programs or databases, the nonmonotonic setting of ILP is more appropriate
(cf. [1141). In this setting, the given database or program is B and the induced hypothesis
H contains the high-level regularities one is interested in. One example in a database
context was given in Section 3.2. To illustrate the programming context, consider the
sorting example once more, and assume that B contains quicksort, sorted, and permutation.
Systems working in the nonmonotonic setting, such as CLAUDIEN [1131, could then induce
a hypothesis containing the clauses E+ listed in the previous section.

11.2.3. PROGRAM Y~STING AND DEBUGGING. The relation between algorithmic debug-

ging and inductive inference is well known since Shapiro’s influential work on the MIS
[1251. Basically, debugging a program corresponds to credit-assignment problem in induc-
tive inference. Furthermore, once the bug has been located, one may try to repair it by using
incremental inductive inference techniques.

Whereas algorithmic debugging starts from a known bug in a program, program testing
and verification try to discover whether there exist bugs in the program. To this aim,
they generate a test set of example behaviors of the program, which can then be judged on
correctness by the user. To generate a test set from a program or knowledge-base, satisfying
certain desirable properties, one can employ ILP techniques (cf. [36,116]). Indeed, suppose
one starts from a program P to test and an ILP system (in the example setting). Roughly
speaking, the ILP approach to test generation computes a minimal set of examples E of the
program’s behavior such that E is sufficient to induce a program P’ equivalent to P (or to
uniquely distinguish P from a set of alternatives). The underlying assumption states that,
if P behaves correctly on E, it is correct. The computation of E is done incrementally.
Initially, E is empty and P’ is a program generated by the ILP system and correct with
regard to E. If P and P’ are not equivalent, an example e can be generated that is true in
one program but not in the other. The example e (with the truth value in P) is then added
to E, and the process of inducing P’ from E and generating examples is repeated until P
is equivalent to P’. The example set E is then the required test set.

11.2.4. KNOWLEDGE-BASE UPDATING. Roughly speaking, the problem of knowledge-

base updating (see [29, 19, 44, 45, 138, 96, 521) can be specified as follows. Given is
a deductive database D, satisfying a set of integrity constraints I and a formula f not
explained by the database. The aim is then to find an updated database which explains the

670 S. MUGGLETON AND L. DE RAEDT

formula f such that all integrity constraints_ remain satisfied. To illustrate this, let D be

D=,

grandparent(X, Y) t father(X, Z), parent(Z, Y)
parent(X, Y) t mother(X, Y)
father(henry, june) +-
mother(june, john) t
mother(june, ulice) +

Let the integrity theory I be

1 =

(

+ father(X, X)
+ mother(X, X)

An update request fr could then ask to make grundpurent(george,henry) t true. Typ-
ical knowledge-base updating methods realize the update requests by adding and delet-
ing ground facts to the database (using a mixture of abduction and techniques to short-
cut proofs). For example, the above update request could be realized by adding the fact
father(george, henry) +- .

The problem of knowledge-base updating as formulated above corresponds to an in-
cremental ILP problem (in the definite setting) where B A H = D and E+ = I, and the
update request is considered positive evidence (cf. [l lo]). The advantage of reformulat-
ing knowledge-base updating in terms of ILP is that this allows us to extend the allowed
transactions. None of the existing knowledge-base updating methods allows the induction
of nonfactual clauses; few techniques can delete nonfactual clauses from the database. In
contrast, in the ILP setting, this is very natural. Given the above database, integrity theory,
and appropriate evidence, incremental ILP techniques could induce the missing clauses for
parent and grandparent. On the other hand, ILP techniques could also benefit from the
work on knowledge-base updating, which has spent a lot of effort to cope with normal
program clauses in an SLDNF setting. In ILP, few techniques handle negation in a general
and sound manner (but see [1361).

11.2.5. ABDUCTION. Abduction, as it is currently perceived in Logic Programming [5 I],
can be considered the special case of the example setting in inductive logic programming,
where the hypotheses are restricted to sets of ground facts and the evidence to single positive
examples. loThis statement reveals an important difference between the two techniques: in
ILP, the facts (examples) are usually assumed to be stable as the clauses are to be learned;
in contrast, in abductive logic programming, the clauses are stable and the facts are to be
learned. Therefore, these two techniques should not be considered opposite, but rather
complementary. Indeed, many ILP systems include an abductive component (e.g., MIS
[125], CLINT [107], abduction is also a special case of inverse resolution, etc.). Also,
applications of abduction, may be extendable towards inductive logic programming. One
such application was discussed above: intensional knowledge-base updating.

‘OIt has to be mentioned that abduction has considered more complicated representations for background
theories, including normal program clauses.

INDUCTNE LOGIC PROGRAMMING 671

12. CONCLUSION AND FUTURE DIRECTIONS

Plotkin [loo] in the early 1970s and Shapiro [125] in the early 1980s set the scene for the
recent upsurge of interest in the area of learning first-order formulas. However, since 1990,
ILP has grown from a theoretical backwater to a mainstream area of research, as evidenced
by three annual international workshops [82, 84, 871. Many of the problems encountered
on the way can make use of solutions developed in Machine Learning, Statistics, and Logic

Programming.
Many future advances of ILP are likely to come from well-established techniques drawn

from Logic Programming. For instance, at present, most ILP systems (with the exceptions
of MOBAL [SS] and the system of [130]) require that all mode and type information
concerning predicates in the background knowledge be provided by the user. However, both
type and mode declarations could be derived automatically from analysis of the background
knowledge. In addition, benefit could potentially be derived from making use of work on
termination, knowledge-base updating, algorithmic debugging, abduction, constraint logic
programming, program synthesis, and program analysis.

It should be clear from Section 5 that logical theorem-proving is at the heart of all
ILP methods. For this reason, it must be worth asking whether the technology of Prolog
interpreters is sufficient for all purposes. Reconsider the Tweety example in Section 2.2.
Implementing a general system that carried out the inference in this example would require
a full-clausal theorem prover. However, most ILP systems merely use a Prolog interpreter to
carry out theorem-proving. Is it worth going to more computationally expensive techniques?
In learning full-clausal theories, De Raedt and Bruynooghe [1131 have made use of Stickel’s
[1321 efficient full-clausal theorem-prover. Stickel’s theorem prover compiles full clauses
into a set of definite clauses. These definite clauses are then executed by a Prolog interpreter
using iterative deepening. This technique maintains most of Prolog’s efficiency while
allowing full theorem-proving. Learning full-clausal theories is a largely unexplored new
area for ILP.

The problem of dealing efficiently and effectively with numerical data is an important
challenge to ILP. Earlier systems such as LINUS [66] dealt with the problem by allowing
simple inequalities, such as X > 7, in the hypothesis language. Recent work on introduc-
ing more general linear inequalities into inductively constructed definite clauses, [75, 531
provides an elegant logical framework for this problem. This approach also allows the
introduction of Constraint Logic Programming (CLP) techniques into ILP.

ILP research has many issues to deal with and many directions to go. By maintaining
strong connections among theory, implementations, and applications, ILP has the potential
to develop into a powerful and widely-used technology.

The authors would especially like to thank Maurice Bruynooghe of the Katholieke Universiteit Leuven and
Lincoln Wallen of Oxford University Computing Laboratory for useful input during this research. They
would also like to thank the reviewers for their constructive comments and suggestions. This work was
supported in part by the Esprit Basic Research Action ILP (Project 6020), an SERC Advanced Research
Fellowship held by Stephen Muggleton, and the Belgian National Fund for Scientific Research. Stephen
Muggleton is a Research Fellow of Wolfson College Oxford and Luc De Raedt is a Post-Doctoral Researcher
of the Belgian National Fund for Scientific Research.

672 s. MUGGLETONANDL.DERAEDT

APPENDIX A: NOTATIONAL CONVENTIONS

0: false:
m true;
b=: logical entailment;
A : conjunction:
c : implication;
*: double implication:
C: proper subset;
&: subset;
T: maximally general element:
1: maximally spectfk element:
7: complement off;
d(t): depth of term t;
glb: greatest lower bound;
1 (t) : level of term t in clause:
lub: least upper bound:
p(X): prior probability of X;
p(XIY): priorprobability of Xgiven Y;
I(X): prior information content 0fX;
I(XlY): informationcontentofXgiven K
p : refinement operator;
p’ : transitive closure of p;
B(T): the Herbrand base of T, where T is a conjunction of clauses:
7-i: set of well-formed hypotheses, contains set of sets of clauses in l:
c: language bias, i.e. set of clauses:
M+(T): the least Herbrand model of T, where T is a definite clause program;
M-(T) = (7 : f E (B(T) - M+(T))), i.e., the complement of the least Herbrand model of T, where

T is a definite clause program:
p(F): set ofpredicate symbols occurring in F, where F is any logical,formula;
Q+(T): the set of clauses true in M+(T) and using the same alphabet as T;
Q-(T): the set of clausesfalse in M+(T) and using the same alphabet as T;
XL”(T): nth linear resolution of dejnite clause theory T.

REFERENCES

1. Adt, H., De Raedt, L., and Bruynooghe, M., Theory revision, in: S. Muggleton (ed.),
Proceedings of the 3rd International Workshop on Inductive Logic Programming, 1993,

pp. 179-192.
2. Ali, K., and Pazzani, M., Hydra: A Noise Tolerant Relational Concept-Learning Algo-

rithm, in: Proceedings of the 13th International Joint Conference on Artificial Intelligence,

Morgan Kaufmann, 1993.
3. Angluin, D., On the Complexity of Minimum Inference of Regular Sets, Information and

Control 39:337-350 (1978).

4. Banerji, R. B., Learning in the Limit in a Growing Language, in: Proceedings of the 10th

International Joint Conference on Artificial Intellegence, Kaufmann, Los Angeles, CA,
1987, pp. 280-282.

5. Banerji, R. B., Learning Theoretical Terms, in: S. Muggleton (ed.), Inductive Logic

Programming, Academic Press, London, 1992.
6. Baroglio, C., Giordana, A., and Saitta, L., Learning Mutually Dependent Relations,

Journal of Intelligent Information Systems 2 (1992).

7. Bell, S., and Weber, S., On the Close Relationship Between FOIL and the Frameworks of
Helft and Plotkin, in: S. Muggleton (ed.), Proceedings of the 3rd International Workshop

on Inductive Logic Programming, 1993, pp. I-10.

INDUCTIVE LOGIC PROGRAMMING 673

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Bergadano, F., Towards an Inductive Logic Programming Language, Technical ReportES-
PRIT Project No. 6020 ILP Deliverable TOI, Computer Science Department, University

of Torino, 1993.
Bergadano, F., Giordana, A., and Santa, L., Concept Acquisition in Noisy Environments,
IEEE Transactions on Pattern Analysis and Machine Intelligence 10:X5-578 (1988).

Bergadano, F., and Gunetti, D., An Interactive System to Learn Functional Logic Pro-
grams, in: Proceedings of the 13th International Joint Conference on Artificial Intelli-

gence, Morgan Kaufmann, 1993.
Biermann, A., Fundamental Mechanisms in Machine Learning and Inductive Inference,
in: W. Bibel and P. Jorrand (eds.), Fundamentals of Artificial Intelligence vol. 232 of

Lecture Notes in Computer Science, Springer-Verlag, 1986.
Biermann, A. W., The Inference of Regular LISP Programs from Examples, IEEE

Transactions on Systems, Man, and Cybernetics 8(8):585-600 (1978).
Biermann, A. W., and Feldman, J. A., On the Synthesis of Finite-State Machines from
Samples of their Behavior, IEEE Transactions on Computers C-21:592-597 (1972).

Biermann, A. W., and Krishnaswamy, R., Constructing Programs from Example Com-
putations, IEEE Transactions on Software Engineering 2(3) (1976).

Bratko, I., and Grobelnik, M., Inductive Learning Applied to Program Construction and
Verification, in: S. Muggleton (ed.), Proceedings of the 3rd International Workshop on

Inductive Logic Programming, 1993, pp. 279-292.
Bratko, I., Muggleton, S., and Varsek, A., Learning Qualitative Models of Dynamic Sys-
tems, in: Proceedings of the 8th International Workshop on Machine Learning Workshop,

Morgan-Kaufmann, San Mateo, CA, 1991.
Brunk, C. A., and Pazzani, M. J., An Investigation of Noise-Tolerant Relational Concept
Learning Algorithms, in: Proceedings of the 8th International Workshop on Machine

Learning, Morgan Kaufmann, 199 1.
Bruynooghe, M., and Janssens, G., An Instance of Abstract Interpretation Integrating
Type and Mode Inferencing, in: Proceedings of the 5th International Conference and

Symposium on Logic Programming, 1988, pp. 669-683.
Bry, F., Intensional Updates: Abduction via Deduction, in: D. Warren and P. Szeredi
(eds.), Proceedings of the 7th International Conference on Logic Programming, MIT press,
1990, pp. 561-578.
Buntine, W., Induction of Horn-Clauses: Methods and the Plausible Generalization Al-
gorithm, International Journal of Man-Machine Studies 26:499-520 (1987).

Buntine, W., Generalised Subsumption and Its Applications to Induction and Redundancy,
Arttficial Intelligence 36(2): 149-176 (1988).

Carnap, R., The Continuum of Inductive Methods, University of Chicago, Chicago, IL,
1952.
Cohen, W., Compiling Knowledge into an Explicit Bias, in: Proceedings of the 9th

International Conference on Machine Learning, Morgan Kaufmann, 1992.
Cohen, W., Grammatically Biased Learning: Learning Logic Programs Using an Explicit
Antecedent Description Language, Artificial Intelligence (1994), to appear.
Cohen, W., Learnability of Restricted Logic Programs, in: S. Muggleton (ed.), Pro-

ceedings of the 3rd International Workshop on Inductive Logic Programming, 1993, pp.
41-72.
Cohen, W., PAC-Learning a Restricted Class of Recursive Logic Programs, in: S. Muggle-
ton (ed.), Proceedings of the 3rd International Workshop on Inductive Logic Programming,

1993, pp. 73-86.
Conklin, D., and Witten, I., Complexity-Based Induction, Technical Report, Department
of Computing and Information Science, Queen’s University, Kingston, Ontario, Canada,
1992.
Datta, P., and Kibler, Concept-Sharing: A Means to Improve Multi-Concept Learning,
in: Proceedings of the IOth International Conference on Machine Learning, Morgan-

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

S.MIJGGLETONANDL.DERAEDT

Kaufmann, San Mateo, CA, 1993.
Decker, H., Drawing Updates from Derivations, in: S. Abiteboul and P. C. Kanellakis
(eds.), Proceedings of the 2nd International Conference on Database Theory, vol. 470 of
Lecture Notes in Computer Science, Springer-Verlag, 1990.
Deville, Y.,‘and Lau, K., Logic Program Synthesis, Journal of Logic Programming

(1993), submitted to the Special Issue.
Dolsak, B., and Muggleton, S., The Application of Inductive Logic Programming to Finite
Element Mesh Design, in: S. Muggleton (ed.), Inductive Logic Programming. Academic
Press, London, 1992.
Dieroski, S., and Bratko, I., Handling Noise in Inductive Logic Programming, in:
S. Muggleton (ed.), Proceedings of the 2nd International Workshop on Inductive Logic

Programming, 1992.

Dieroski, S., Muggleton, S., and Russell, S., PAC-Learnability of Determinate Logic
Programs, in: Proceedings of the 5th ACM Workshop on Computational Learning Theory,

Pittsburgh, PA, 1992.
Emde, W., An Inference Engine for Multiple Theories, in: K. Morik (ed.), Knowl-

edge Representation and Organization in Machine Learning, vol. 347 of Lecture Notes in

Artificial Intelligence. Springer-Verlag, 1989.
Emde, W., Habel, C. U., and Rollinger, C. R., The Discovery of the Equator or Concept
Driven Learning, in: Proceedings of the 8th International Joint Conference on Artijcial

Intelligence, Morgan Kaufmann, 1983, pp. 455458.
Bergadano, F., Brusotti, S., Gunetti, D., andTrinchero, U., InductiveTestCaseGeneration,
in: S. Muggleton (ed.), Proceedings of the 3rd International Workshop on Inductive Logic

Programming, 1993, pp. 1 l-24.
Feng, C., Inducing Temporal Fault Diagnostic Rules from a Qualitative Model, in:
S. Muggleton (ed.), Inductive Logic Programming, Academic Press, London, 1992.
Feng, C., and Muggleton, S., Towards Inductive Generalisation in Higher Order Logic, in:
Proceedings of the 9th International Workshop on Machine Learning, Morgan-Kaufmann,

1992.
Flach, P., A framework for Inductive Logic Programming, in: S. Muggleton (ed.),
Inductive Logic Programming, Academic Press, 1992.
Flener, P., and Deville, Y., Logic Program Synthesis from Incomplete Specification,
Journal of Symbolic Computation 15:775-806 (1993).

Gold, E. M., Language Identification in the Limit, Information and Control IO:447474

(1967).

Gottlob, G., Subsumption and Implication, Information Processing Letters 24(2): 109-l 11
(1987).
Grobelnik, M., Markus-An Optimized Model Inference System, in: Proceedings of the

ECAI Workshop on Logical Approaches to Machine Learning, 1992.

Guessoum, A., and Lloyd, J. W., Updating Knowledge Bases, New Generation Computing

X:71-88 (1990).

Guessoum, A., and Lloyd, J. W., Updating Knowledge Bases ii, New Generation Com-
puting 10:73-100 (1992).
Haussler, D., Applying Valiant’s Learning Framework to AI Concept-Learning Problems,
in: Y. Kodratoff and R. Michalski (eds.), Machine Learning.’ An Artificial Intelligence

Approach, vol. 3, Morgan Kaufman, San Mateo, CA, 1990, pp. 641-669.
Helft, N., Learning Systems of First Order Rules, in: Proceedings of the 5th International

Workshop on Machine Learning, Morgan Kaufmann, 1988, pp. 395-401.
Helft, N., Induction as Nonmonotonic Inference, in: Proceedings of the 1st International

Conference on Principles of Knowledge Representation and Reasoning, Kaufmann, 1989,
pp. 149-156.
Hume, D., and Sammut, C. A., Using Inverse Resolution to Learn Relations from Exper-
iments, in: L. Bimbaum and G. C. Collins (eds.), Proceedings of the 8th International

INDUCTIVE LOGIC PROGRAMMING 675

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Workshop on Machine Learning, Morgan Kaufmann, San Mateo, CA, 199 1, pp. 4 12-4 16.
Idestam-Almquist, P., Generalisation under Implication by Using Or-Introduction, in:
P. Brazdil (ed.), Proceedings of the 6th European Conference on Machine Learning, vol.
667 of Lecture Notes in Artificial Intelligence, Springer-Verlag, 1993, pp. 56-64.
Kakas, A. C., Kowalski, R. A., and Toni, F. , Abductive Logic Programming, Journal of

Logic and Computation 2 (1992).

Kakas, T., and Mancarella, P., Database Updates Through Abduction, in: D. McLeod,
R. Sacks-Davis, and H. Scheck (eds.), Proceedings of the 16th International Conference

on Very Large Databases, Morgan Kaufmann, 1990, pp. 650-661.
Kawamura, T., and Furukawa, K., Towards Inductive Generalization in Constraint Logic
Programs, in: Proceedings of the IJCAI Workshop on Inductive Logic Programming,

1993.

Kietz, J.-U., and Wrobel, S., Controlling the Complexity of Learning in Logic Through
Syntactic and Task-Oriented Models, in: S. Muggleton (ed.), Inductive Logic Program-

ming, Academic Press, 1992.
Kietz, J. U., Incremental and Reversible Acquisition of Taxonomies, in: M. Linster,
B. Gaines, and J. Boose (eds.), Proceedings of the 2nd European Knowledge Acquisition

for Knowledge Based Systems Workshops, 1988.
Kietz, J. Il., Some Lower Bounds on the Computational Complexity of Inductive Logic
Programming, in: P. Brazdil (ed.), Proceedings of the 6th European Conference on

Machine Learning, vol. 667 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
1993, pp. 115-123.
Kijsirikul, B., Numao, M., and Shimura, M., Efficient Learning of Logic Programs with
Non-Determinate, Non-Discriminating Literals, in: S. Muggleton (ed.), Inductive Logic

Programming. Academic Press, London, 1992.
King, R., Muggleton , S., Lewis, R., and Sternberg, M., Drug Design by Machine
Learning: The Use of Inductive Logic Programming to Model the Structure-Activity Re-
lationships of Trimethoprim Analogues Binding to Dihydrofolate Reductase, Proceedings

of the National Academy of Sciences 89(23) (1992).

Kirschenbaum, M., and Sterling, L., Refinement Strategies for Inductive Learning of
Simple Prolog Programs, in: Proceedings of the 12th International Joint Conference on

Artificial Intelligence, Morgan-Kaufmann, 1991.
Kleene, S., Finite Axiomatizability ofTheories in the Predicate Calculus Using Additional
Predicate Symbols, in: S. Kleene (ed.), Two Papers on the Predicate Calculus, Memoirs of

the American Mathematical Society No. IO, American Mathematical Society, Providence,
RI, 1952.
van der Laag, P. R., and Nienhuys-Cheng, Subsumption and Refinement in Model In-
ference, in: P. Brazdil (ed.), Proceedings of the 6th European Conference on Machine

Learning, vol. 667 of Lecture Notes in Artzficial Intelligence, Springer-Verlag, 1993, pp.
95-l 14.
Lapointe, S., Ling, C., and Matwin, S., Constructive Inductive Logic Programming, in:
S. Muggleton (ed.), Proceedings of the 3rd International Workshop on Inductive Logic

Programming, 1993.

Lapointe, S., and Matwin, S., Sub-Unification: A Tool for Efficient Induction of Recur-
sive Programs, in: Proceedings of the 9th International Machine Learning Conference,

Morgan-Kaufmann, Los Altos, CA, 1992.
Lau, K. K., and Clement, T. (eds.), Logic Program Synthesis and Transformation, Work-
shops in Computing, Springer-Verlag, 1993.
Lavrac, N., and Dieroski, S., Inductive Logic Programming: Techniques and Applica-

tions, Ellis Horwood, 1993.

66.

67.

68.

69.

70.

71.

72.

73.

74.
75.

76.

77.

78.
79.

80.

81.

82.

83.
84.

85.
86.

87.

88.

S. MUGGLETON AND L. DE RAEDT

LavraE, N., Dieroski, S., and Grobelnik, M., Learning Non-Recursive Definitions of
Relations with LINUS, in: Yves Kodratoff (ed.), Proceedings ofthe 5th European Working
Session on Learning, vol. 482 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
1991.
Lavra:, N., Dieroski, S., Pimat, V., and Kriiman, V., The Use of Background Knowledge
in Learning Medical Diagnostic Rules, Applied Artificial Intelligence 7:273-293 (1993).
Ling, C., Inventing Necessary Theoretical Terms in Scientific Discovery and Inductive
Logic Programming, Technical Report 302, Department of Computer Science, University
of Western Ontario, 199 1.
Maher, M. J., Equivalences of Logic Programs, in: Proceedings of Third International
Conference on Logic Programming, Springer, Berlin, 1986.
Marcinkowski, J., and Pacholski, L., Undecidability of the Horn-Clause Implication
Problem, in: Proceedings of the 33rd IEEE Annual Symposium on the Foundations of
Computer Science, 1992, pp. 354-362.
Mellish, C. S., Some Global Optimizations for a Prolog Compiler, Journal of Logic
Programming 2:43-66 (1985).
Michalski, R. S., A Theory and Methodology of Inductive Learning, in: R. Michal-
ski, J. Carbonnel, and T. Mitchell (eds.), Machine Learning: An Artificial Intelligence
Approach, Tioga, Palo Alto, CA, 1983, pp. 83-134.
Mishra, P., Towards aTheory of Types in Prolog, in: Proceedings of the 1984 International

Symposium on Logic Programming, IEEE Computer Society Press, Atlantic City, 1984,
pp. 289-298.
Mitchell, T. M., Generalisation as Search, Artificial Intelligence 18:203-226 (1982).
Mizoguchi, F., and Ohwada, H., Constraint-Directed Generalization for Learning Spatial
Relations, in: Proceedings of the Second Inductive Logic Programming Workshop, Tokyo,
1992, ICOT TM-l 182.
Moore, E. F., Gedanken-Experiments on Sequential Machines, in: C. E. Shannon and
J. McCarthy (eds.), Automata Studies, Princeton University Press, Princeton, NJ, 1956,
pp. 129-153.
Morik, K., Sloppy Modeling, in: Katharina Morik (ed.), Knowledge Representation and
Organization in Machine Learning, vol. 347 of Lecture Notes in Artificial Intelligence,

Springer-Verlag, 1989.
Mortimer, H., The Logic of Induction, Ellis Horwood, Chichester, England, 1988.
Muggleton, S., Duce, An Oracle Based Approach to Constructive Induction, in: Pro-
ceedings of the 10th International Joint Conference on Artijicial Intelligence, Morgan-
Kaufmann, 1987, pp. 287-292.
Muggleton, S., A Strategy for Constructing New Predicates in First Order Logic, in:
Proceedings of the 3rd European Working Session on Learning, Pitman, 1988, pp. 123-
130.
Muggleton, S., Inductive Logic Programming, New Generation Computing 8(4):295-3 18

(1991).
Muggleton, S. (ed.), Proceedings of the 1st International Workshop on Inductive Logic
Programming, University of Porto, Porto, Portugal, 1991.
Muggleton, S. (ed.), Inductive Logic Programming, Academic Press, 1992.
Muggleton, S. (ed.), Proceedings of the 2nd International Workshop on Inductive Logic

Programming. ICOT, Tokyo, Japan, 1992.
Muggleton, S., Inverting Implication, Artificial Intelligence Journal (1994) to appear.
Muggleton, S., Predicate Invention and Utility, Journal of Experimental and Theoretical

Artificial Intelligence 6(1): 127-130, (1994).
Muggleton, S. (ed.), Proceedings of the 3rd International Workshop on Inductive Logic
Programming, Jozef Stefan Institute, Bled, Slovenia, 1993.
Muggleton, S., Mode-Directed Inverse Resolution, in: K. Furukawa, D. Michie, and
S. Muggleton (eds.), Machine Intelligence 14, Oxford University Press (to appear).

INDUCTIVE LOGIC PROGRAMMING 677

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.
102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

Muggleton, S., and Buntine, W., Machine Invention of First-Order Predicates by Inverting
Resolution, in: Proceedings of the 5th International Conference on Machine Learning,

Morgan-Kaufmann, 1988, pp. 339-352.
Muggleton, S., and Feng, C., Efficient Induction of Logic Programs, in: Proceedings of

the 1st Conference on Algorithmic Learning Theory, Ohmsha, Tokyo, 1990.

Muggleton, S., King, R., and Stemberg, M., Protein Secondary Structure Prediction
Using Logic-Based Machine Learning, Protein Engineering 5(7):647-657 (1992).

Muggleton, S., Srinivasan, A., and Bain, M., Compression, Significance and Accuracy, in:
Proceedings of the 9th International Machine Learning Conference, Morgan-Kaufmann,
San Mateo, CA, 1992.
Niblett, T., A Study of Generalisation in Logic Programs, in: Proceedings of the 3rd

European Workshop Session on Learning, Pitman, London, 1988.
Page, D., and Frisch, A., Generalization and Learnability: A Study of Constrained Atoms,
in: S. Muggleton (ed.), Inductive Logic Programming, Academic Press, London, 1992.
Pazzani, M., and Kibler, D., The Utility of Knowledge in Inductive Learning, Machine

Learning 9 (1992).

Pereira, L. M., Calejo, M., and Aparicio, J. N., Refining Knowledge Base Updates,
Technical Report, AI Center/UNINOVA, Portugal, Nov. 7, 1989.
Piatetsky-Shapiro, G., and Frawley, W. (eds.), Knowledge Discovery in Databases, MIT
Press, 1991.
Plotkin, G., A Further Note on Inductive Generalization, in: Machine Intelligence, vol. 6,

Edinburgh University Press, 197 1.
Plotkin, G. D., A Note on Inductive Generalisation, in: B. Meltzer and D. Michie (eds.),
Machine Intelligence 5, Elsevier North Holland, New York, 1970, pp. 153-163.
Plotkin, G. D., Automatic Methods of Inductive Inference, Ph.D. Thesis, Edinburgh
University, Aug. 197 1.
Quinlan, J. R., Induction of Decision Trees, Machine Learning 1:81-106 (1986).
Quinlan, J. R., Determinate Literals in Inductive Logic Programming, in: Proceedings

of the 12th International Joint Conference on Artificial Intelligence, Morgan-Kaufmann,
San Mateo, CA, 199 1, pp. 746750.
Quinlan, J. R., and Cameron-Jones, R. M., FOIL: A Midterm Report, in: P. Brazdil (ed.),
Proceedings of the 6th European Conference on Machine Learning, vol. 667 of Lecture

Notes in Art$cial Intelligence, Springer-Verlag, 1993, pp. 3-20.
Quinlan, J. R., and Rivest, R. L., Inferring Decision Trees Using the Minimum Description
Length Principle, Information and Computation 80:227-248 (1989).

Quinlan, R., Learning Logical Definitions from Relations, Machine Learning 5:239-266

(1990).

De Raedt, L., Inductive Logic Programming and Scientific Discovery, Technical Report,
Department of Computing Science, Katholieke Universiteit Leuven, 1992, submitted.
De Raedt, L., Interactive Theory Revision: An Inductive Logic Programming Approach,

Academic Press, 1992.
De Raedt, L., and Bruynooghe, M., Towards Friendly Concept-Learners, in: Proceedings

of the I1 th International Joint Conference on Artificial Intelligence, Morgan Kaufmann,
1989, pp. 849-856.
De Raedt, L., and Bruynooghe, M., Indirect Relevance and Bias in Inductive Concept-
Learning, Knowledge Acquisition 2:365-390 (1990).

De Raedt, L., and Bruynooghe, M., Belief Updating from Integrity Constraints and
Queries, Artificial Intelligence 53:291-307 (1992).

De Raedt, L., and Bruynooghe, M., Interactive Concept-Learning and Constructive
Induction by Analogy, Machine Learning 8:107-150 (1992).

De Raedt, L., and Bruynooghe, M., A Unifying Framework for Concept-Learning Algo-
rithms, The Knowledge Engineering Review 7(3):251-269 (1992).

De Raedt, L., and Bruynooghe, M., A Theory of Clausal Discovery, in: Proceedings

114.

11.5.

116.

117.

118.

119.
120.

121.

122.

123.

124.

125.
126.

127.

128.

129.

130.

131.

132.

133.

134

S.MUGGLETONANDL.DERAEDT

of the 13th International Joint Conference on Artificial Intelligence, Morgan Kaufmann,
1993.

De Raedt, L., and Lavra?, L., The Many Faces of Inductive Logic Programming, in:
J. Komorowski (ed.), Proceedings of the 7th International Symposium on Methodologies

for Intelligent Systems: Lecture Notes in Artificial Intelligence, Springer-Verlag, 1993.
De Raedt, L., LavraE, N., and Dieroski, S., Multiple Predicate Learning, in: Proceedings

of the 13th International Joint Conference on Artificial Intelligence, Morgan Kaufmann,
1993.
De Raedt, L., Sablon, Cl., and Bruynooghe, M., Using Interactive Concept-Learning
for Knowledge Base Validation and Verification, in: M. Aye1 and J. P. Laurent (eds.),
Validation, Verification and Testing of Knowledge Based Systems, John Wiley and Sons,
1991, pp. 177-190.
Rice, H., Classes of Recursively Enumerable Sets and Their Decision Problems, Trans-

actions of the American Mathematical Society 83 (1953).
Richards, B. L., and Mooney, R. J., First Order Theory Revision, in: Proceedings of the

8th International Workshop on Machine Learning, Morgan Kaufmann, 199 1, pp. 44745 1.
Rissanen, J., Modeling by Shortest Data Description, Automatica 14:465-47 1 (1978).
Robinson, J. A., A Machine-Oriented Logic Based on the Resolution Principle, JACM

12(1):23-41 (Jan. 1965).
Rouveirol, C., Extensions of Inversion of Resolution Applied to Theory Completion, in:
S. Muggleton (ed.), Inductive Logic Programming, Academic Press, London, 1992.
Rouveirol, C., and Puget, J.-F., A Simple and General Solution for Inverting Resolution,
in: Proceedings of the 4th European Workshop Session on Learning, Pitman, London,
1989, pp. 201-210.
Sammut, C., The Origins of Inductive Logic Programming: A Prehistoric Tale, in:
S. Muggleton (ed.), Proceedings of the 3rd International Workshop on Inductive Logic

Programming, 1993, pp. 127-147.
Sammut, C., and Banerji, R. B., Learning Concepts by Asking Questions, in: R. Michal-
ski, J. Carbonnel, and T. Mitchell (eds.), Machine Learning: An Artificial Intelligence

Approach, Vol. 2, Kaufmann, Los Altos, CA, 1986, pp. 167-192.
Shapiro, E. Y., Algorithmic Program Debugging, MIT Press, 1983.
Shapiro, E. Y., Inductive Inference of Theories from Facts, in: J.-L. Lassez and G. Plotkin
(eds.), Computational Logic: Essays in Honor of Alan Robinson, MIT Press, 1991.
Silverstein, G., and Pazzani, M., Relational Cliches: Constraining Constructive Induc-
tion During Relational Learning, in: Proceedings of the 6th International Workshop on

Machine Learning, Morgan Kaufmann, Los Altos, CA, 1989.
Solomonoff, R. J., A Formal Theory of Inductive Inference, Information and Control

7:376-388 (1964).
Stahl, I., Constructive Induction in Inductive Logic Programming: An Overview, Tech-
nical Report, Fakultat Informatik, Universitat Stuttgart, 1992.
Stahl, I., Tausend, B., and Wirth, R., Two Methods for Improving Inductive Logic
Programming Systems, in: P. Brazdil (ed.), Proceedings of the 6th European Conference

on Machine Learning, vol. 667 of Lecture Notes in Artificial Intelligence, 1993.
Sternberg, M., Lewis, R., King, R., and Muggleton, S., Modelling the Structure andFunc-
tion of Enzymes by Machine Learning, Proceedings of the Royal Society of Chemistry:

Faraday Discussions 93:269-280 (1992).
Stickel, M., A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler, Journal of Automated Reasoning 4(4):353-380 (1988).
Summers, P. D., Program Construction from Examples, Ph.D. thesis, Yale University,
New Haven, CT, 197.5.
Tankitvanitch, S., and Shimura, M., Refining a Relational Theory with Multiple Faults
in the Concept and Subconcepts, in: Proceedings of the 9th International Workshop on

Machine Learning, Morgan Kaufmann, 1992, pp. 4364l4.

INDUCTIVE LOGIC PROGRAMMING 679

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

Tausend, B., A Unifying Representation for Language Restrictions, in: S. Muggleton
(ed.), Proceedings of the 3rd International Workshop on Inductive Logic Programming,

1993.

Taylor, K., Inverse Resolution of Normal Clauses, in: S. Muggleton (ed.), Proceedings

of the 3rd International Workshop on Inductive Logic Programming, 1993, pp. 165-178.
Thieme, S., The Acquisition of Model-Knowledge for a Model-Driven Machine Learning
Approach, in: K. Morik (ed.), Knowledge Representation and Organization in Machine

Learning, Springer Verlag, 1989.
Tomasic, A., View Update Translation via Deduction and Annotation, in: Proceedings

2nd International Conference on Database Theory, vol. 326 of Lecture Notes in Computer

Science, Springer-Verlag, 1988, pp. 338-35 1.
Utgoff, P. E., and Mitchell, T. M., Acquisition of Appropriate Bias for Concept Learn-
ing, in: Proceedings of the 2nd National Conference on Artijcial Intelligence, Morgan-
Kaufmann, 1982, pp. 414-418.
Valiant, L. G., A Theory of the Learnable, Communications of the ACM 27: 1134-I 142
(1984).
Van Laer, W., Inductief Afleiden van Logische Regels, Master’s thesis, Department of
Computing Science, Katholieke Universiteit Leuven, 1993 (in Dutch).
Vere, S. A., Induction of Concepts in the Predicate Calculus, in: Proceedings of the 4th

International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1975, pp.
282-287.
Wirth, R., Learning by Failure to Prove, in: Proceedings of the 3rd European Workshop

Session on Learning, Pitman, London, 1988, pp. 237-251.
Wirth, R., Completing Logic Programs by Inverse Resolution, in: Proceedings of the 4th

European Workshop Session on Learning, Pitman, London, 1989, pp. 239-250.
Wirth, R., and O’Rorke, P. , Constraints on Predicate Invention, in: Proceedings ofthe 8th

International Workshop on Machine Learning, Morgan-Kaufmann, 199 1, pp. 457461.
Wogulis, J., Revising Relational Theories., in: Proceedings of the 8th International

Workshop on Machine Learning, Morgan-Kaufmann, 1991, pp. 462466.
Wrobel, S., Automatic Representation Adjustment in an Observational Discovery System,
in: Proceedings of the 3rd European Workshop Session on Learning, Pitman, London,
1988, pp. 253-262.
Wrobel, S., On the Proper Definition of Minimality in Specialisation and Theory Revision,
in: Proceedings of the 6th European Conference on Machine Learning, vol. 667 of Lecture

Notes in Artijcial Intelligence, Springer-Verlag, 1993, pp. 65-82.
Yokomori, T., Logic Program Forms, New Generation Computing 4 (1986).

