
2 Introduction

The Aleph Manual
For Version 6 and above

Then the rabbi said, “Golem, you have not been completely formed, but I am about to finish you

now...You will do as I will tell you.'' Saying these words, Rabbi Leib finished engraving the letter

Aleph. Immediately the golem began to rise.” From: The Golem, by Isaac Bashevis Singer with

illustrations by Uri Shulevitz.

Ashwin Srinivasan

Introduction 3

The development of Aleph owes much to the advice and research of many people. Special thanks are

due to: Michael Bain, Rui Camacho, Vitor Costa, James Cussens, Ross King, Donald Michie, Stephen

Moyle, Stephen Muggleton, David Page, Mark Reid, Claude Sammut, Jude Shavlik, Jan Wielemaker

and Filip Zelezny. G. Krishnan helped with upgrading the documentation to the current state.

4 Introduction

Contents
1 Introduction .. 6

1.1 How to cite Aleph .. 6

1.2 How to use this manual .. 6

2 Getting Started with Aleph ... 7

2.1 Basic use of Aleph ... 7

2.2 Loading Aleph.. 7

2.3 Background knowledge file ... 8

2.3.1 Mode declarations .. 8

2.3.2 Type specifications .. 9

2.3.3 Determinations ... 10

2.4 Positive Examples File ... 10

2.5 Negative Examples File ... 11

2.6 Read Input Files ... 11

2.7 Construct a Theory .. 11

2.8 Save a Theory .. 13

2.9 Evaluate a Theory .. 13

2.10 Examples File ... 13

3 Advanced Use of Aleph ... 15

3.1 Setting Aleph Parameters ... 16

3.2 Altering the Search .. 26

3.2.1 Search strategies ... 27

3.2.2 Evaluation functions.. 28

3.2.3 Built-in and user-defined pruning ... 29

3.2.4 Clause-type restrictions .. 30

3.2.5 User-defined costs .. 30

3.2.6 User-defined constraints ... 30

3.2.7 User-defined refinement .. 31

3.2.8 User-defined proof strategy .. 32

3.2.9 Specific-to-general search ... 33

3.3 Randomised search methods .. 34

3.4 Incremental construction of theories ... 36

3.5 Theory-level search ... 37

3.6 Tree-based theories .. 37

3.7 Constraint learning.. 39

3.8 Mode learning ... 41

Introduction 5

3.9 Abductive learning .. 41

3.10 Feature Construction .. 43

3.11 Stream-based learning .. 45

3.12 Other useful commands .. 46

4 Related versions and programs .. 48

5 Notes ... 49

5.1 On the appropriateness of Aleph .. 49

5.2 On predicate-name clashes with Aleph ... 49

5.3 On the role of the bottom clause.. 49

5.4 On using Aleph interactively. .. 50

5.5 On different ways of constructing a theory .. 50

5.6 On a categorisation of parameters ... 50

5.7 On how the single-clause search is implemented .. 51

5.8 On how to reduce the search space ... 52

5.9 On how to use fewer examples .. 52

5.10 On a user-defined view of hypotheses and search .. 53

5.11 On numerical reasoning with Aleph ... 53

5.12 On applications of Aleph ... 54

5.13 On using Aleph with other techniques ... 54

5.14 On performing closed-world specialisation with Aleph .. 54

5.15 n some basic ideas relevant to ILP .. 55

6 Change Logs .. 57

6.1 Changes in Version 1 ... 57

6.2 Changes in Version 2 ... 57

6.3 Changes in Version 3 ... 57

6.4 Changes in Version 4 ... 59

6.5 Changes in Version 5 ... 60

6.6 Changes in Version 6 ... 61

Commands and Parameters Index .. 63

Concept Index ... 65

6 Introduction

1 Introduction

This document provides reference information on A Learning Engine for Proposing Hypotheses

(Aleph). Aleph is an Inductive Logic Programming (ILP) system. This manual is not intended to be a

tutorial on ILP. An early, but still worthwhile introduction to the theory, implementation and

applications of ILP can be found in S.H. Muggleton and L. De Raedt (1994), Inductive Logic

Programming: Theory and Methods, Jnl. Logic Programming, 19,20:629—679.

Aleph is intended to be a prototype for exploring ideas. Earlier incarnations (under the name P-

Progol) originated in 1993 as part of a fun project undertaken by Ashwin Srinivasan and Rui Camacho

at Oxford University. The main purpose was to understand ideas of inverse entailment which are

described in Stephen Muggleton's 1995 paper: Inverse Entailment and Progol}, New Gen. Comput.,

13:245-286, Since then, the implementation has evolved to emulate some of the functionality of

several other ILP systems. Some of these of relevance to Aleph are: CProgol, FOIL, FORS, Indlog,

MIDOS, SRT, Tilde, and WARMR.

Aleph is written in Prolog principally for use with the Yap Prolog compiler. It should also run, albeit

less efficiently, with SWI Prolog. It is maintained by Ashwin Srinivasan, who can be reached by e-mail

at:

ashwin.srinivasan@wolfson.oxon.org

This version is free for academic use (research and teaching). If you intend to use it for commercial

purposes then contact Ashwin Srinivasan.

Aleph requires Yap to be compiled with the DEPTH_LIMIT flag set to 1 (that is, include

DEPTH_LIMIT=1 in the compiler options).

1.1 How to cite Aleph

Please cite Aleph as follows: A. Srinivasan (1999). The Aleph Manual. Available at:

http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph.

1.2 How to use this manual

 If you are a first-time user, proceed directly to the section on “Basic use of Aleph”. If you

have mastered the basic use of Aleph then see the section on “Advanced Use of Aleph”. You

may also want to look at the index for entries of a conceptual nature.

 If you are familiar with idea of setting parameters, altering search methods, etc within

Aleph, then see the section “Notes” for ideas that have proved worthwhile in applications.

 If you are interested in what is new with this version, see the section “Change Logs” for a

change-log.

mailto:ashwin.srinivasan@wolfson.oxon.org
http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

Getting Started with Aleph 7

2 Getting Started with Aleph

2.1 Basic use of Aleph

Most first-time users of Aleph will be looking to use it in the following way:

1. Select Example. Select an example to be generalised. If none exist, stop, otherwise

proceed to the next step.

2. Build Most Specific Clause. Construct the most specific clause that entails the

example selected, and is within language restrictions provided. This is usually a

definite clause with many literals, and is called the ``bottom clause.'' This step is

sometimes called the saturation step. Details of constructing the bottom clause can

be found in Stephen Muggleton's 1995 paper: Inverse Entailment and Progol, New

Gen. Comput., 13:245-286.

3. Search. Find a clause more general than the bottom clause. This is done by

searching for some subset of the literals in the bottom clause that has the “best”

score. Two points should be noted. First, confining the search to subsets of the

bottom clause does not produce all the clauses more general than it, but is good

enough for this thumbnail sketch. Second, the exact nature of the score of a clause is

not really important here. This step is sometimes called the reduction step.

4. Remove Redundant. The clause with the best score is added to the current theory,

and all examples made redundant are removed. This step is sometimes called the

cover removal step. Note here that the best clause may make clauses other than the

examples redundant. Again, this is ignored here.

5. Return to Step 1.

Advanced use of Aleph allows alteration to each of these steps. At the core of Aleph is the reduction

step, presented above as a simple “subset-selection” algorithm. In fact, within Aleph, this is

implemented by a (restricted) branch-and-bound algorithm which allows an intelligent enumeration

of acceptable clauses under a range of different conditions. More on this can be found in the section

“Aleph Implementation”.

2.2 Loading Aleph

Aleph code is contained in a single file, usually called alephX.pl (the X stands for the current

version number, for example aleph4.pl refers to Version 4). To load Aleph, you will need to consult

this file into your Prolog compiler, with sufficient stack and heap size (the more, the better!). Here is

an example of loading Aleph into the Yap compiler, with a stack size of 5000 K bytes and heap size of

20000 K bytes:

yap -s5000 -h20000

[Restoring file startup]

yes

 ?- [aleph4].

8 Getting Started with Aleph

Aleph requires 3 files to construct theories. The most straightforward use of Aleph would involve:

1. Construct the 3 data files called filestem.b, filestem.f, filestem.n . These

contain respectively: the background knowledge, the positive examples, and the negative

examples. One or both of the “.f” and “.n” files may be missing or empty.

2. Read the 3 data files using the read_all(filestem) command.

3. Construct a theory using the induce command.

2.3 Background knowledge file

All background knowledge for Aleph is contained in a file with a “.b” extension. Background

knowledge is in the form of Prolog clauses that encode information relevant to the domain. It can

also contain any directives understood by the Prolog compiler being used (for example,:-

consult(someotherfile)). This file also contains language and search restrictions for Aleph.

The most basic amongst these refer to modes, types and determinations.

2.3.1 Mode declarations

These declare the mode of call for predicates that can appear in any clause hypothesised by Aleph.

They take the form:

mode(RecallNumber,PredicateMode).

where RecallNumber bounds the non-determinacy of a form of predicate call, and

PredicateMode specifies a legal form for calling a predicate.

RecallNumber can be either (a) a number specifying the number of successful calls to the

predicate; or (b) * specifying that the predicate has bounded non-determinacy. It is usually easiest

to specify RecallNumber as *.

PredicateMode is a template of the form:

p(ModeType, ModeType,...)

Here are some examples of how they appear in a file:

:- mode(1,mem(+number,+list)).

:- mode(1,dec(+integer,-integer)).

:- mode(1,mult(+integer,+integer,-integer)).

:- mode(1,plus(+integer,+integer,-integer)).

:- mode(1,(+integer)=(#integer)).

Getting Started with Aleph 9

:- mode(*,has_car(+train,-car)).

Each ModeType is either (a) simple; or (b) structured. A simple ModeType is one of:

a. +T , which means that when a literal with predicate symbol p appears in a

hypothesised clause, the corresponding argument should be an ``input'' variable of

type T;

b. -T , which means that that the corresponding argument is an ``output'' variable of

type T; or

c. #T , which means that the corresponding argument should have a constant of type

T.

All the examples above have simple modetypes. A structured ModeType is of the form:

f(..) where f is a function symbol, each argument of which is either a simple or

structured ModeType.

Here is an example containing a structured ModeType in the second argument:

:- mode(1,mem(+number,[+number|+list])).

Mode directives are used by Aleph to ensure that for any hypothesised clause of the form:

H:- B1, B2, ..., Bc

satisfies the following:

Input variables. Any input variable of type T in a body literal Bi appears as an output

variable of type T in a body literal that appears before Bi, or appears as an input variable of

type T in H.

Output variables. Any output variable of type T in H appears as an output variable of type T

in Bi.

Constants. Any arguments denoted by #T in the modes have only ground terms of type T.

2.3.2 Type specifications

Types have to be specified for every argument of all predicates to be used in constructing a

hypothesis. This specification is done within a mode(...,...) statement (see Mode

declarations2.3.1).

10 Getting Started with Aleph

Normally, for Aleph types are just names, and no type-checking is done. Variables of different types

are treated distinctly, even if one type is a sub-type of the other. This can be changed with an

appropriate parameter setting that forces explicit type-checking.

2.3.3 Determinations

Determination statements declare the predicated that can be used to construct a hypothesis. They

take the form:

determination(TargetName/Arity,BackgroundName/Arity).

The first argument is the name and arity of the target predicate, that is, the predicate that will

appear in the head of hypothesised clauses. The second argument is the name and arity of a

predicate that can appear in the body of such clauses. Typically there will be many determination

declarations for a target predicate, corresponding to the predicates thought to be relevant in

constructing hypotheses. Here are some things to remember:

 If no determinations are present Aleph does not construct any clauses.

 Determinations are only allowed for 1 target predicate on any given

run of Aleph: if multiple target determinations occur, the first one is chosen.

Here are some examples of how they appear in a file:

:- determination(eastbound/1,has_car/2).

:- determination(mult/3,mult/3).

:- determination(p/1,'='/2).

2.4 Positive Examples File

Positive examples of a concept to be learned with Aleph are written in a file with a “.f” extension.

The filestem should be the same as that used for the background knowledge. The positive examples

are simply ground facts. Here are some examples of how they appear in a file:

eastbound(east1).

eastbound(east2).

eastbound(east3).

Code exists for dealing with non-ground positive examples. However, this has never been tested

rigorously.

Getting Started with Aleph 11

2.5 Negative Examples File

Negative examples of a concept to be learned with Aleph are written in a file with a “.n” extension.

The filestem should be the same as that used for the background knowledge. The negative examples

are simply ground facts. Here are some examples of how they appear in a file:

eastbound(west1).

eastbound(west1).

eastbound(west1).

Non-ground constraints can be a more compact way of expressing negative information. Such

constraints can be specified in the background knowledge file (described later). Aleph is capable of

learning from positive examples only. This is done using a Bayesian evaluation function (by setting

the parameter evalfn to posonly).

2.6 Read Input Files

Once the “filestem.b”, “filestem.f” and “filestem.n” files are in place, they can be read into Aleph

with the command:

read_all(filestem).

Finer-grain specification of the example files can be achieved by setting the train_pos and

train_neg parameters.

2.7 Construct a Theory

The basic command for selecting examples and constructing a theory is:

induce.

When issued Aleph does the four steps described earlier. The result is usually a trace that lists

clauses searched along with their positive and negative example coverage, like:

eastbound(A) :-

 has_car(A,B).

[5/5]

eastbound(A) :-

 has_car(A,B), short(B).

12 Getting Started with Aleph

[5/5]

eastbound(A) :-

 has_car(A,B), open_car(B).

[5/5]

eastbound(A) :-

 has_car(A,B), shape(B,rectangle).

[5/5]

and the final result that looks like:

[theory]

[Rule 1] [Pos cover = 5 Neg cover = 0]

eastbound(A) :-

 has_car(A,B), short(B), closed(B).

[pos-neg] [5]

induce also reports the performance on the training data as a confusion matrix that looks like:

 [Training set performance]

 Actual

 + -

 + 5 0 5

Pred - 0 5 5

 5 5 10

Accuracy = 100%

Performance on a test data is also reported if values for the parameters test_pos

and test_neg are set.

Getting Started with Aleph 13

The simplest use of induce implements a randomised greedy cover-set algorithm. Aleph allows

you to experiment with a number of other ways of searching for answers.

2.8 Save a Theory

The final theory constructed by Aleph can be saved in a file “FileName” using the command:

write_rules(FileName).

Alternatively, the command:

write_rules.

calls write_rules/1 with the current setting for the parameter rulefile.

2.9 Evaluate a Theory

Besides automatic performance reporting, the theory constructed by Aleph can be evaluated on

examples in any data file using the command:

test(File,Flag,Covered,Total).

Here File is the name of the data file containing the examples, and Flag is one of show or

noshow (to show examples covered or otherwise). Both File and Flag have to be provided.

test/4 then returns the following numbers: Covered is the number of examples in the data file

covered by current theory, and Total is the total number of examples in the data file.

2.10 Examples File

Some simple examples of Aleph usage can be found in the examples directory with the Aleph code.

In each sub-directory you should find Aleph input files and, usually, a typescript of Aleph running on

the data provided to accomplish some task.

Advanced Use of Aleph 15

3 Advanced Use of Aleph

Advanced use of Aleph allows modifications to each of the steps to the basic algorithm, namely:

1. Select example. A sample of more than 1 example can be selected (see: samplesize in

“Setting Aleph Parameters”). The best clause obtained from reducing each corresponding

bottom clause is then added to the theory. Alternatively, no sampling need be performed,

and every example can be saturated and reduced (see induce in “Altering the Search”).

2. Build most-specific-clause. Bottom clauses may be constructed “lazily” or not at all (see:

construct_bottom in “Setting Aleph Parameters (Other Settings)”). Literals in the bottom

clause may be evaluated “lazily” (see: lazy_evaluate in “Other useful commands”). Individual

bottom clauses can be constructed and examined (see: sat in “Other useful commands”).

3. Search. The search for clauses can be altered and customised to try different search

strategies, evaluation functions, and refinement operators (see: “Search strategies”). A

bottom clause can be reduced repeatedly using different search constraints (see: Reduce in

“Other useful commands”).

4. Remove redundant. Examples covered may be retained to give better estimates of clause

scores (see: induce in “Altering the Search”).

There is now some software in place that allows exploration of the following:

 Randomised search. The basic Aleph algorithm does a fairly standard general-to-specific

search. Some variation on this is possible by the user specifying his or her own refinement

operator. In other areas (satisfiability of propositional formulae, simulation of discrete

events), randomised methods have proven extremely useful tools to search very large

spaces. The implementation within Aleph is an adaptation of the standard randomised

methods: GSAT, WSAT, RRR, and the Metropolis algorithm (a special case of simulated

annealing with a fixed ‘temperature’) (see: “3.3” and “Search strategies”).

 Incremental learning. The basic Aleph algorithm is a “batch” learner in the sense that all

examples and background are expected to be in place before learning commences. An

incremental mode allows Aleph to acquire new examples and background information by

interacting with the user (see “Incremental construction of theories”).

 On-line learning. This allows Aleph to construct models for examples arriving constantly as a

stream of data. (see “On-line Learning”).

 Theory learning. The basic Aleph algorithm constructs a “theory'' one clause at a time. This

is an implementation of the greedy set-cover algorithm to the problem of identifying a set of

clauses. There is some empirical and theoretical work done on on ILP of sets of clauses at

once: see the work of I. Bratko and H. Midelfart in Proceedings of the Ninth International

Workshop on Inductive Logic Programming (ILP'99)}, LNAI-1634. Theory learning by Aleph

uses randomised search methods to search through the space of theories.

 Learning (first-order) trees. The basic Aleph algorithm constructs clauses using a greedy set-

covering algorithm. In some sense, this can be seen as the first-order equivalent of

propositional rule-learning algorithms like Clark and Niblett's CN2. There is now a substantial

body of empirical work (done by researchers in Leuven and Freiburg) demonstrating the

utility of first-order equivalents of propositional tree-learning procedures. Tree-based

learning can be seen as a special case of theory learning and the implementation in Aleph

16 Advanced Use of Aleph

uses the standard recursive-partitioning approach to construct classification, regression,

class probability, or model trees (see “Tree-based theories”).

 Learning constraints. The basic Aleph algorithm constructs definite clauses normally

intended to be components of a predictive model for data. Early ILP work (in the Claudien

system) demonstrated the value of discovering all non-Horn constraints that hold in a

database. The implementation of these ideas in Aleph uses a naive generate-and-test

strategy to enumerate all constraints within the mode language provided (see “Constraint

learning”).

 Learning modes. The basic Aleph algorithm assumes modes will be declared by the user.

There has been some work (by McCreath and Sharma) on automatic extraction of mode and

type information from the background knowledge provided. The implementation of these

ideas in Aleph follows these ideas fairly closely (see: “Mode learning”).

 Learning features. The basic Aleph algorithm constructs a set of rules that, along with the

background knowledge, entail the positive examples. Good clauses found during the search

for this set of rules can be used to construct boolean features. These can then be used

techniques like maximum entropy modelling, support vector machines and so on (see:

“Feature Construction”)

3.1 Setting Aleph Parameters

The set/2 predicate forms the basis for setting a number of parameter values for Aleph. Parameters

are set to values using:

set(Parameter,Value)

The current value of a parameter is obtained using:

setting(Parameter,Value)

A parameter can be un-set by using:

noset(Parameter)

Some of the more meaningful set/2 statements for Aleph are listed below:

set(abduce,+V)

Advanced Use of Aleph 17

V is one of: true or false (default false). If V is true then abduction and subsequent

generalisation of abduced atoms is performed within the induce loop. Only predicates

declared to be abducible by abducible/1 are candidates for abduction. See “Abductive

learning” for more details.

set(best,+V)

V is a 'clause label' obtained from an earlier run. This is a list containing at least the number

of positives covered, the number of negatives covered, and the length of a clause found on a

previous search. Useful when performing searches iteratively.

set(cache_clauselength,+V)

V is a positive integer (default 3). Sets an upper bound on the length of clauses whose

coverages are cached for future use.

set(caching,+V)

V is one of: true or false (default false). If true then clauses and coverage are cached for

future use. Only clauses upto length set by `cache_clauselength` are stored in the cache.

set(check_redundant,+V)

V is one of: true or false (default false). Specifies whether a call to `redundant/2` (see “Other

useful commands”) should be made for checking redundant literals in a clause.

set(check_useless,+V)

V is one of: true or false (default false). If set to true, removes literals in the bottom clause

that do not contribute to establishing variable chains to output variables in the positive

literal, or produce output variables that are not used by any other literal in the bottom

clause.

set(classes,+V)

V is a list of classes to be predicted by the tree learner (see “Tree-based theories”).

set(clauselength,+V)

V is a positive integer (default 4). Sets the upper bound on number of literals in an

acceptable clause.

set(clauselength_distribution,+V)

V is a list of the form [p1-1,p2-2,...] where "pi" represents the probability of drawing a clause

with "i" literals. Used by randomised search methods (see “Randomised search methods”).

set(clauses,+V)

V is a positive integer. Sets upper bound on the number of clauses in a theory when

performing theory-level search (see “Theory-level search”).

set(clausetype,+V)

V is one of elementary,simple,rsd,independent,any (default any). Sets restrictions on the

types of clauses constructured by Aleph (see ”Clause-type Restrictions”).

18 Advanced Use of Aleph

set(condition,+V)

V is one of: true or false (default false). If true then randomly generated examples are

obtained after conditioning the stochastic generator with the positive examples.

set(confidence,+V)

V is a floating point number in the interval (0.0,1.0) (default 0.95). Determines the

confidence for rule-pruning by the tree learner (see “Tree-based theories”).

set(construct_bottom,+V)

V is one of: saturation, reduction or false (default saturation). Specifies the stage at which

the bottom clause is constructed. If reduction then it is constructed lazily during the search.

This is useful if the bottom clause is too large to be constructed prior to search. This also sets

the flag `lazy_bottom` to true. The user has to provide a refinement operator definition

(using refine/2). If not, the refine parameter is set to auto. If false then no bottom clause is

constructed. The user would normally provide a refinement operator definition in this case.

set(dependent,+V)

V is a positive integer. Denotes the argument of the dependent variable in the examples (see

“Tree-based theories” and “Feature Construction”).

set(depth,+V)

V is a positive integer (default 10). Sets an upper bound on the proof depth to which

theorem-proving proceeds.

set(explore,+V)

V is one of: true or false (default false). If true then forces search to continue until the point

that all remaining elements in the search space are definitely worse than the current best

element (normally, search would stop when it is certain that all remaining elements are no

better than the current best. This is a weaker criterion.) All internal pruning is turned off (see

“Built-in and user-defined pruning”).

set(evalfn,+V)

V is one of: coverage, compression, posonly, pbayes, accuracy, laplace, auto_m, mestimate,

entropy, gini, sd, wracc, or user (default `coverage`). Sets the evaluation function for a

search (see “Altering the Search”).

set(good,+V)

V is one of: true or false (default false). If true then stores a Prolog encoding of "good"

clauses found in the search. A good clause is any clause with utility above that specified by

the setting for minscore. If goodfile is set to some filename then this encoding is stored

externally in that file.

set(goodfile,+V)

V is a Prolog atom. Sets the filename for storing a Prolog encoding of good clauses found in

searches conducted to date. Any existing file with this name will get appended.

Advanced Use of Aleph 19

set(gsamplesize,+V)

V is a positive integer (default 100). The size of the randomly generated example set

produced for learning from positive example (see “Altering the Search”).

set(i,+V)

V is a positive integer (default 2). Set upper bound on layers of new variables.

set(induce,+V)

V is one of greedy, max, cover, incremental, stream, tree,

constraints, theory, model, modes (default greedy). Invokes one of

procedures for hypothesis construction using the induce/0 command (see: “Altering the

Search”)

set(interactive,+V)

V is one of: true or false (default false). If true then constructs theories interactively with

induce_rules and induce_tree.

set(language,+V)

V is an integer >= 1 or inf (default inf). Specifies the number of occurences of a predicate

symbol in any clause.

set(lazy_on_contradiction,+V)

V is one of: true or false (default false). Specifies if theorem-proving should proceed if a

constraint is violated.

set(lazy_on_cost,+V)

V is one of: true or false (default false). Specifies if user-defined cost-statements require

clause coverages to be evaluated. This is normally not user-set, and decided internally.

set(lazy_negs,+V)

V is one of: true or false (default false). If true then theorem-proving on negative examples

stops once bounds set by noise or minacc are violated.

set(lookahead,+V)

V is a positive integer. Sets a look-ahead value for the automatic refinement operator

(obtained by setting refine to auto).

set(m,+V)

V is a floating point number. Sets a value for “m-estimate” calculations (see “Evaluation

functions”).

set(max_abducibles,+V))

V is a positive integer (default 2). Sets an upper bound on the maximum number of ground

atoms within any abductive explanation for an observation (see section “Abductive

learning”).

20 Advanced Use of Aleph

set(max_botsize,+V))

V is a positive integer (default inf). Sets an upper bound on the maximum number of literals

allowed in a bottom clause.

set(max_features,+V))

V is a positive integer (default inf). Sets an upper bound on the maximum number of

boolean features constructed by searching for good clauses (see: “Feature Construction”).

set(minacc,+V)

V is an floating point number between 0 and 1 (default 0.0). Set a lower bound on the

minimum accuracy of an acceptable clause. The accuracy of a clause has the same meaning

as precision: that is, it is p/(p+n) where p is the number of positive examples covered by the

clause (the true positives) and n is the number of negative examples covered by the clause

(the false positives).

set(mingain,+V)

V is an floating point number (default 0.05). Specifies the minimum expected gain from

splitting a leaf when constructing trees.

set(minpos,+V)

V is a positive integer (default 1). Set a lower bound on the number of positive examples to

be covered by an acceptable clause. If the best clause covers positive examples below this

number, then it is not added to the current theory. This can be used to prevent Aleph from

adding ground unit clauses to the theory (by setting the value to 2). Beware: you can get

counter-intuitive results in conjunction with the minscore setting.

set(minposfrac,+V)

V is a is a floating point number in the interval [0.0,1.0] (default 0.0). Set a lower bound on

the positive examples covered by an acceptable clause as a fraction of the positive examples

covered by the head of that clause. If the best clause has a ratio below this number, then it is

not added to the current theory. Beware: you can get counter-intuitive results in conjunction

with the minpos setting.

set(minscore,+V)

V is an floating point number (default -inf). Set a lower bound on the utility of of an

acceptable clause. When constructing clauses, If the best clause has utility below this

number, then it is not added to the current theory. Beware: you can get counter-intuitive

results in conjunction with the minpos setting.

set(moves,+V)

V is an integer >= 0. Set an upper bound on the number of moves allowed when performing

a randomised local search. This only makes sense if search is set to rls and rls_type is

set to an appropriate value.

set(newvars,+V)

V is a positive integer or inf (default inf). Set upper bound on the number of existential

variables that can be introduced in the body of a clause.

Advanced Use of Aleph 21

set(nodes,+V)

V is a positive integer (default 5000). Set upper bound on the nodes to be explored when

searching for an acceptable clause.

set(noise,+V)

V is an integer >= 0 (default 0). Set an upper bound on the number of negative examples

allowed to be covered by an acceptable clause.

set(nreduce_bottom,+V))

V is one of: true or false (default false). If true then removes literals in the body of the

bottom clause using the negative examples. The procedure is as described by S. Muggleton

and C. Feng in “Efficient induction of logic programs, Inductive Logic Programming”, S.

Muggleton (ed.), AFP Press.

set(openlist,+V)

V is an integer >= 0 or inf (default inf). Set an upper bound on the beam-width to be used in

a greedy search.

set(optimise_clauses,+V)

V is one of: true or false (default false). If true performs query optimisations described by

V.S. Costa, A. Srinivasan, and R.C. Camacho in “A note on two simple transformations for

improving the efficiency of an ILP system”.

set(permute_bottom,+V))

V is one of: true or false (default false). If true randomly permutes literals in the body of the

bottom clause, within the constraints imposed by the mode declarations. The utility of is

described by P. Tschorn in “Random Local Bottom Clause Permutations for Better Search

Space Exploration in Progol-like ILP Systems”, (short papers, ILP 2006).

set(portray_examples,+V))

V is one of: true or false (default false). If true executes goal `aleph_portray(Term)`

where Term is one of train_pos, train_neg, test_pos, or test_neg when

executing the command show(Term)in Aleph’s code.

set(portray_hypothesis,+V)

V is one of: true or false (default false). If true executes goal

`aleph_portray(hypothesis). The portray code is user-defined.

set(portray_literals,+V)

V is one of: true or false (default false). If true executes goal

aleph_portray(Literal) where Literal is some literal. The portray code is user-

defined.

set(portray_search,+V)

V is one of: true or false (default false). If true executes goal aleph_portray(search).

The portray code is user-defined.

22 Advanced Use of Aleph

set(print,+V)

V is a positive integer (default 4). Sets an upper bound on the maximum number of literals

displayed on any line of the trace.

set(proof_strategy,+V)

V is one of: restricted_sld, sld, or user (default restricted_sld). If

restricted_sld, then examples covered are determined by forcing current

hypothesised clause to be the first parent clause in a SLD resolution proof. If sld then this

restriction is not enforced. The former strategy is efficient, but not refutation complete. It is

sufficient if all that is needed is to determine how many examples are covered by the

current clause, which is what is needed when Aleph is used to construct a set of non-

recursive clauses greedily (for example using the induce/0 command (see “Construct a

Theory”). If set to user then Aleph expects a user-defined predicate aleph_prove/2,

the first argument of which is a clause C, and the second is an example E.

aleph_prove(C,E) succeeds if example E is provable using clause C and the background

knowledge.

set(prooftime,+V)

V is a positive integer or inf (default inf). Sets an upper bound on the time (in seconds) for

testing whether an example is covered. Overrides any value set for searchtime.

set(prune_tree,+V)

V is is one of: true or false (default false). Determines whether rules constructed by the tree

learner are subject to pessimistic pruning (see: “Tree-based theories”).

set(record,+V)

V is one of: true or false (default false). If true then trace of Aleph execution is written to a

file. The filename is given by recordfile.

set(recordfile,+V)

V is a Prolog atom. Sets the filename for a trace of execution. Only makes sense if `record`

is set to true.

set(refine,+V)

V is one of: user, auto, or false (default false). Specifies the nature of the

customised refinement operator. In all cases, the resulting clauses are required to subsume

the bottom clause, if one exists. If false then no customisation is assumed and standard

operation results. If user then the user specifies a domain-specific refinement operator

with `refine/2` statements. If auto then an automatic enumeration of all clauses in the

mode language (see: “Mode declarations”) is performed. The result is a breadth-first branch-

and-bound search starting from the empty clause. This is useful if a bottom clause is either

not constructed or is constructed lazily. No attempt is made to ensure any kind of optimality

and the same clauses may result from several different refinement paths. Some rudimentary

checking can be achieved by setting caching to true. The user has to ensure the following

when refine is set to auto: (1) the setting to auto is done after the modes and

determinations commands, as these are used to generate internally a set of clauses that

allow enumeration of clauses in the language; (2) all arguments that are annotated as `#T` in

Advanced Use of Aleph 23

the modes contain generative definitions for type `T`. These are called be the clauses

generated internally to obtain the appropriate constants; and (3) the head mode is clearly

specified using the modeh construct.

set(resample,+V))

V is an integer >= 1 or inf (default 1). Sets the number of times an example is resampled

when selected by `induce/0` or `induce_cover/0`. That is, is set to some integer N, then the

example is repeatedly selected N times by `induce/0` or `induce_cover/0`.

set(rls_type,+V)

V is one of: gsat, wsat, rrr, or anneal. Sets the randomised search method to be one of

GSAT, WSAT, RRR or simulated annealing. Requires search to be set to rls, and integer values for

tries and moves (see: “Randomised search methods”).

set(rulefile,+V)

V is a Prolog atom. Sets the filename for storing clauses found in theory (used by

write_rules/0).

set(samplesize,+V)

V is an integer >= 0 (default 0). Sets number of examples selected randomly by the `induce`

or `induce_cover` commands. The best clause from the sample is added to the theory. A

value of 0 turns off random sampling, and the next uncovered example in order of

appearance in the file of training examples is selected.

set(scs_percentile,+V)

V is an number in the range (0,100] (usually an integer). This denotes that any clause in the

top V-percentile of clauses are considered "good" when performing stochastic clause

selection. Only meaningful if search is set to scs.

set(scs_prob,+V)

V is an number in the range [0,1.0). This denotes the minimum probability of obtaining a

"good" clause when performing stochastic clause selection. Only meaningful if search is

set to scs.

set(scs_sample,+V)

V is a positive integer that determines the number of clauses randomly selected from the

hypothesis space in a clause-level search. Only meaningful if search is set to scs. This

overrules any samplesizes calculated from settings for scs_percentile and

scs_prob.

set(search,+V)

V is one of: bf, df, heuristic, ibs, ils, rls, scs id, ic, ar, or false

(default bf). Sets the search strategy. If false then no search is performed (see: “Altering the

Search”).

set(searchtime,+V)

24 Advanced Use of Aleph

V is an integer >= 0 or inf (default inf). Sets an upper bound on the time (in seconds) for a

search.

set(skolemvars,+V)

V is an integer (default 10000). Sets the counter for variables in non-ground positive

examples. Each variable will be replaced by a skolem variable that has a unique number

which is no smaller than V. This number has to be larger than the number of variables that

would otherwise appear in a bottom clause.

set(splitvars,+V)

V is one of: true or false (default false). If set to true before constructing a bottom clause,

then variable co-references in the bottom clause are split apart by new variables. The new

variables can occur at input or output positions of the head literal, and only at output

positions in body literals. Equality literals between new and old variables are inserted into

the bottom clause to maintain equivalence. It may also result in variable renamed versions

of other literals being inserted into the bottom clause. All of this increases the search space

considerably and can make the search explore redundant clauses. The current version also

elects to perform variable splitting whilst constructing the bottom clause (in contrast to

doing it dynamically whilst searching). This was to avoid unnecessary checks that could slow

down the search when variable splitting was not required. This means the bottom clause can

be extremely large, and the whole process is probably not very practical for large numbers

of co-references.

set(stage,+V)

V is one of: saturation, reduction or command (default command). Sets the stage

of current execution. This is normally not user-set, and decided internally.

set(store_bottom,+V)

V is one of: true or false (default false). Stores bottom clause constructed for an example for

future re-use.

set(subsample,+V)

V is one of: true or false (default false). If true then uses a sample of the examples (set by

value assigned to subsamplesize) to evaluate the utility of a clause.

set(subsamplesize,+V)

V is an integer >= 1 or inf (default inf). Sets an upper bound on the number of examples

sampled to evaluate the utility of a clause.

set(temperature,+V)

V is a non-zero floating point number. Sets the temperature for randomised search using

annealing. Requires search to be set to rls and rls_type to be set to anneal.

set(test_pos,+V)

V is a Prolog atom or a list of Prolog atoms. Sets the filename or list of filenames containing

the positive examples for testing. No filename extensions are assumed and complete

filenames have to be provided.

Advanced Use of Aleph 25

set(test_neg,+V)

V is a Prolog atom or a list of Prolog atoms. Sets the filename or list of filenames containing

the negative examples for testing. No filename extensions are assumed and complete

filenames have to be provided.

set(threads,+V)

V is an integer >= 1 (default 1). This is experimental.

set(train_pos,-V)

V is a Prolog atom or a list of Prolog atoms. Sets the filename or list of filenames containing

the positive examples. If set, no filename extensions are assumed and complete filenames

have to be provided. If not set, it is internally assigned a value after the `read_all` command.

set(train_neg,-V)

V is a Prolog atom or a list of Prolog atoms. Sets the filename or list of filenames containing

the negative examples. If set, no filename extensions are assumed and complete filenames

have to be provided. If not set, it is internally assigned a value after the `read_all` command.

set(tree_type,+V)

V is one of classification, class_probability, regression, or model

(see: “Tree-based theories”).

set(tries,+V)

V is a positive integer. Sets the maximum number of restarts allowed for randomised search

methods. This only makes sense if search is set to rls and rls_type is set to an

appropriate value.

set(typeoverlap,+V)

V is a floating point number in the interval (0.0,1.0]. Used by `induce_modes/0` to determine

if a pair of different types should be given the same name (see: “Mode learning”).

set(uniform_sample,+V)

V is one of: true or false (default false). Used when drawing clauses randomly from the

clause-space. If set set to true then clauses are drawn by uniform random selection from the

space of legal clauses. Since there are usually many more longer clauses than shorter ones,

this will mean that clauses drawn randomly are more likely to be long ones. If set to false

then assumes a uniform distribution over clause lengths (up to the maximum length allowed

by clauselength). This is not necessarily uniform over legal clauses. If random clause

selection is done without a bottom clause for guidance then this parameter is set to false.

set(updateback,+V)

V is one of: true or false (default true). If false then clauses found by the induce family are

not added as background knowledge.

set(verbosity,+V)

V is an integer >= 0 (default 1). Sets the level of verbosity. Also sets the parameter verbose

to the same value. A value of 0 shows very little.

26 Advanced Use of Aleph

set(version,-V)

V is the current version of Aleph. This is set internally.

set(walk,+V)

V is a value between 0 and 1. It represents the random walk probability for the W alksat

algorithm.

set(+P,+V)

Sets any user-defined parameter P to value V. This is particularly useful when attaching

notes with particular experiments, as all settings can be written to a file (see record). For

example, set(experiment,'Run 1 with background B0').

3.2 Altering the Search

Aleph allows the basic procedure for hypothesis construction to be altered in a number of ways. The

induce/0 command selects a procedure for hypothesis construction based on the setting for the

induce parameter:

set(induce,V)

The values of V allowed are as follows:

 greedy. This gives the basic procedure described earlier.

 cover. This results in very similar behaviour to greedy. The only difference is that positive

examples covered by a clause are not removed prior to seeding on a new (uncovered)

example. After a search the examples covered by the best clause are only removed from a

pool of seed examples only. After this, a new example or set of examples is chosen from the

seeds left, and the process repeats. The hypotheses returned with greedy and cover are

dependent on the order in which positive examples are presented.

 max. The hypothesis returned with this setting is unaffected by the ordering of positive

examples. This is because Aleph saturates and reduces every example. The search is made

more efficient by remembering the coverage of the best clause obtained so far for each

example being generalised. Both cover and max settings result result in slower methods

for hypothesis construction and usually produce clauses with a great deal of overlap in

coverage. A separate search invoked by the treduce/0 command reduces this set of

overlapping clauses to a more compact theory (see: “Theory-level search”).

 incremental. This constructs a theory in an incremental mode: the user is allowed to

update the examples and background knowledge (see: “Incremental construction of

theories”).

 stream. This performs on-line theory construction (see: “On-line Learning”)

 theory. This does not construct theories clause-by-clause. Instead, the search is done at

the theory-level (that is, the search is done over subsets of clauses. See: “Theory-level

search”).

Advanced Use of Aleph 27

 tree. This does not construct theories clause-by-clause. Instead, search is done by

constructing a tree using the standard recursive-partitioning approach (see: “Tree-based

theories”).

 constraints. This does not search for predictive clauses. Instead, search results in all

constraints that hold within the background knowledge provided (see: “Constraint

learning”).

 modes. This searches for a mode and type assignment that is consistent with the

background knowledge provided (see: “Mode learning”).

 features. This searches for Boolean features given the examples and the background

knowledge (see: “Feature Construction”)

From Version 6 onwards, it is suggested that the various flavours of the induce command be

invoked using the induce/1 command. Here are some examples:

Version 6 and above Earlier versions
induce(greedy). induce.

induce(cover). induce_cover.

induce(max) induce_max.

induce(incremental) induce_incremental.

induce(features) induce_features.

and so on. Aleph 6 and above will continue to support the commands from previous versions.

The search for individual clauses (when performed) is principally affected by two parameters. The

search sets the search strategy and the evalfn other sets the evaluation function.

3.2.1 Search strategies

A search strategy is set using set(search,Strategy).

The following search strategies apply to the clause-by-clause searches conducted by Aleph:

 ar. Implements a simplified form of the type of association rule search conducted by the

WARMR system (see L. Dehaspe, 1998, PhD Thesis, Katholieke Universitaet Leuven). Here,

Aleph simply finds all rules that cover at least a pre-specified fraction of the positive

examples. This fraction is specified by the parameter pos_fraction.

 bf. Enumerates shorter clauses before longer ones. At a given clauselength, clauses are re-

ordered based on their evaluation. This is the default search strategy.

 df. Enumerates longer clauses before shorter ones. At a given clauselength clauses are re-

ordered based on their evaluation.

 heuristic. Enumerates clauses in a best-first manner.

 ibs. Performs an iterative beam search as described by Quinlan and Cameron-Jones, IJCAI-

95. Limit set by value for nodes applies to any 1 iteration.

 ic. Performs search for integrity constraints. Used by induce(constraints) (see

“Constraint learning”)

 id. Performs an iterative deepening search up to the maximum clause length specified.

 ils. An iterative bf search strategy that, starting from 1, progressively increases the upper-

bound on the number of occurrences of a predicate symbol in any clause. Limit set by value

for nodes applies to any 1 iteration. This language-based search was developed by Rui

Camacho and is described in his PhD thesis.

28 Advanced Use of Aleph

 rls. Use of the GSAT, WSAT, RRR and simulated annealing algorithms for search in ILP. The

choice of these is specified by the parameter rls_type (see: Setting Aleph Parameters).

GSAT, RRR, and annealing all employ random multiple restarts, each of which serves as the

starting point for local moves in the search space. A limit on the number of restarts is

specified by the parameter tries and that on the number of moves by moves. Annealing

is currently restricted to a using a fixed temperature, making it equivalent to an algorithm

due to Metropolis. The temperature is specified by setting the parameter temperature.

The implementation of WSAT requires a “random-walk probability”, which is specified by the

parameter walk. A walk probability of 0 is equivalent to GSAT. More details on randomised

search can be found in “Randomised search methods”.

 scs. A special case of GSAT that results from repeated random selection of clauses from

the hypothesis space. The number of clauses is either set by scs_sample or is calculated

from the settings for scs_prob and scs_percentile. These represent: the minimum

probability of selecting a “good” clause; and the meaning of a “good” clause, namely, that it

is in the top K-percentile of clauses. This invokes GSAT search with tries set to the sample

size and moves set to 0. Clause selection can either be blind or informed by some

preliminary Monte-Carlo style estimation. This is controlled by values for scs_type. More

details can be found in “Randomised search methods”.

 false. No search is performed.

3.2.2 Evaluation functions
An evaluation function is set using:

set(evalfn,Evalfn)

The following clause evaluation functions are recognised by Aleph:

 accuracy. Clause utility is P/(P+N), where P and N are the number of positive and negative

examples covered by the clause.

 auto_m. Clause utility is the m estimate (see mestimate below) with the value of m

automatically set to be the maximum likelihood estimate for m.

 compression. Clause utility is P - N - L + 1, where P, N are the number of positive and

negative examples covered by the clause, and L is the number of literals in the clause.

 coverage. Clause utility is P - N, where P, N are the number of positive and negative

examples covered by the clause.

 entropy. Clause utility is p log p + (1-p) log (1-p) where p = P/(P + N) and P, N are the

number of positive and negative examples covered by the clause.

 gini. Clause utility is 2p(1-p) where p = P/(P + N) and P, N are the number of positive

and negative examples covered by the clause.

 laplace. Clause utility is (P+1)/(P+N+2) where P, N are the positive and negative examples

covered by the clause.

 mestimate. Clause utility is its m estimate as described in S. Dzeroski and I. Bratko

(1992), Handling Noise in Inductive Logic Programming, Proc. Second Intnl. Workshop on

Inductive Logic Programming, ICOT-TM-1182, Inst. for New Gen Comput Technology, Japan.

The value of m is set by set(m,M).

Advanced Use of Aleph 29

 pbayes. Clause utility is the pseudo-Bayes conditional probability of a clause described in

J. Cussens (1993), Bayes and Pseudo-Bayes Estimates of Conditional Probability and their

Reliability, ECML-93, Springer-Verlag, Berlin.

 posonly. Clause utility is calculated using the Bayesian score described in S. H. Muggleton,

(1996), Learning from positive data, Proc. Sixth Intnl. Workshop on Inductive Logic

Programming, LNAI 1314, 358-376, Springer-Verlag, Berlin. Note that all type definitions are

required to be generative for this evaluation function and a modeh declaration is necessary.

 sd. Clause utility is related to the standard deviation of values predicted. This is only used

when constructing regression trees and is not available for use during clause-based search.

 user. Clause utility is C, where C is the value returned by a user-defined cost function.

 wracc. Clause utility is calculated using the weighted relative accuracy function described

by N. Lavrac, P. Flach and B. Zupan, (1999), Rule Evaluation Measures: a Unifying View, Proc.

Ninth Intnl. Workshop on Inductive Logic Programming, LNAI 1634, 174-185, Springer-

Verlag, Berlin.

3.2.3 Built-in and user-defined pruning
Two sorts of pruning can be distinguished within Aleph when performing a clause-level search.

Internal pruning refers to built-in pruning that performs admissible removal of clauses from a search.

This is currently available for the following evaluation functions: auto_m, compression, coverage,

laplace, mestimate, posonly, and wracc. User-defined prune statements can be written to specify

the conditions under which a user knows for certain that a clause (or its refinements) could not

possibly be an acceptable hypothesis. Such clauses are pruned from the search.

The "prune" definition is written in the background knowledge file (that has extension file.b).

The definition is distinguished by the fact that they are all rules of the form:

prune((ClauseHead:-ClauseBody)) :-

Body.

The following example is from a pharmaceutical application that states that every extension of a

clause representing a "pharmacophore" with six "pieces" is unacceptable, and that the search should

be pruned at such a clause.

prune((Head:-Body)) :-

violates_constraints(Body).

 violates_constraints(Body) :-

 has_pieces(Body,Pieces),

 violates_constraints(Body,Pieces).

violates_constraints(Body,[_,_,_,_,_,_]).

has_pieces(...) :-

30 Advanced Use of Aleph

The use of such pruning can greatly improve Aleph's efficiency. They can be seen as a special case of

providing distributional information about the hypothesis space.

3.2.4 Clause-type restrictions
On the face of it, it would appear desirable that an ILP learner search a space of clauses that is rich
as possible, in terms of relational descriptions. One example is the space of all possible clauses in the
mode-language provided. Practically though, it may be intractable for a relational learner to search
such a space effectively. In some cases, it may not even be necessary. For example, if the purpose of
relational learning is to construct features for a statistical learner (see “Feature Learning”), the
statistical learner may be able to capture some kinds of complex structure by combining simpler
features together. Aleph allows a number of retricted kinds of clauses to be constructed, based on
the setting for the clausetype flag. An investigation into their use as features can be found in:
Saha, A. Srinivasan and G. Ramakrishnan (2012). What kinds of Features are Useful for Statistical
Learning? 22nd International Conference on Inductive Logic Programming. LNAI-7842, pp 209-224.

3.2.5 User-defined costs
The use of a user-specified cost function is a fundamental construct in statistical decision theory, and

provides a general method of scoring descriptions. Aleph allows the specification of the cost of a

clause. The cost statements are written in the background knowledge file (that has extension.b),

and are distinguished by the fact that they are all rules of the form:

cost(Clause,ClauseLabel,Cost):-

 Body.

where ClauseLabel is the list [P,N,L], where P is the number of positive examples covered

by the clause, N is the number of negative examples covered by the clause L is the number of literals

in the clause.

It is usually not possible to devise automatically admissible pruning strategies for an arbitrary cost

function. Thus, when using a user-defined cost measure, Aleph places the burden of specifying a

pruning strategy on the user.

3.2.6 User-defined constraints

Aleph accepts integrity constraints that should not be violated by a hypothesis. These are written in

the background knowledge file (that has extension .b) and are similar to the integrity constraints in

the ILP programs Clint and Claudien. The constraints are distinguished by the fact that they are all

rules of the form:

false:-

 Body.

where Body is a set of literals that specify the condition(s) that should not be violated by a clause

found by Aleph. It is usual to use the hypothesis/3 (see hypothesis in “Other useful commands”)

command to obtain the clause currently being considered by Aleph.

Advanced Use of Aleph 31

The following example is from a pharmaceutical application that states that hypotheses are

unacceptable if they have fewer than three "pieces" or which do not specify the distances between

all pairs of pieces.

false:-

 hypothesis(Head,Body,_),

 has_pieces(Body,Pieces),

 length(Pieces,N),

 N =< 2.

false:-

 hypothesis(_,Body,_),

 has_pieces(Body,Pieces),

 incomplete_distances(Body,Pieces).

The use of constraints is another way for Aleph to obtain interesting hypothesis without negative

examples. Ordinarily, this will result in a single clause that classifies every example as positive. Such

clauses can be precluded by constraints.

Note also that an integrity constraint does not state that a refinement of a clause that violates one

or more constraints will also be unacceptable. When constructing clauses in an incremental mode,

Aleph can be instructed to add a special type of constraint to prevent the construction of overly

general clauses (see “Incremental construction of theories”).

3.2.7 User-defined refinement

Aleph allows a method of specifying the refinement operator to be used in a clause-level search. This

is done using a Prolog definition for the predicate refine/2. The definition specifies the

transitions in the refinement graph traversed in a search. The "refine" definition is written in the

background knowledge file (that has extension ".b"). The definition is distinguished by the fact that

they are all rules of the form:

refine(Clause1,Clause2):-

 Body.

This specifies that Clause1 is refined to Clause2. The definition can be nondeterministic, and the set

of refinements for any one clause are obtained by repeated backtracking. For any refinement Aleph

ensures that Clause2 implies the current most specific clause. Clause2 can contain cuts (“!”) in its

body.

32 Advanced Use of Aleph

The following example is from a pharmaceutical application that states that searches for a

"pharmacophore" that consists of 4 "pieces" (each piece is some functional group), and associated

distances in 3-D space. Auxilliary definitions for predicates like member/2 and dist/5 are not shown.

Representing a "pharmacophore" with six "pieces" is unacceptable, and that the search should be

pruned at such a clause.

refine(false,active(A)).

refine(active(A),Clause):-

member(Pred1,[hacc(A,B),hdonor(A,B),zincsite(A,B)]),

member(Pred2,[hacc(A,C),hdonor(A,C),zincsite(A,C)]),

member(Pred3,[hacc(A,D),hdonor(A,D),zincsite(A,D)]),

member(Pred4,[hacc(A,E),hdonor(A,E),zincsite(A,E)]),

 Clause = (active(A):-

 Pred1,

 Pred2,

 dist(A,B,C,D1,E1),

 Pred3,

 dist(A,B,D,D2,E2),

 dist(A,C,D,D3,E3),

 Pred4,

 dist(A,B,E,D4,E4),

 dist(A,C,E,D5,E5),

 dist(A,D,E,D6,E6)).

To invoke the use of such statements requires setting refine to user. For other settings of

refine see entry for refine in “Setting Aleph Parameters”}.

3.2.8 User-defined proof strategy

If the flag proof_strategy is set to user, Aleph will use the definintion of a user-specified

predicate

prove(Clause,Example)

Advanced Use of Aleph 33

 to decide if an example Example is provable using a clause Clause. Clause can be the special

term bottom, in which case it refers to the current bottom clause.

3.2.9 Specific-to-general search

Up to early variants of Version 5 has never, in any satisfactory manner, been able to perform a

specific-to-general search (in the sense, say, of Golem or CIGOL): the only way to do this was to use a

user-defined refinement operator in the manner just described, that progressively generalises a

clause. For example:

refine(false,Clause):-

 !,

 bottom(Clause).

refine(Clause1,Clause2):-

 generalise(Clause1,Clause2).

(The definition for bottom/1 is available within Aleph. The definition for generalise/2 has to

be written separately.)

From Version 5 (time stamp Sun Mar 11 03:25:37 UTC 2007), a slightly more interesting approach is

possible by setting the values of specific parameters. For example, with the following parameter

settings:

 :- set(samplesize,4).

 :- set(resample,4).

 :- set(permute_bottom,true).

 :- set(nreduce_bottom,true).

 :- set(search,false).

A call to induce/0 will perform a specific-to-general search in the following manner: four

examples are chosen at random (samplesize is set to 4). Each example is resampled four times

(resample is set to 4), resulting in a sequence of 16 trials in which each of the four examples

appear four times in the sequence. For each entry in the sequence, the following steps are

performed:

a. The bottom clause is constructed with body literals shuffled permute_bottom is

set to true);

b. The bottom clause is generalised by using the negative examples

(nreduce_bottom is set to true);

c. No further search is performed (search is set to false) and the resulting clause is

evaluated. The best clause is added to the theory, the examples covered removed,

and the entire process repeated.

34 Advanced Use of Aleph

The procedure is akin to, but not the same as that used by Golem. A combination of a specific-to-

general and other search strategies can be used if search is not set to false. In this case, a

search of lattice of clauses subsuming the negative-reduced bottom will be performed using the

setting for search.

3.3 Randomised search methods

The simplest kind of randomised search is the following: sample N elements (clauses or theories)

from the search space. Score these and return the best element. Ordinal optimisation is a technique

that investigates the loss in optimality resulting from this form of search. See:

http://hrl.harvard.edu/people/faculty/ho/DEDS/OO/OOTOC.html

A study of the use of this in ILP can be found in: A. Srinivasan, A study of two probabilistic methods

for searching large spaces with ILP , available at:

ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/dami99.ps.gz

For a clause-level search, this is invoked by setting the parameter search to scs (to denote

``stochastic clause selection''). The number N is either set by assigning a value to scs_sample or

calculated automatically from settings for scs_prob and scs_percentile. If these values are

denoted “P” and “K” respectively, then the sample size is calculated to be log(1-P)/log(1-

K/100), which denotes the number of clauses that have to be sampled before obtaining, with

probability at least P, at least one clause in the top K-percentile of clauses.

Sampling is further controlled by specifying the setting scs_type to be one of blind or

informed.

If “blind” then clauses are uniform random selections from the space of all legal clauses. If

“informed” then they are drawn from a specific distribution over clauselengths. This can either be

pre-specified (by setting clauselength_distribution) or obtained automatically by a

Monte-Carlo like scheme that attempts to estimate, for each clause length, the probablity of

obtaining a clause in the top K-percentile. In either case, the resulting distribution over clauselengths

is used to first decide on the number of literals ``l'' in the clause. A legal clause with “l” literals is then

constructed.

In fact, this simple randomised search is a degenerate form of a more general algorithm known as

GSAT. Originally proposed within the context of determining satisfiability of propositional formulae,

the basic algorithm is as follows:

currentbest:= 0 (comment: ``0'' is a conventional default

answer)

for i = 1 to N do

current:= randomly selected starting point

if current is better than currenbest then

currentbest:= current

for j = 1 to M do begin

 next:= best local move from current

http://hrl.harvard.edu/people/faculty/ho/DEDS/OO/OOTOC.html
ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/dami99.ps.gz

Advanced Use of Aleph 35

if next is better than currentbest then

 currentbest:= next

 current:= next

end

return currentbest

N and M represent the number of tries and moves allowed. It is apparent that when searching for

clauses, a M value of 0 will result in the algorithm mimicking stochastic clause selection as described

above. A variant of this algorithm called Walksat introduces a further random element at the point

of selecting next. This time, a biased coin is flipped. If a ``head'' results then the choice is as per

GSAT (that is, the best choice amongst the local neighbours), otherwise next is randomly assigned

to one of any “potentially good” neighbours. Potentially good neighbours are those that may lead to

a better score than the current best score. This is somewhat like simulated annealing, where the

choice is the best element if that improves on the best score. Otherwise, the choice is made

according to a function that decays exponentially with the difference in scores. This exponential

decay is usually weighted by a “temperature” parameter.

The randomly selected start clause is usually constructed as follows:

(1) an example is selected;

(2) the bottom clause is constructed for the example;

(3) a legal clause is randomly drawn from this bottom clause.

The example may be selected by the user (using the sat command). If bottom clauses are not

allowed (by setting construct_bottom to false) then legal clauses are constructed directly

from the mode declarations. The clause selected is either the result of uniform random selection

from all legal clauses, or the result of a specific distribution over clauselengths (specified by setting

clauselength_distribution).

The latter is the only method permitted when bottom clauses are not allowed. (In that case, if there

is no value specified for clauselength_distribution, then a uniform distribution over all

allowable lengths is used.)

RRR refers to the `randomised rapid restarts' as described by F. Zelezny, A. Srinivasan, and D. Page in

Lattice Search Runtime Distributions May Be Heavy-Tailed available at:

ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/rrr.ps.gz

In the current implementation, RRR stops as soon as a clause with an requisite minimum positive

coverage (set using minpos) and acceptable utility is reached (set using minscore). The

procedure in the paper above stops as soon as a minimum acceptable accuracy is reached. This same

effect can be achieved by setting evalfn to accuracy.

It is intended that the randomised local search methods (GSAT, Walksat, RRR and annealing) can be

used either for clause-level search or theory-level search. No equivalent of stochastic clause

selection is provided for theory-level search: this has to be mimicked by using the randomised local

search, with appropriate settings.

ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/rrr.ps.gz

36 Advanced Use of Aleph

At the clause level, local moves involve either adding or deleting a literal from the current clause.

Normally, local moves in the clause-space would also involve operations on variables (introducing or

removing variable co-references, associating or disassociating variables to constants). These have to

accomplished within Aleph by the inclusion of an equality predicate with appropriate mode

declarations. Local moves for a theory-level search are described in Theory-level search.

Randomised local search is invoked within Aleph by setting the parameter search to rls. In

addition, the type of search is specified by setting rls_type to one of gsat, wsat, rrr or

anneal. Walksat requires a specification of a biased coin. This is done by setting the parameter

walk to a number between 0 and 1. This represents an upper bound on the probability of

obtaining a “tail” with the coin. The implementation of simulated annealing is very simple and uses a

fixed temperature. This is done by setting the parameter temperature to some real value.

3.4 Incremental construction of theories

Most prominent ILP systems are “batch learners”: all examples and background knowledge are in

place before learning commences. The ILP system then constructs a hypothesis for the examples. A

less popular, but nevertheless interesting alternative is that of “incremental learning”, where

examples, background and hypothesis are incrementally updated during the course of learning.

Aleph allows such an incremental construction of clauses by typing:

 induce(incremental).

This results in Aleph repeatedly performing the following steps:

1. Ask user for an example. The default is to use a new positive example from previous search.

If the user responds with Ctrl-d (eof) then search stops. If the user responds with “ok.” then

default is used; otherwise the user has to provide a new example (terminated by a full-stop);

2. Construct bottom clause for example. Aleph thus expects the appropriate mode

declarations. These can be added in Step 4;

3. Search. Aleph searches for the best clause;

4. Ask user about best clause. Aleph asks the user about the clause C returned by the search.

At this point the user can respond with:

 ok. Clause C is added to the hypothesis;

 prune. Statement added to prevent C an any clauses subsumed by it from appearing

as the result of future searches;

 overgeneral. Constraint added to prevent C and clauses subsuming it from

appearing as the result of future searches;

 overgeneral because not E. E is added as a negative example;

 overspecific. C is added as a positive example;

 overspecific because E. E is added as a positive example;

 X. X is any Aleph command. This can be something like covers or

mode(*,has_car(+train,-car))};

 Ctrl-d. Returns to Step 1.

The incremental mode does not preclude the use of prior sets of examples or background

information. These are provided in the usual way (in files with .b, .f and .n suffixes).

Advanced Use of Aleph 37

An example of using the incremental learner to construct a program for list membership can be

found in the incremental sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3.5 Theory-level search

An adequate explanation for a set of examples typically requires several clauses. Most ILP systems

attempt to construct such explanations one clause at a time. The procedure is usually an iterative

greedy set-covering algorithm that finds the best single clause (one that explains or ``covers'' most

unexplained examples) on each iteration. While this has been shown to work satisfactorily for most

problems, it is nevertheless interesting to consider implementations that attempt to search directly

at the ``theory-level''. In other words, elements of the search space are sets of clauses, each of

which can be considered a hypothesis for all the examples. The implementation in Aleph of this idea

is currently at a very rudimentary level, and preliminary experiments have not demonstrated great

benefits. Nevertheless, the approach, with development, could be promising. The implementation

within Aleph is invoked by the command:

 induce(theory).

This conducts a search that moves from one set of clauses to another. Given a clause set S local

moves are the result of the following:

1. Add clause. A clause is added to S. This is usually a randomly selected legal clause

constructed in the manner described in Randomised search methods;

2. Delete clause. A clause is deleted from S;

3. Add literal. A literal is added to a clause in S; and

4. Delete literal. A literal is deleted from a clause in S.

As noted in Randomised search methods, the use of an equality predicate with appropriate mode

declarations may be needed to achieve variable co-references, etc.

Currently, induce(cover) starts with an initial set of at most C clauses, where this number is

specified by setting the clauses parameter. Each of these are randomly selected legal clauses.

Induce(cover) then performs theory-level search either using as search strategy a randomised

local search method (obtained by setting the search parameter to rls: see “Randomised search

methods”), or a markov chain monte carlo technique (obtained by setting search to mcmc). The

latter is untested.

The only evaluation function allowed is accuracy. For theories, this is the number

(TP+TN)/(TP+TN+FP+FN) where TP,TN are are the numbers of positive and negative

examples correctly classified respectively; FP is the numbers of negative examples incorrectly

classified as positive; and FN is the number of positive examples incorrectly classified as positive.

3.6 Tree-based theories

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

38 Advanced Use of Aleph

The algorithm embodied in induce can be seen as the first-order equivalent of a propositional rule-

learning algorithms like Clark and Niblett's CN2. There is now a substantial body of empirical work

(done by researchers in Leuven and Freiburg) demonstrating the utility of first-order equivalents of

propositional tree-learning procedures.

Tree-based learning can be seen as a special case of theory learning and the implementation in

Aleph uses the standard recursive-partitioning approach to construct classification, regression, class

probability, or model trees. Tree-based theory construction is invoked by the command:

 induce(tree).

The type of tree constructed is determined by setting tree_type to one of: classification,

regression, class_probability, or model.The basic procedure attempts to construct a

tree to predict the output argument in the examples. Note that the mode declarations must specify

only a single argument as output. Paths from root to leaf constitute clauses. Tree-construction is

viewed as a refinement operation: any leaf can currently be refined (converted into a non-leaf) by

extending the corresponding clause (resulting in two new leaves). The extension is done using

Aleph's automatic refinement operator that extends clauses by a single literal within the mode

language . That is, Aleph sets refine to auto. Note that using the automatic refinement operator

means that the user has to ensure that all arguments that are annotated as #T in the modes contain

generative definitions for type T. The lookahead option allows additions of several literals at

once. The impurity function is specified by the setting the evalfn parameter.

Currently for classification and class_probability trees evalfn must be one of

entropy or gini. For regression trees the evaluation function is automatically set to sd

(standard deviation). For model trees, evalfn must be one of mse (mean square error) or

accuracy. In all cases, the result is always presented a set of rules. Rules for

class_probability and regression trees make their predictions probabilistically using the

random/2 predicate provided within Aleph.

In addition, settings for the following parameters are relevant: classes, the list of classes

occuring in examples provided (for classification or class_probability trees only);

dependent, for the argument constituting the dependent variable in the examples;

prune_tree, for pruning rules from a tree; confidence, for error-based pruning of rules as

described by J R Quinlan in the C4.5 book; lookahead, specifying the lookahead for the refinement

operator to mitigate the horizon effect from zero-gain literals; mingain, specifying the minimum

gain required for refinement to proceed; and minpos specifying the minimum number of examples

required in a leaf for refinement to proceed.

Forward pruning is achieved by the parameters (mingain) and minpos. The former should be set

to some value greater than 0 and the latter to some value greater than 1. Backward pruning uses

error pruning of the final clauses in the tree by correcting error estimates obtained from the training

data. Automatic error-based pruning is achieved by setting the parameter prune_tree to auto.

For classification trees the resulting procedure is identical to the one for rule pruning

described by Quinlan in C4.5: Programs for Machine Learning, Morgan Kauffmann. For

regression trees, error-based pruning results in corrections to the sample standard deviation.

These corrections assume normality of observed values in a leaf: the method has been studied

emprically by L. Torgo in "A Comparative Study of Reliable Error Estimators for Pruning Regression

Trees". Following work by F Provost and P Domingos, pruning is not employed for class probability

prediction. At this stage, there is no pruning also for model trees.

Advanced Use of Aleph 39

The prediction at each `leaf' differs for each tree type. For classification trees, prediction is

the majority class as estimated from the examples in the leaf; for regression trees prediction is a

value drawn randomly from a normal distribution with mean and standard deviation estimated from

the examples in the leaf; for class_probability trees prediction is a value drawn randomly

from the (Laplace corrected) discrete distribution of classes in the leaf; and for model trees

prediction is achieved by a user-defined background predicate (see following).

Model trees in Aleph are constructed by examining, at each leaf, one or more model construction

predicates. These predicates are defined as part of background knowledge, and can specify different

kinds of models. For example, the predicates may be for linear regression, polynomial regression etc.

for predicting a continuous variable; a decision tree, logistic regression etc. for predicting a nominal

variable. For each kind of model, the user has to provide a definition for a predicate that is able to:

(a) construct the model; and (b) predict using the model constructed. The process is the same as that

for lazy evaluation.

Each such predicate is specified using the model/1 command. If several different predicates are

specified, then, at each leaf, each predicate is called to construct a model and the predicate that

constructs the best model (evaluated using the current setting for evalfn) is returned. This can be

computationally intensive, but can lead to the construction of fairly complex theories, in which

different leaves can contain different kinds of models (for example, linear regression models in one

leaf and quadratic regression models in another).

Tree-learning can be performed interactively, with the user specifying the split to be selected. This is

done by setting interactive to true before executing the induce(tree) command. An

example of using the tree learner can be found in the tree sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3.7 Constraint learning

The basic Aleph algorithm constructs definite clauses normally intended to be components of a

predictive model for data. Early ILP work (for example, in the Claudien system) demonstrated the

value of discovering all non-Horn constraints that hold in a database.

A similar functionality can be obtained within Aleph using the command:

 induce(constraints).

The implementation of these ideas in Aleph uses a naive generate-and-test strategy to enumerate all

constraints within the background knowledge (for the mode language provided). All constraints are

of the form:

 false:- ...

and are stored in the user-specified goodfile (the specification of this file is mandatory for

induce(constraints) to work).

With appropriate mode settings for false and not it is possible to identify non-Horn constraints in

the same way as Claudien.

For example given the background knowledge:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

40 Advanced Use of Aleph

 male('Fred').

 female('Wilma').

 human('Fred').

 human('Wilma').

and the mode declarations:

 :- modeh(1,false).

 :- modeb(*,human(-person)).

 :- modeb(1,male(+person)).

 :- modeb(1,female(+person)).

 :- modeb(1,not(male(+person))).

 :- modeb(1,not(female(+person))).

Aleph identifies the following constraints:

 false :-

 human(A), male(A), female(A).

 false :-

 human(A), female(A), male(A).

 false :-

 human(A), not male(A), not female(A).

 false :-

 human(A), not female(A), not male(A).

After removing redundant constraints (which Aleph does not do), these are equivalent to the

following:

 false :- human(A), male(A), female(A).

 male(A) ; female(A) :- human(A).

The validity of these constraints can only be guaranteed if the background knowledge is assumed to

be complete and correct. To account for incorrect statements in the background knowledge it may

sometimes be relevant to alter the noise setting when obtaining constraints which now specifies

the number of falsifying substitutions tolerated. The minacc parameter is ignored.

An example of using the constraints learner can be found in the constraints sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

Advanced Use of Aleph 41

3.8 Mode learning

The basic Aleph algorithm assumes modes will be declared by the user which, in the past, this has

been the source of some difficulty.

There has been some work (by E. McCreath and A. Sharma, Proc of the 8th Australian Joint Conf on

AI pages 75-82, 1995) on automatic extraction of mode and type information from the background

knowledge provided. The implementation of these ideas in Aleph follows these ideas fairly closely

and can be invoked by the command:

induce(modes).

Given a set of determinations, the procedure works in two parts: (i) finding equivalence classes of

types; and (ii) finding an input/output assignment.

Unlike the McCreath and Sharma approach, types in the same equivalence class are given the same

name only if they "overlap" significantly (the overlap of type1 with type2 is the proportion of

elements of type1 that are also elements of type2). Significantly here means an overlap at least

some threshold T (set using typeoverlap, with default 0.95). Values of typeoverlap closer to

1.0 are more conservative, in that they require very strong overlap before the elements are called

the same type. Since this may not be perfect, modes are also produced for equality statements that

re-introduce co-referencing amongst differently named types in the same equivalence class. The

user has to however explicitly include a determination declaration for the equality predicate.

The i/o assignment is not straightforward, as we may be dealing with non-functional definitions. The

assignment sought here is one that maximises the number of input args as this gives the largest

bottom clause. This assignment is sought by means of a search procedure over mode sequences.

Suppose we have a mode sequence M = <m1,m2,..m\{i-1\}> that uses the types T. An

argument of type t in mode m\{i\} is an input iff t overlaps significantly (used in the same sense as

earlier) with some type in T. Otherwise the argument is an output. The utility of each mode

sequence M is f(M) = g(M) + h(M) where g(M) is the number of input args in M; and h(M) is a (lower)

estimate of the number of input args in any mode sequence of which M is a prefix. The search

strategy adopted is a simple hill-climbing one. Note that the procedure as implemented assumes

background predicates will be generative (which holds when the background knowledge is ground).

An example of using the mode learner can be found in the modes sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3.9 Abductive learning

The basic Aleph algorithm assumes that the examples provided are observations of the target

predicate to be learned. There is, in fact, nothing within the ILP framework that requires this to be

the case. For example, suppose the following was already provided in the background knowledge:

 grandfather(X,Y):-

 father(X,Z),

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

42 Advanced Use of Aleph

 parent(Z,Y).

 parent(X,Y):-

 father(X,Y).

 father('Fred','Jane').

 mother('Jane','Robert').

 mother('Jane','Peter').

then the examples:

 grandfather('Fred','Robert').

 grandfather('Fred','Peter').

are clearly not entailed by the background knowledge. Aleph would then simply try to learn another

clause for grandfather/2, perhaps resulting in something like:

 grandfather(X,Y):-

 father(X,Z),

 mother(Z,Y).

In fact, the job would have just as easily been done, and the result more useful, if Aleph could learn

the following:

 parent(X,Y):-

 mother(X,Y).

This requires Aleph to be able to do two things. First, given observations of grandfather/2 that

are not entailed by the background knowledge, generate instances of parent/2 that will allow the

observations to be entailed. Second, use the instances of parent/2 that were generated to obtain

the clause for parent/2 above. The first of these steps requires a form of abduction. The second

requires generalisation in the form of learning. It is the combination of these two steps that is called

“Abductive Learning” here.

The basic procedure used by Aleph is a simplified variant of S. Moyle's Alecto program. Alecto is

described in some detail in S. Moyle, "Using Theory Completion to Learn a Navigation Control

Program", Proceedings of the Twelfth International Conference on ILP (ILP2002), S. Matwin and C.A.

Sammut (Eds), LNAI 2583, pp 182-197,2003. Alecto does the following: for each positive example,

an “abductive explanation” is obtained. This explanation is set of ground atoms. The union of

abductive explanations from all positive examples is formed (this is also a set of ground atoms).

These are then generalised to give the final theory. The ground atoms in an abductive explanation

are obtained using Yamamoto's SOLD resolution or SOLDR (Skip Ordered Linear resolution for

Definite clauses).

Advanced Use of Aleph 43

Currently, abductive learning is only incorporated within the induce command. If abduce is set to

true then Aleph first tries to obtain the best clause for the observed predicate (for example, the

best clause for grandfather/2). Abductive explanations are then generated for all predicates

marked as being abducible (see abducible) and generalisations constructed using these. The best

generalisation overall is then selected and greedy clause identification by induce repeats with the

observations left. Care has to be taken to ensure that abductive explanations are indeed ground (this

can be achieved by using appropriate type predicates within the definitions of the abducible

predicates) and limited to some maximum number (this latter requirement is for reasons of

efficiency: see setting for max_abducibles).

It should be evident that abductive learning as described here implements a restricted form of

theory revision, in which revisions are restricted to completing definitions of background predicates

other than those for which observations are provided. This assumes that the background knowledge

is correct, but incomplete. In general, if background predicates are both incorrect and incomplete,

then a more elaborate procedure would be required.

3.10 Feature Construction

One promising role for ILP is in the area of feature construction. A good review of the use of ILP for

this can be found in S. Kramer, N. Lavrac and P. Flach (2001), Propositionalization Approaches to

Relational Data Mining, in Relational Data Mining, S. Dzeroski and N. Lavrac (eds.), Springer.

Aleph uses a simple procedure to construct boolean features. The procedure is invoked using the

induce(features) command. This is almost identical to the induce(cover) command.

Recall that induce(cover) uses a covering strategy to construct rules that explain the examples

(the slight twist being that all positive examples are retained when evaluating clauses at any given

stage). The difference with induce(features) is that all good clauses that are found during the

course of constructing such rules are stored as new features. A feature stored by Aleph contains two

bits of information: (1) a number, that acts as a feature identifier; and (2) a clause (Head:-Body).

Here Head is a literal that unifies with any of the examples with the same name and arity as Head

and Body is a conjunction of literals. The intent is that the feature is true for an example if and

only if the example unifies with Head and Body is true. For classification problems, the user has

to specify the the dependent variable. This is done using set(dependent,...).

The process of finding rules (and the corresponding features) continues until all examples are

covered by the rules found or the number of features exceeds a pre-defined upper limit (controlled

by set(max_features,...)). What constitutes a ``good clause'' is dictated by settings for

various Aleph parameters. The following settings are an example of some parameters that are

relevant:

 :- set(clauselength,10).

 :- set(minacc,0.6).

 :- set(minscore,3).

 :- set(minpos,3).

 :- set(noise,50).

44 Advanced Use of Aleph

 :- set(nodes,5000).

 :- set(explore,true).

 :- set(max_features,20000).

Features found by Aleph can be shown by the show(features) command. Aleph can be used to

show the boolean vectors for the train and test examples using a combination of

set(portray_examples,...), features/2 appropriate definitions for

aleph_portray/1 and show(train_pos), show(train_neg) etc. Here is an example of

the use of aleph_portray/1 for examples in the training set:

 aleph_portray(train_pos):-

 setting(train_pos,File),

 show_features(File,positive).

 aleph_portray(train_neg):-

 setting(train_neg,File),

 show_features(File,negative).

 show_features(File,Class):-

 open(File,read,Stream),

 repeat,

 read(Stream,Example),

 (Example = end_of_file ->

close(Stream);

write_features(Example,Class),

 fail).

 write_features(Example,_):-

 features(_,(Example:-

Body)),

 (Body -> write(1), write('

'); write(0), write(' ')),

 fail.

 write_features(_,Class):-

 writeq(Class), nl.

Advanced Use of Aleph 45

If portray_examples is set to true, Aleph will call aleph_portray(Term), when the

command show(Term) is executed (with Term being one of train_pos, train_neg,

test_pos or test_neg).

3.11 Stream-based learning

ILP systems have largely assumed that all data needed for learning have been provided at the onset

of model construction. Increasingly, for application areas like telecommunications, astronomy, text

processing, financial markets and biology, machine-generated data are being generated

continuously and on a vast scale. This presents at least the following problems for ILP:

1. It may not be possible to store all of the data, even in secondary memory;

2. Even if it were possible to store the data, it may be impractical to construct an acceptable

model using partitioning techniques that repeatedly perform expensive coverage or

subsumption-tests on the data;

3. Models constructed at some point may become less effective, or even invalid, as more data

become available (exemplified by the ``drift'' problem when identifying concepts); and

4. The representation of the data instances may need to change as more data become

available (a kind of ``language drift'' problem).

From Version 6, Aleph provides some support for stream-based on-line learning. The principal

mechanism is a user-defined predicate aleph_stream with each each element of the data

stream as an argument. Here is an example of using this predicate with the induce flag set to

stream, which results in Aleph invoking induce(stream):

% Aleph’s induce(stream) without book-keeping details

induce(stream):-

 setting(stream,Stream), % stream is provided as an Aleph setting

 repeat,

 read(Stream,Example),

 (Example = end_of_file ->

 set(end_of_stream,true),

 aleph_stream(Example); % aleph_stream is user-defined

 aleph_stream(Example),

 fail).

Aleph expects a definition of the predicate aleph_stream which tells it what to do with an

example seen on an input stream. Here is an example of processing a stream instance by inducing

new features and updating an existing model: l

aleph_stream(Example):-

 correctly_predicted(Example), !. % a user-defined check

46 Advanced Use of Aleph

aleph_stream(Example):-

 focus(Example,1.0), !, % focus on this example?

 induce(features), % call Aleph to induce new features

 induce(model). % call Aleph to update model

aleph_stream(Example):-

 induce(model). % no new features: just update model

}}

3.12 Other useful commands

There are a number of other useful commands and predicates defined in Aleph. These are:

rdhyp Read a hypothesised clause from the user.

addhyp
Add current hypothesised clause to theory. If a search is interrupted, then
the current best hypothesis will be added to the theory.

sphyp

Perform Generalised Closed World Specialisation (GCWS) on current
hypothesis. This can result in the creation of new abnormality predicates
which define exceptional conditions (see Notes)

addgcws Add hypothesis constructed by performing GCWS to theory.

covers Show positive examples covered by hypothesised clause.

coversn Show negative examples covered by hypothesised clause.

Reduce

Run a search on the current bottom clause, which can be obtained with the

sat/1 command.

abducible(+V)

V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. Specifies that ground atoms with symbol N/A can be abduced if
required.

bottom(-V) V is the current bottom clause.

commutative(+V)
V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. Specifies that literals with symbol N/A are commutative.

man(-V) V is of location of the on-line manual.

symmetric(+V)
V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. Specifies that literals with symbol N/A are symmetric.

lazy_evaluate(+V)

V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. Specifies that outputs and constants for literals with symbol N/A
are to be evaluated lazily during the search. This is particularly useful

model(+V)

V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. Specifies that predicate N/A will be used to construct and execute
models in the leaves of model trees (see Tree-based theories). This auto

positive_only(+V)

V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. States that only positive substitutions are required during lazy
evaluation of literals with symbol N/A. This saves some theorem-proving
effort.

random(V, D)

V is a random variable from distribution D. D is the specification of a discrete
or normal distribution. The discrete distribution is specified as [p1-a,p2-b,...]
where “p1” represents the probability of drawing element “a”, “p2” t

sat(+V) V is an integer. Builds the bottom clause for positive example number V.

Advanced Use of Aleph 47

Positive examples are numbered from 1, and the numbering corresponds to
the order of appearance in the.f file.

example_saturated(-V) V is a positive example. This is the current example saturated.

show(+V)

Different values of V result in showing the following.

Bottom Current bottom clause.

Constraints Constraints found by induce(constraints).

Determinations Current determination declarations.

Features
Propositional features constructed from good clauses
found so far.

Gcws Hypothesis constructed by the gcws procedure.

Good

Good clauses found in searches conducted so far
(good clauses all have a utility above that specified by
minscore).

hypothesis Current hypothesised clause.

modes
Current mode declarations (including all modeh and
modeb declarations).

modehs Current modeh declarations.

modebs Current modeb declarations.

neg Current negative examples.

pos Current positive examples.

posleft Positive examples not covered by theory so far.

rand
Current randomly-generated examples(used when
evalfn is posonly).

search
Current search (requires definition for
portray(search)).

settings Current parameter settings.

sizes Current sizes of positive and negative examples.

theory Current theory constructed.

test_neg
Examples in the file associated with the parameter
test_neg.

test_pos
Examples in the file associated with the parameter
test_pos.

train_neg
Examples in the file associated with the parameter
train_neg.

train_pos
Examples in the file associated with the parameter
train_pos.

Name/Arity Current definition of the predicate Name/Arity.

prove(Clause,+Example)

A user-specified predicate that defines when an example Example is
provable using a clause Clause. Clause can be the special term bottom,
in which case it refers to the current bottom clause. Calls to this predicate
are only made if the flag proof_strategy is set to user. Settings to

flags depth and prooftime are ignored.

redundant(+Clause,+Lit)

A user-specified predicate that defines when a literal Lit is redundant in a
clause Clause. Clause can be the special term bottom, in which case it
refers to the current bottom clause. Calls to this predicate are only made if
the flag check_redundant is set to true.

modeh(+Recall,+Mode)

Recall is one of: a positive integer or *. Mode is a mode template as in a
mode/2 declaration. Declares a mode for the head of a hypothesised
clause. Required when evalfn is posonly.

48 Related versions and programs

modeb(+Recall,+Mode)

VRecall is one of: a positive integer or *. Mode is a mode template as in a

mode/2 declaration. Declares a mode for a literal in the body of a
hypothesised clause.

text(+L,+T})

L is a literal that can appear in the head or body of a clause.
T is a list of terms that contain the text to be printed in place of the literal.
Variables in the list will be co-referenced to variables in the literal. For
example, text(active(X),[X, 'is active']). Then the clause
active(d1) will be written as d1 is active.

hypothesis(-Head,-
Body,-Label})

Head is the head of the current hypothesised clause. Body is the body of the
current hypothesised clause. Labelis the list [P,N,L] where P is the
positive examples covered by the hypothesised clause, N is the negate

feature(+Id,+(Head:-
Body))

Declares a new feature. Id is a feature identifier (usually a number). Head is
a literal that can unify with one or more of the examples. Body is a
conjunction of literals that constitutes the feature.

features(?Id,?(Head:-
Body))

Checks for an existing feature. Id is a feature identifier (usually a number).
Head is a literal that can unify with one or more of the examples. Body is a
conjunction of literals that constitutes the feature.

4 Related versions and programs
With appropriate settings, Aleph can emulate some the functionality of the following programs: P-

Progol, CProgol, FOIL, FORS, Indlog, MIDOS, SRT, Tilde and WARMR. Descriptions and pointers to

these programs are available at:

http://www-ai.ijs.si/~ilpnet2/systems/

In addition the following programs and scripts are relevant.

T-Reduce

T-Reduce is a companion program to Aleph that can be used to process

the clauses found by the commands induce_cover and

induce(max). This finds a subset of these clauses that explain the
examples adequately, and have lesser overlap in coverage. T-Reduce uses
the Yap Prolog compiler.
A copy of this program is available (without support) at:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc
/treduce.pl
This has not been used for several years and is vulnerable to the usual
forces of decay that afflict old programs.

GUI

A graphical user interface to Aleph has been developed by J. Wielemaker
and S. Moyle. This is written for SWI-Prolog and uses the XPCE library.
Details of this can be obtained from S. Moyle
(sam at comlab dot ox dot ac dot uk).

Scripts

There are some scripts available for performing cross-validation with
Aleph. Here is a copy of a Perl script written by M. Reid (mreid at cse dot
unsw dot edu dot au):
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc
/xval_pl.txt
S. Konstantopoulos (konstant at let dot rug dot nl) and colleagues have a
shell script and a Python script for the same purpose. Copies of these are
at:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc

http://www-ai.ijs.si/~ilpnet2/systems/
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/treduce.pl
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/treduce.pl
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_pl.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_pl.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_sh.txt

Notes 49

/xval_sh.txt
and
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc
/xval_py.txt

5 Notes
This section contains ideas and suggestions that have surfaced during the development of Aleph and

its predecessor programs. The topics themselves are in no particular order. They are written in a

somewhat stylised manner and reflect various personal biases. They should therefore, not be

considered normative in any way.

5.1 On the appropriateness of Aleph
1. There are many ILP programs. Aleph is not particularly special.

2. Check whether the problem needs a relational learning program. Is it clear that statistical

programs, neural networks, Bayesian nets, tree-learners etc. are unsuitable or insufficient?

3. Aleph's emulation of other systems is at the ``ideas'' level. For example, with a setting of

search to heuristic, evalfn to compression, construct_bottom to

saturation, and samplesize to 0, the command induce will a construct a theory

along the lines of the Progol algorithm described by S. Muggleton. This is, however, no

substitute for the original. If you want an implementation of S. Muggleton's Progol algorithm

exactly as described in his paper, then Aleph is not suitable for you. Try CProgol instead. The

same comment applies to other programs listed in “Related versions and programs”}.

4. Aleph is quite flexible in that it allows customisation of search, cost functions, output-display

etc. This allows it to approximate the functionality of many other techniques. It could also

mean that it may not be as efficient as special-purpose implementations. See also:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/ilp_and_aleph.ps

5.2 On predicate-name clashes with Aleph
1. You may get into trouble if predicate names in the background knowledge clash with those

already used within Aleph. This may be benign (for example, two different predicates that

encode the same relation) or malignant (with predicates that have the same name encoding

quite different things). The list of predicate names already in use can be obtained by

repeated calls to the current_predicate(X) goal provided by the Prolog engine.

2. It would be better if Aleph predicates were renamed, or some modular approach was

adopted. None of this is done so far.

5.3 On the role of the bottom clause
Besides its theoretical role of anchoring one end of the search space, the bottom clause is really

useful to introduce constants (these are obtained from the seed example), and variable co-

references.

1. If you are not interested in particular constants or the bottom clause introduces too many

spurious co-references, it may be better not to construct a bottom clause. Try using the

automatic refinement operator, or write your own refinement operator.

2. If the bottom clause is too large (> 500 literals), then simply printing it on screen takes a long

time. Turn this off with setting verbosity to 0.

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_sh.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_py.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_py.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/ilp_and_aleph.ps

50 Notes

3. If the bottom clause is too large (> 500 literals), then you can construct it lazily (during the

search) by setting the construct_bottom flag to reduction.

5.4 On using Aleph interactively.
1. It is always worth experimenting with Aleph before constructing a full theory. The

commands sat/1 or rsat/0, followed by the command reduce/0 are useful for this.

sat(N) constructs the bottom clause for example number N. rsat constructs a bottom

clause for a randomly selected example. reduce does a search for an acceptable clause.

2. You can interrupt a search at any time. The command addhyp/0 then adds the current

best clause to the theory. This has the flavour of anytime-learning.

3. The induce_incremental command is highly interactive. It requires the user to provide

examples, and also categorise the result of searches. This may prove quite demanding on

the user, but has the flavour of the kind of search done by a version-space algorithm.

4. Setting interactive to true and calling induce_clauses has the same effect as

calling induce_incremental. Trees can also be constructed interactively by setting

interactive to true and calling induce_tree.

5.5 On different ways of constructing a theory
The routine way of using induce/0 is often sufficient.

1. Most of the induce family encode control strategies for clause-level search. They will use any

user defined refinement operators, search and evaluation functions, beam-width restrcitions

etc that are set. In terms of speed, induce/0 is usually faster than induce(cover),

which in turn is faster than induce(max). The time taken by induce(incremental)

is not as easily characterisable.

2. Induce(max) results in a set of clauses that is invariant of example ordering. Neither

induce(cover), induce or induce(incremental) have this property.

3. Use the T-Reduce program after induce(max) or induce(cover) to obtain a

compact theory for prediction.

4. You can construct a theory manually by repeatedly using sat/1 (or rsat/0),

5. reduce/0 and addhyp/0.

6. You can mitigate the effects of poor choice of seed example in the saturation step by setting

the samplesize flag. This sets the number of examples to be selected randomly by the

induce or induce_cover commands. Each example seeds a different search and the

best clause is added to the theory.

7. If you set samplesize to 0 examples will be selected in the order of appearance in the

positive examples file. This will allow replication of results without worrying about variations

due to sampling.

8. The induce(tree) command will construct tree-structured theories.

9. The induce(theory) command is to be used at your own peril.

5.6 On a categorisation of parameters
The following parameters can affect the size of the search space: i, clauselength, nodes,

minpos, minacc, noise, explore, best, openlist, splitvars.

1. The following parameters affect the type of search: search, evalfn, refine,

samplesize.

Notes 51

2. The following parameters have an effect on the speed of execution: caching,

lazy_negs, proof_strategy, depth, lazy_on_cost,

lazy_on_contradiction, searchtime, prooftime.

3. The following parameters alter the way things are presented to the user: print, record,

portray_hypothesis, portray_search, portray_literals, verbosity.

4. The following parameters are concerned with testing theories: test_pos, test_neg,

train_pos, train_neg.

5.7 On how the single-clause search is implemented
1. The search for a clause is implemented by a restricted form of a general branch-and-bound

algorithm. A description of the algorithm follows. It is a slight modification of that presented

by C.H. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimisation, Prentice-Hall,

Edgewood-Cliffs, NJ. In the code that follows, activeset contains the set of ``live'' nodes at

any point; the variable C is used to hold the cost of the best complete solution at any given

time.

begin

 active:= {0}; (comment: “0” is a conventional

starting point)

 C:= inf;

 currentbest:= anything;

 while active is not empty do begin

 remove first node k from active; (comment: k

is a branching node)

 generate the children i=1,...,Nk of node k,

and

 compute corresponding costs Ci and

 lower bounds on costs Li;

 for i = 1,...,Nk do

 if Li >= C then prune child i

 else begin

 if child i is a complete solution

and Ci < C then begin

 C:= Ci, currentbest:= child

i;

 prune nodes in active with

lower bounds more than Ci

 end

 add child i to active

 end

52 Notes

 end

end

2. The algorithm above results in a search tree. In Aleph, each node contains a clause.

3. A number of choices are made in implementing a branch-and-bound algorithm for a given

problem. Here are how these are made in Aleph: (a) Branch node. The choice of node to

branch on in the activeset is based on comparisons of a dual (primary and secondary) search

key associated with each node. The value of this key depends on the search method and

evaluation function. For example, with search set to bf and evalfn set to coverage

(the default for Aleph), the primary and secondary keys are -L,P-N respectively. Here L is

the number of literals in the clause, and P,N are the positive and negative examples

covered by the clause. This ensures clauses with fewer literals will be chosen first. They will

further be ordered on difference in coverage; (b) Branch set. Children are generated by

refinement steps that are either built-in (add 1 literal at a time) or user-specified. With built-

in refinement, loop detection is performed to prevent duplicate addition of literals; (c) Lower

bounds. This represents the lowest cost that can be achieved at this node and the sub-tree

below it. This calculation is dependent on the search method and evaluation function. In

cases where no easy lower bound is obtainable, it is taken as 0 resulting in minimal pruning;

(d) Restrictions. The search need not proceed until activeset is empty. It may be terminated

prematurely by setting the nodes parameter. Complete solutions are taken to be ones that

satisfy the language restrictions and any other hypothesis-related constraints.

5.8 On how to reduce the search space
1. Use smaller i setting or smaller clauselength or nodes setting. Avoid setting

splitvars to true (it is not even clear whether this works correctly anyway). Try

relaxing minacc or noise to allow clauses with lower accuracy. Set minpos to some

larger value than the default. Set a different value to best.

2. Write constraints and prune statements.

3. Use a refinement operator that enumerates a smaller space.

4. Restrict the language by allowing fewer determinations.

5. Restrict the search space by setting beam-width (using parameter openlist); or using an

iterative beam-width search (setting search to ibs); or using randomised local search

(setting search to rls) with an appropriate setting for associated parameters); or using

Camacho's language search (using parameter language or setting search to ils).

6. Use a time-bounded search by setting searchtime to some small value.

5.9 On how to use fewer examples
It need not be necessary to test on the entire dataset to obtain good estimates of the cost of a

clause.

1. Methods like sub-sampling or windowing can be incorporated into ILP programs to avoid

examining entire datasets. A form of sub-sampling is incorporated within Aleph. Windowing

can be achieved within a general purpose theory-revision program called T-Revise which can

use any ILP program as its generalisation engine (available from Ashwin Srinivasan, ashwin at

comlab dot ox dot ac dot uk). More details on this are available in:

A. Srinivasan (1999), A study of two sampling methods for analysing large datasets with ILP,

Data Mining and Knowledge Discovery, 3(1):95-123.

Notes 53

2. Using the posonly evaluation function will allow construction of theories using positive

examples only (thus, some savings can be made by ignoring negative examples).

5.10 On a user-defined view of hypotheses and search
1. User-definitions of portray/1 provide a general mechanism of altering the view of the

hypotheses and search seen by the user.

2. There are 3 flags that are used to control portrayal. These are portray_hypothesis,

portray_search and portray_literals. If the first is set to true then the

command show(hypothesis) will execute portray(hypothesis). This has to be

user-defined. If the second flag is set to true then the command show(search)} will

execute portray(search). This has to be user-defined. If the third flag is set to true

then any literal L in a clause constructed during the search will be shown on screen by

executing portray(L). This has to be user-defined.

3. Examples of using these predicates can be found in the portray sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

5.11 On numerical reasoning with Aleph
1. There are many programs specialised to accomplish numerical reasoning. Aleph is not one of

them. Consider parametric techniques, regression trees etc. The ILP program FORS is an

example of an ILP program particularly suited to perform regression like tasks (see A. Karalic

and I. Bratko (1997), First-Order Regression, Machine Learning, 26:147-176). The program

SRT is a first-order variant of a regression tree builder (see S. Kramer (1996), Structural

Regression Trees, Proc. of the 13th National Conference on Artificial Intelligence (AAAI-96)),

and the program Tilde has the capability of performing regression-like tasks (see H. Blockeel,

L. De Raedt and J. Ramon (1998), Top-down induction of clustering trees, Proc of the 15th

International Conference on Machine Learning, pp 55-63). Aleph does have a simple tree-

based learner that can construct regression trees (see Tree-based theories).

2. It is possible to attempt guesses at numerical constants that add additional literals to the

bottom clause. An example of how this can be done with a predicate with multiple recall is

in the Aleph files guess.b, guess.f, and guess.n in the numbers sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3. Guessing may not always work. The problem may then be amenable to the use of the

technique of lazy evaluation. Here an appropriate constant in literal Li is obtained during the

search by calling a definition in background knowledge that calculates the constant by

collecting bindings from pos examples that are entailed by the ordered clause L0, L1, ... Li-1,

and the neg examples inconsistent with the ordered clause L0, L1, ... Li-1 (ie the pos and neg

examples ``covered'' by this clause). An example of how this can be done is in the Aleph files

ineq.b, ineq.f, and ineq.n in the numbers sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

4. The technique of lazy evaluation can be used with more than one input argument and to

calculate more than one constant. With several input arguments, values in lists of

substitutions can be paired off. An example where it is illustrated how a line can be

constructed from a picking two such substitution-pairs can be found in the Aleph files

ineq.b, ineq.f, and ineq.n in the numbers sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

5. The use of lazy evaluation, in combination with user-defined search specifications can result

in quite powerful (and complex) clauses. In the file:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/mut.b

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/mut.b

54 Notes

6. is the background knowledge used to construct theories in a subset of the “mutagenesis”

problem. It illustrates the call to a C function to compute linear regression, user-defined

refinement operators, and a user-defined cost function that forces clauses to be scored on

mean-square-error (rather than coverage)

5.12 On applications of Aleph
1. Earlier incarnations of Aleph (called P-Progol) have been applied to a number of real-world

problems. Prominent amongst these concern the construction of structure-activity relations

for biological activity. In particular, the results for mutagenic and carcinogenic activity have

received some attention.

Also prominent has the been the use for identifying pharmacophores – the three-

dimensional arrangement of functional groups on small molecules that enables them to bind

to drug targets. See:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/applications.html.

2. Applications to problems in natural language processing have been done by James Cussens

and others. See:

http://www.cs.york.ac.uk/~jc/

5.13 On using Aleph with other techniques
1. There is often a significant advantage in combine the results of Aleph with those of

established prediction methods.

2. Three ways of doing this are evident: (a) As background knowledge. Incorporate other

prediction methods as part of the background knowledge for Aleph. An example is the use of

linear regression as a background knowledge; (b) As new features. Incorporate the results

from Aleph into an established prediction method. An example is the conversion of Aleph

derived alerts into ``indicator'' variables for linear regression; and (c) For outlier analysis. Use

Aleph to explain only those instances that are inadequately modelled by established

techniques.

An example is the use of Aleph to explain the non-linearities left after the linear component

adequately explained by regression is removed.

5.14 On performing closed-world specialisation with Aleph
1. Generalised Closed-World Specialisation (GCWS) is a way of obtaining structured theories in

ILP. Given an overgeneral clause C, GCWS specialises it by constructing automatically new

“abnormality'” predicates that encode exceptions to C, exceptions to those exceptions, etc.

2. A classic example is provided by the Gregorian Calendar currently in use in parts of the

world. From 45 B.C.E to 1581 C.E the Holy Roman Empire subscribed to the Julian calendar

commissioned by Julius Caesar. This specified that every year that was a multiple of 4 would

contain an intercalary day to reconcile the calendar with a solar year (that is, one extra day

would be added). This rule is correct up to around one part in a hundred and so up until

1582 errors could simply be treated as noise.

In 1582 C.E Pope Gregory XIII introduced the Gregorian calendar. The following corrections

were implemented. Every fourth year would be an intercalary year except every hundredth

year. This rule was itself to be overruled every four hundredth year, which would be an

intercalary year. As a set of clauses the Gregorian calendar is:

normal(Y):-

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/applications.html
http://www.cs.york.ac.uk/~jc/

Notes 55

 not(ab0(Y)).

ab0(Y):-

 divisible(4,Y),

 not(ab1(Y)).

ab1(Y):-

 divisible(100,Y),

 not(ab2(Y)).

ab2(Y):-

 divisible(400,Y).

where normal is a year that does not contain an intercalary day.

With background knowledge of divisible/2 GCWS would automatically specialise the

clause:

normal(Y).

by constructing the more elaborate theory earlier. This involves invention of the

ab0,ab1,ab2 predicates.

3. See M. Bain, (1991), Experiments in non-monotonic learning, Eighth International

Conference on Machine Learning, pp 380-384, Morgan Kaufmann, CA; and A. Srinivasan, S.H.

Muggleton, and M. Bain (1992): Distinguishing Noise from Exceptions in Non-Monotonic

Learning, Second International Workshop on ILP, for more details of GCWS.

4. The way to use GCWS within Aleph is as follows. First try to learn a clause in the standard

manner (that is using the sat and reduce commands). If no acceptable clause is found,

decrease the minimum accuracy of acceptable clauses (by setting minacc or noise). Now

do the search again. You will probably get an overgeneral clause (that is, one that covers

more negative examples than preferrable). Now use the sphyp command to specialise this

hypothesis. Aleph will repeatedly create examples for new abnormality predicates and

generalise them until the original overgeneral clause does not cover any negative examples.

You can then elect to add this theory by using the addgcws command.

5. The implementation of GCWS within Aleph is relatively inefficient as it requires creating new

examples for the abnormality predicates on disk.

5.15 n some basic ideas relevant to ILP

1. Some basic ideas relevant ILP can be found at:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/basic.html

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/basic.html

Change Logs 57

6 Change Logs

6.1 Changes in Version 1
 Wed Nov 10 10:15:44 GMT 1999: fixed bug in bug fix of Fri Oct 8 10:06:55 BST 1999.

 Mon Oct 25 14:06:07 BST 1999: minor improvement to code for stochastic clause selection;

added mailing list info in header

 Fri Oct 8 10:06:55 BST 1999: fixed bug in record_testclause to add depth bound call

to body literals.

 Mon Sep 20 09:50:23 BST 1999: fixed bug in continue_search for user defined cost

function; fixed bug in stochastic clause selection that attempts to select more literals than

present in bottom clause.

6.2 Changes in Version 2
 Fri Mar 31 17:12:52 BST 2000: Some predicates called during variable-splitting did not

account for change that allows arbitrary terms in mode declarations.

Changed split_args/4 to split_args/5 to fix bug concerning multiple modes for the same

predicate.

 Thu Mar 23 09:57:15 GMT 2000: Minor fixes. Some predicates called during lazy evaluation

did not account for change that allows arbitrary terms in mode declarations.

 Fri Jan 28 14:57:32 GMT 2000: Arbitrary terms now allowed in mode declarations; logfile no

longer records date of trace automatically (a system call to `date' causes Yap to crash on

some non-Unix systems -- use set(date,...) to record date).

6.3 Changes in Version 3
 Wed May 16 06:22:52 BST 2001:

o Changed retractall to retract_all

o Added check for setting(refine,user) in check_auto_refine (reported by Khalid Khan)

o Added clause to select_nextbest/2 for RefineType = user

o Fixed call to get_gains in reduce(_) to include StartClause when using a refinement

operator

o Some calls to idb entries for last_refinement and best_refinement were incorrectly

using key: "search" instead of "aleph"

o Clause in get_refine_gain and get_refine_gain1 when RefineType \= rls had variable

name clash for variable E. Renamed one of these to Example

o Changed representation of gains for openlist. This is now the term [P|S] where P is

the primary key and S is the secondary key. This used to be converted into a unique

number, which required the setting of a base. This is no longer required and so

removed fix_base predicate. Corresponding changes to structure for gains idb also

implemented by including P and S as first two arguments, and to uniq_insert to

compare using lexicographically

o Call to reduce now catches aborts and reinstates the values of any parameters saved

via the use of catch/3

o Rls search type is now correctly heuristic (and not bf: reported by David Page and

Khalid Khan)

o Incorporated Filip Zelezny's corrections to posonly estimate by ensuring that

rm_seeds updates atoms_left for rand examples.

o sample_clauses can now use probability distribution over clauselengths

58 Change Logs

o Reinstated search `scs' to perform stochastic clause selection (after Aleph 0 this was

being done as a special case of rls before)

o Removed call to store_cover to fix problem identified by Stasinos Konstantopoulos

when get_hyp_label/2 calls covers/1 and coversn/1

o Updated manual to mirror style of Yap's manual and added patches sent by Stasinos

Konstantopoulos

 Fri May 18 07:44:02 BST 2001:Yap was unable to parse calls of the form

recorded(openlist,[[K1|K2]|_],_) (reported by Khalid Khan). Worked around by changing to

recorded(openlist,[H|_],_), H= [K1|K2].

 Wed Jul 25 05:50:12 BST 2001:

o Changed calls to val(ArgNo,Pos). This was causing variable-splitting to fail

o Both input and output variables can now be split in the head literal

o Posonly learning now adds an SLP generator clause for each modeh declaration

o Modes can now contain ground terms

o Restored proper operation of user-defined refinement operator

o Added facility for time-restricted proofs

o Added facility for new computation rule that selects leftmost literals with delaying

o

 Mon Mar 18 12:49:10 GMT 2002:

o Changed update atoms/2 to check the mode of the ground literal used to produce

the bottom clause. This means copies of ground literals can now exist,if the

corresponding variables are typed differently by the mode declarations. This was

prompted by discussions with Mark Rich.

o continue_search/3 replaced by discontinue_search/3.

o Added setting for newvars. This bounds the maximum number of new variables that

can be introduced in the body of a clause

o Added code developed by Filip Zelezny to implement randomised local search using

`randomised rapid restarts'.

o Changed pos_ok/6 to check for minpos constraint for any refinement operator r that

is such that for a hypothesis H, poscover(r(H)) <= poscover(H). This cannot be

guaranteed when search = rls or refine = user. In other situations, the built-in

refinement operator that adds literals is used and this property is holds. This was

prompted by discussions with James Cussens.

o Fixed bug in randomised search: rls_nextbest/4 that had args for gain/4 in the wrong

order.

o Fixed closed-world specialisation: was not checking for lazy evaluation, also changed

tmp file names to alephtmp.[fn]

o subsumes/2 renamed aleph_subsumes/2.

o Changes to lazy evaluation code that allows a set of input bindings from an example.

This makes multi-instance learning possible.

o Automatic general-to-specific refinement from modes now ensures that it does not

generate clauses that would succeed on prune/1 .

o Built-in local clause moves in randomised search now ensures that it does not

generate clauses that would succeed on prune/1 .

o Random sampling of clauses from hypothesis space now returns most general clause

on failure.

o Added code check_recursive_calls/0. This allows calls to the positive examples when

building the bottom clause if recursion is allowed.

Change Logs 59

o Changed covers/1 and and coversn/1 to check if being called during induce/0.

o Miscellaneous changes of write/1 to writeq/1.

6.4 Changes in Version 4
 Wed Nov 13 16:18:53 GMT 2002:

o Added portability to SWI-Prolog.

o Lazy-evaluation now creates literals identified by numbers that are less than 0

(rather than by positive numbers beyond that obtained from the bottom clause).

o Fixed error in mark_redundant_lits/2 that checked for redundant literals in the

bottom clause.

o Avoided overloading of the refine flag by introducing a secondary flag refineop that

is actually used by Aleph.

o Avoided overloading of the search flag by introducing a secondary flag searchstrat

that is actually used by Aleph.

o Removed defunct flags verbose, computation_rule.

o Added code symmetric_match/2 when checking for symmetric literals.

o Added new flags including minposfrac, minscore, mingain, prune_tree, confidence,

classes, newvars etc.

o Changed flags so that noise/minacc can co-exist. Now the user's problem to check

that these are consistent.

o Introduced new predicate find_clause/1 to perform basic searches (this was

previously done by reduce/1).

o Miscellaneous rewrites of code for checking lang_ok and newvars_ok.

o Miscellaneous rewrites of code for optimising clauses.

o Rationalised pruning code.

o Fixed bug in pos_ok that affected posonly mode.

o Added code for dealing uniformly with plus and minus infinities in SWI and Yap.

o Added code for dealing uniformly with alarms in SWI and Yap.

o Added code for dealing uniformly with random number generation in SWI and Yap.

o Added code for dealing with cputime in cygnus (from Mark Reid).

o Added code for checking flag settings and specification of default values.

o Added code for new evaluation functions entropy, gini, wracc.

o Added code for new search strategy id.

o Added code for showing positive examples left, good clauses, constraints.

o Added code for calculating pos/neg cover of head of clauses. Needed for checking

minposfrac and evaluating wracc.

o Added code for write_rules/0 (from Mark Reid) and rewrote code for reading input

files to be compatible with patches used by Mark Reid and Stasinos

Konstantopoulos.

o Added code in auto_refine to check for tautologies.

o Added code to add lookahead to automatic refinement operator.

o Added code to check whether clauses found by induce should be added to the

background (controlled by the flag updateback).

o Added code for generating random vars from normal and chi-square distributions.

o Added code to check that clauses below minpos are not added to the theory.

o Added code for testing theory on sets of files pointed to be train_pos, train_neg,

test_pos, and test_neg.

o Added code to store ``good'' clauses either in a file or in memory.

60 Change Logs

o Added code for Claudien-style induction of constraints in induce_constraints.

o Added code for Tilde-style induction of trees in induce_tree.

o Added code for McCreath-Sharma induction of modes in induce_modes.

o Added code for generation of propositional boolean features from good clauses.

o Removed code for list_profile/0.

o Removed code for probabilistic refinement operators.

o Removed code for doing pre-computation of background predicates.

o Removed code for Markov-Chain Monte-Carlo search.

6.5 Changes in Version 5
 Sun Mar 11 03:25:37 UTC 2007

o Removed Yap-specific call to erase. This was causing some trouble with some

versions of Yap.

o Added code for permuting literals in the bottom clause.

o Added code for negative-based reduction of bottom clause.

o Added code for subsampling examples.

o Added code for call to user-defined proof procedure along with proof_strategy

having the value user.

o Added flag for resampling.

o search can now have value false, which results in bottom clause being added to

theory without further search.

 Sun Jun 4 10:51:31 UTC 2006}

o Removed cut from call_with_depth_limit/3 for SWI

o Fixed bug in gen_layer/2 with negated predicates

o Changed call to portray/1 to aleph_portray/1

o Included value of lookahead into automatic refinement in get_user_refinement

o Included check for LazyOnContra in prove_examples for evalfn=posonly

o Ensured update_gsample correctly updates counts of rand data

o Corrected bug in modes/2 to get Pred before checking for modes

o Corrected code generated for constructing automatic refinement using modes to

account correctly for multiple mode declarations for the same predicate

o Corrected copy_modeterms to account for variables in mode declarations

o Added code for induce_features/0

o Changed tree code to allow specification of the dependent variable

 Sun Nov 6 12:49:12 UTC 2005

o Allow minacc and noise settings when evalfn is set to user. Incorporated bug

fixes to get_max_negs reported by Daniel Fredouille.

o Bug fix reported by Vasili Vrubleuski for removal of commutative literals with SWI

o Inserted code for abduction within the induce loop

 Sun Jun 5 05:51:32 UTC 2005

o Fixed miscellaneous bugs in the code.

o Modified code to generate features correctly

 Sun Oct 10 06:59:50 BST 2004

o Fixed code to alter odd behaviour with cut being introduced in hypothesised clauses

by altering gen_nlitnum.

 Wed Jun 30 14:38:44 BST 2004

o Fixed posonly bug by fixing typo for gsamplesize

 Mon Jun 2 15:05:24 BST 2003

Change Logs 61

o Complete rewrite of the code to remove references to internal databases.

o Preliminary support for concurrent operation on shared memory machines (using

Prolog threads).

o Miscellaneous bug fixes in code.

 Wed Jun 30 14:38:44 BST 2004

o Corrections to best_value/4 after discussions with James Cussens, Mark Reid

and Jude Shavlik.

o Added depth_bound_call to cover test in test_file/2 (reported by James

Cussens).

o Changed code to ignore settings for noise and minacc when evalfn is user.

o discontinue_search now fails if evalfn is user.

o Added interactive flag to control interactive construction of clauses and trees.

o Added command induce_clauses.

o Added code for constructing model trees.

6.6 Changes in Version 6
 Sun Jan 1 12:00:00 UTC 2017

o Version 6 is a long-overdue release Aleph. It now includes some support for

streaming, theory-level search and various kinds of clause restrictions (mainly useful

for feature construction)

 Sun May 21 12:00:00 UTC 2017

o Fixed bug in auto-refine operator that enforced clause restrictions.

63 [Type here] Commands and Parameters Index

Commands and Parameters Index
A

abducible/1 .. 46

accuracy ... 28

addgcws/0 ... 46

addhyp/0 ... 46

ar search .. 27

B

best .. 17

bf search .. 27

bottom/1 ... 46

C

caching ... 17

check_redundant ... 17

check_useless .. 17

classes .. 17

clauselength ... 17

clauselength_distribution 17

clauses ... 17

clausetype .. 18

commutative/1 .. 46

compression .. 28

condition .. 18

confidence ... 18

construct_bottom .. 18

cost/3 ... 30

coverage .. 28

covers/0 ... 46

coversn/0 ... 46

D

depth ... 18

determination/2 .. 10

df search .. 27

E

entropy .. 28

evalfn ... 18

example_saturated/1 .. 47

explore ... 18

F

false/0 .. 30, 31

feature/2 .. 48

features/2 .. 48

G

gini ... 28

good ... 18

goodfile .. 19

greedy ... 26

GUI ... 48

H

heuristic search .. 27

hypothesis/3 .. 48

I

i 19

ibs search ... 27

ic search ... 28

id search ... 28

ils search .. 28

induce .. 26

induce/0 ... 11

L

language ... 19

laplace .. 29

lazy_evaluate/1 .. 46

lazy_negs .. 19

lazy_on_contradiction ... 19

lazy_on_cost .. 19

lookahead .. 19

M

m 19

m estimate (automatic m setting) 28

man/1 ... 46

max_abducibles ... 19

max_botsize ... 20

max_features ... 20

mestimate (user set m) .. 29

minacc .. 20

mingain .. 20

minpos ... 20

minposfrac ... 20

minscore .. 20

mode/2 .. 8

modeb/2 .. 48

modeh/2 .. 48

model/1.. 46

N

newvars .. 21

nodes ... 21

noise ... 21

noset/0 ... 16

nreduce_bottom .. 21

64 Commands and Parameters Index

O

openlist .. 21

optimise_clauses ... 21

P

pbayes .. 29

permute_bottom ... 21

portray_examples .. 21

portray_hypothesis.. 21

portray_literals .. 21

portray_search .. 22

positive_only/1 .. 47

posonly .. 29

print ... 22

proof_strategy ... 22

prooftime ... 22

prove/2 .. 47

prune/1 .. 29

prune_tree ... 22

R

random/2 ... 47

rdhyp/0 .. 46

read_all/1 .. 11

record .. 22

recordfile ... 22

reduce/0 .. 46

redundant/2 .. 48

refine ... 22

refine/2 .. 31

resample .. 23

rls search .. 28

rls_type .. 23

rulefile .. 23

S

samplesize ... 23

sat/1 ... 47

Scripts .. 49

scs search ... 28

scs_percentile .. 23

scs_prob... 23

scs_sample ... 23

sd 29

search ... 23

searchtime ... 24

setting/2 ... 16

show/1 ... 47

skolemvars ... 24

sphyp/0 .. 46

splitvars .. 24

stage ... 24

store_bottom ... 24

symmetric/1 ... 46

T

temperature ... 24

test/4 .. 13

test_neg ... 25

test_pos ... 25

text/2 ... 48

threads ... 25

train_neg .. 25

train_pos .. 25

T-Reduce .. 48

tree_type ... 25

tries .. 25

typeoverlap .. 25

U

uniform_sample ... 25

updateback .. 25

user (cost function) .. 29

V

verbose .. 26

verbosity .. 26

version ... 26

W

walk .. 26

wracc .. 29

write_rules/0 ... 13

write_rules/1 ... 13

65 [Type here] Concept Index

Concept Index
A

Abducibles allowed in an abductive explanation 20

Abductive learning ... 43

Adding induced clauses to background 27

Advanced use of Aleph .. 15

Applications of Aleph ... 56

Association rule search .. 28

Avoiding predicate-name clashes 51

B

Background knowledge file 8

Basic usage .. 7

Beam Search .. 22

Bottom-clause size limit 20

Breadth-first search strategy 29

C

Caching clause coverage 17

Categorisation of parameters 52

Changes in versions ... 59

Changing the evaluation function 19

Changing the proof strategy 22

Changing the proof time 23

Changing the search .. 24

Choice of Aleph .. 51

Clause length restriction 17

Clause optimisations .. 22

Clause type restriction ... 18

Clauses sampled in stochastic clause selection ... 24

Conditioning random sample 18

Confidence for tree pruning 18

Constraint learning .. 41

Constraint specification 32

Constructing a theory .. 11

Cost specification ... 31

D

Depth-first search strategy 29

Determinations .. 10

Different ways for theory-construction 52

Distribution over clauselengths 17

E

Evaluating a theory .. 13

Evaluation functions .. 29

Examples file .. 13

Exploratory mode .. 18

F

Feature Construction ... 44

Feature limit .. 20

G

Generalised Closed World Specialisation (GCWS) 56

Good clauses in stochastic clause selection 24

Graphical Interface .. 50

Greedy search .. 22

H

Heuristic search strategy 29

I

ILP ideas ... 57

Implementation of single-clause search 53

Incremental Learning ... 37

Integrity constraints search 29

Interactive use of Aleph 51

Iterative beam search strategy 29

Iterative deepening search 29

Iterative language search strategy 29

L

Language restriction .. 19

Lazy bottom clause generation 18

Lazy coverage evaluation 19

Lazy evaluation .. 48

Lazy negative coverage evaluation 20

Loading Aleph .. 7

Lookahead for refinement 20

M

M estimation .. 20

Manual Usage .. 6

Maximum clauses for theory-level search 18

Maximum existential variables 21

Maximum negative coverage 21

Maximum nodes searched 21

Minimum clause accuracy 20

Minimum clause utility .. 21

Minimum fractional positive coverage 21

Minimum gain .. 20

Minimum positive coverage 20

Mode declarations ... 8

Mode learning .. 42

Model tree construction 48

Moves for randomised search 21

N

Negative examples file ... 11

Negative examples for testing 26

Negative examples for training 26

Negative-based reduction of bottom clauses 21

66 Concept Index

Notes ... 51

Number of concurrent threads 26

Numerical reasoning with Aleph 55

P

Permutation of literals in a bottom clause 22

Portrayal of hypotheses and search 55

Positive examples file .. 10

Positive examples for testing 26

Positive examples for training 26

Positive-only learning .. 30

Pretty printing of examples 22

Pretty printing of hypothesis 22

Pretty printing of literals 22

Pretty printing of search 22

Probability of selecting a good clause in stochastic

clause selection ... 24

Pruning .. 30

Pruning for tree learning 23

R

Random sample size .. 19

Random walk probability for Walksat 27

Randomised search 29, 35

Randomised search types 24

Reading input files ... 11

Reducing a single bottom clause 48

Reducing the search space 54

Reduction ... 7

Redundancy Check .. 17

Refinement operator specification 33

Refinement operator types 23

Related versions and programs 50

Restarts for randomised search 26

Role of the bottom clause 51

S

Samples greater than 1 .. 24

Saturating a single example 48

Saturation .. 7

Saving a theory ... 13

Search commands and options 27

Search strategies .. 28

Setting a minimum score 17

Setting Parameter Values 16

Show things .. 48

Skolem variable numbering in examples 25

Specific-to-general search 34

Stochastic clause selection................................... 29

T

Temperature for simulated annealing 25

Theorem-proving depth 18

Theory-level search .. 38

Time bounded search .. 25

T-Reduce .. 50

Tree type .. 26

Tree-based theories ... 39

Type specifications ... 9

U

Uniform sampling from clause space 26

Useful scripts .. 50

Useless literals in bottom 17

Using Aleph with other techniques 56

Using fewer examples .. 54

V

Variable chain depth .. 19

Verbosity .. 27

Version ... 27

W

Weighted relative accuracy 30

Writing trace to a file ... 23

67 [Type here] Concept Index

