
Markov Logic
And other SRL Approaches



Overview

 Statistical relational learning
 Markov logic
 Basic inference
 Basic learning



Statistical Relational Learning

Goals:
 Combine (subsets of) logic and probability 

into a single language
 Develop efficient inference algorithms
 Develop efficient learning algorithms
 Apply to real-world problems

L. Getoor & B. Taskar (eds.), Introduction to Statistical
Relational Learning, MIT Press, 2007.



Plethora of Approaches

 Knowledge-based model construction
[Wellman et al., 1992]

 Stochastic logic programs [Muggleton, 1996]
 Probabilistic relational models

[Friedman et al., 1999]
 Relational Markov networks [Taskar et al., 

2002]
 Bayesian logic [Milch et al., 2005]
 Markov logic [Richardson & Domingos, 2006]
 And many others!



Key Dimensions

 Logical language
First-order logic, Horn clauses, frame systems

 Probabilistic language
Bayes nets, Markov nets, PCFGs (Prob. Context-
free grammar)

 Type of learning
 Generative / Discriminative
 Structure / Parameters
 Knowledge-rich / Knowledge-poor

 Type of inference
 MAP / Marginal
 Full grounding / Partial grounding / Lifted



Knowledge-Based
Model Construction

 Logical language: Horn clauses
 Probabilistic language: Bayes nets

 Ground atom → Node
 Head of clause → Child node
 Body of clause → Parent nodes
 >1 clause w/ same head → Combining function

 Learning: ILP + EM
 Inference: Partial grounding + Belief prop.



Stochastic Logic Programs

 Logical language: Horn clauses
 Probabilistic language:

Probabilistic context-free grammars
 Attach probabilities to clauses
  Σ Probs. of clauses w/ same head = 1

 Learning: ILP + “Failure-adjusted” EM
 Inference: Do all proofs, add probs.



Probabilistic Relational Models

 Logical language: Frame systems
 Probabilistic language: Bayes nets

 Bayes net template for each class of objects
 Object’s attrs. can depend on attrs. of related objs.
 Only binary relations
 No dependencies of relations on relations

 Learning:
 Parameters: Closed form (EM if missing data)
 Structure: “Tiered” Bayes net structure search

 Inference: Full grounding + Belief propagation



Relational Markov Networks

 Logical language: SQL queries
 Probabilistic language: Markov nets

 SQL queries define cliques
 Potential function for each query
 No uncertainty over relations

 Learning:
 Discriminative weight learning
 No structure learning

 Inference: Full grounding + Belief prop.



Bayesian Logic

 Logical language: First-order semantics
 Probabilistic language: Bayes nets

 BLOG program specifies how to generate relational world
 Parameters defined separately in Java functions
 Allows unknown objects
 May create Bayes nets with directed cycles

 Learning: None to date
 Inference:

 MCMC with user-supplied proposal distribution
 Partial grounding



Markov Logic

 Logical language: First-order logic
 Probabilistic language: Markov networks

 Syntax: First-order formulas with weights
 Semantics: Templates for Markov net features

 Learning:
 Parameters: Generative or discriminative
 Structure: ILP with arbitrary clauses and MAP score

 Inference:
 MAP: Weighted satisfiability
 Marginal: MCMC with moves proposed by SAT solver
 Partial grounding + Lazy inference / Lifted inference



Markov Logic

 Most developed approach to date
 Many other approaches can be viewed as 

special cases
 Main focus of rest of this class



Markov Logic: Intuition

 A logical KB is a set of hard constraints
on the set of possible worlds

 Let’s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible

 Give each formula a weight
(Higher weight    Stronger constraint)

P ( world )∝ exp (∑ w eights of formulas it satisfies )



Markov Logic: Definition

 A Markov Logic Network (MLN) is a set of 
pairs (F, w) where
 F is a formula in first-order logic
 w is a real number

 Together with a set of constants,
it defines a Markov network with
 One node for each grounding of each predicate in 

the MLN
 One feature for each grounding of each formula F 

in the MLN, with the corresponding weight w



Example: Friends & Smokers

Smoking  causes  cancer .
Friends  have  similar  smoking  habits .
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Markov Logic Networks
 MLN is template for ground Markov nets
 Probability of a world x:

 Typed variables and constants greatly reduce 
size of ground Markov net

 Functions, existential quantifiers, etc.
 Infinite and continuous domains

Weight of formula i No. of true groundings of formula i in x

P( x ) =
1
Z

exp (∑i
w ini ( x ))



Relation to Statistical Models

 Special cases:
 Markov networks
 Markov random fields
 Bayesian networks
 Log-linear models
 Exponential models
 Max. entropy models
 Gibbs distributions
 Boltzmann machines
 Logistic regression
 Hidden Markov models
 Conditional random fields

 Obtained by making all 
predicates zero-arity

 Markov logic allows 
objects to be 
interdependent 
(non-i.i.d.)



Relation to First-Order Logic

 Infinite weights    First-order logic
 Satisfiable KB, positive weights  

Satisfying assignments = Modes of distribution
 Markov logic allows contradictions between 

formulas



MAP Inference

 Problem: Find most likely state of world 
given evidence

argmax
y

P ( y|x )

Query Evidence



MAP Inference

 Problem: Find most likely state of world 
given evidence

argmax
y

1
Z x

exp (∑i
win i( x , y ))



MAP Inference

 Problem: Find most likely state of world 
given evidence

argmax
y

∑
i

w i n i ( x , y )



MAP Inference

 Problem: Find most likely state of world 
given evidence

 This is just the weighted MaxSAT problem
 Use weighted SAT solver

(e.g., MaxWalkSAT [Kautz et al., 1997] 

argmax
y

∑
i

w i n i ( x , y )



The MaxWalkSAT Algorithm

for i ← 1 to max-tries do
    solution = random truth assignment
    for j ← 1 to max-flips do
        if ∑ weights(sat. clauses) > threshold then
            return solution
        c ← random unsatisfied clause
        with probability p
            flip a random variable in c
        else
            flip variable in c that maximizes
                ∑ weights(sat. clauses)                
return failure, best solution found



Computing Probabilities

 P(Formula|MLN,C) = ?
 Brute force: Sum probs. of worlds where 

formula holds
 MCMC: Sample worlds, check formula holds
 P(Formula1|Formula2,MLN,C) = ?
 Discard worlds where Formula 2 does not hold
 In practice: More efficient alternatives



Learning

 Data is a relational database
 For now: Closed world assumption (if not: EM)
 Learning parameters (weights)

 Similar to learning weights for Markov networks
 Learning structure (formulas)

 A form of inductive logic programming
 Also related to learning features for Markov nets



 Parameter tying: Groundings of same clause

 Generative learning: Pseudo-likelihood
 Discriminative learning: Cond. likelihood,

use MaxWalkSAT for inference

Weight Learning

No. of times clause i is true in data

Expected no. times clause i is true according to MLN

∂
∂w i

log Pw ( x )=ni ( x )− Ew [ni ( x ) ]



Alchemy

Open-source software including:
 Full first-order logic syntax
 Inference (MAP and conditional probabilities)
 Weight learning (generative and discriminative)
 Structure learning
 Programming language features

alchemy.cs.washington.edu



Alchemy Prolog BUGS

Represent-
ation

F.O. Logic + 
Markov nets

Horn 
clauses

Bayes 
nets

Inference Satisfiability, 
MCMC, BP

Theorem 
proving

Gibbs 
sampling

Learning Parameters
& structure

No Params.

Uncertainty Yes No Yes

Relational Yes Yes No
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