Worksheet #1
April 16th, 2020

Paper: Relational inductive biases, deep learning, and graph
networks

1. What is the meaning of Inductive Bias? Be formal.

In machine learning, the inductive bias is associated with assumptions
that algorithms use to learn the target function that will predict new
inputs. Ideally, we would like to find an unbiased generalization proce-
dure that does not give preference to a model over the other, however,
due to large search spaces and, often, due to the nature of a problem
(for example, preference to reduce number of false negatives), bias need
to be introduced. Moreover, according to Mitchell [2],

Unbiased generalization programs that use consistency with
the training instances as their only source of information,
cannot outperform programs that use rote learning. Addi-
tional information or biases are therefore critical to the abil-
ity to classify instances that are not identical to the training
mnstances.

Although necessary for some cases, biases need to be used criteriously.

2. Given that you understood the meaning of inductive bias, what is the
meaning of Relational Inductive Bias?

Relational Inductive Bias are relational features added to the back-
ground knowledge that help an algorithm to learn a target function.
For example, knowledge bases allow for the introduction of first or-
der rules that describe a particular domain in a relational way. This
knowledge may help to learn other new knowledge.

3. Visit the Google Knowledge Graph API web page. Do you think that
the API can be used to learn new knowledge? In other words, only


https://www.dcc.fc.up.pt/~ines/aulas/1920/TAIA/papers/1806.01261.pdf
https://www.dcc.fc.up.pt/~ines/aulas/1920/TAIA/papers/1806.01261.pdf
https://developers.google.com/knowledge-graph

using that API could you predict new links in the graph? If so, give
an example.

Knowledge Graph is based on Freebase [1], a well known knowledge base
bought by Google E| Therefore, we can only query the knowledge graph
for information already stored. The system itself does not perform any
learning, although we could implement algorithms to learn relations
from the data stored in the knowledge graph.

4. Visit the DeepMind Graph Nets web page. Go through the example to
find paths in the graph. How do you think the algorithm works? This
library is built on top of Tensorflow. What kind of representation is
used for the input graphs? How do you think the shortest paths are
represented in order that the network can use them as ground truth for
training?

If you digged the python code (https://github.com/deepmind/graph
nets/blob/master/graph_nets/graphs.py) you may have noticed that
there is a complete description of the structures used to represent the
graph, which is transcribed here:

"""A class that defines graph-structured data.

The main purpose of the ‘GraphsTuple‘ is to represent multiple graphs with
different shapes and sizes in a way that supports batched processing.

This module first defines the string constants which are used to represent
graph(s) as tuples or dictionaries: ‘N_NODE, N_EDGE, NODES, EDGES, RECEIVERS,
SENDERS, GLOBALS®.

This representation could typically take the following form, for a batch of
‘n_graphs‘ graphs stored in a ‘GraphsTuple‘ called graph:

- N_NODE: The number of nodes per graph. It is a vector of integers with shape
‘[n_graphs] ¢, such that ‘graph.N_NODE[i]‘ is the number of nodes in the i-th
graph.

- N_EDGE: The number of edges per graph. It is a vector of integers with shape
‘[n_graphs] ¢, such that ‘graph.N_EDGE[i] ¢ is the number of edges in the i-th
graph.

- NODES: The nodes features. It is either ‘None‘ (the graph has no node
features), or a vector of shape ‘[n_nodes] + node_shape‘, where
‘n_nodes = sum(graph.N_NODE) ¢ is the total number of nodes in the batch of
graphs, and ‘node_shape‘ represents the shape of the features of each node.
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The relative index of a node from the batched version can be recovered from
the ‘graph.N_NODE‘ property. For instance, the second node of the third
graph will have its features in the

‘1 + graph.N_NODE[0O] + graph.N_NODE[1]‘-th slot of graph.NODES.

Observe that having a ‘None‘ value for this field does not mean that the
graphs have no nodes, only that they do not have node features.

EDGES: The edges features. It is either ‘None‘ (the graph has no edge
features), or a vector of shape ‘[n_edges] + edge_shape‘, where

‘n_edges = sum(graph.N_EDGE) ¢ is the total number of edges in the batch of
graphs, and ‘edge_shape‘ represents the shape of the features of each edge.
The relative index of an edge from the batched version can be recovered from
the ‘graph.N_EDGE‘ property. For instance, the third edge of the third
graph will have its features in the ‘2 + graph.N_EDGE[0] + graph.N_EDGE[1] ‘-
th slot of graph.EDGES.

Observe that having a ‘None‘ value for this field does not necessarily mean
that the graph has no edges, only that they do not have edge features.
RECEIVERS: The indices of the receiver nodes, for each edge. It is either
‘None‘ (if the graph has no edges), or a vector of integers of shape
‘[n_edges] ¢, such that ‘graph.RECEIVERS[i]‘ is the index of the node
receiving from the i-th edge.

Observe that the index is absolute (in other words, cumulative), i.e.
‘graphs .RECEIVERS‘ take value in ‘[0, n_nodes]‘. For instance, an edge
connecting the vertices with relative indices 2 and 3 in the second graph of
the batch would have a ‘RECEIVERS‘ value of ‘3 + graph.N_NODE[O]°¢.

If ‘graphs.RECEIVERS is ‘None‘, then ‘graphs.EDGES‘ and ‘graphs.SENDERS®
should also be ‘None‘.

SENDERS: The indices of the sender nodes, for each edge. It is either

‘None‘ (if the graph has no edges), or a vector of integers of shape
‘[n_edges] ¢, such that ‘graph.SENDERS[i] ¢ is the index of the node

sending from the i-th edge.

Observe that the index is absolute, i.e. ‘graphs.RECEIVERS‘ take value in
‘[0, n_nodes] ‘. For instance, an edge connecting the vertices with relative
indices 1 and 3 in the third graph of the batch would have a ‘SENDERS‘ value
of ‘1 + graph.N_NODE[O] + graph.N_NODE[1] ‘.

If ‘graphs.SENDERS‘ is ‘None‘, then ‘graphs.EDGES‘ and ‘graphs.RECEIVERS®
should also be ‘None‘.

GLOBALS: The global features of the graph. It is either ‘None‘ (the graph
has no global features), or a vector of shape ‘[n_graphs] + global_shape°
representing graph level features.



Regarding the algorithm, we have discussed about it during class. But,
the best way of understanding it is to dig the code.
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