Worksheet #4
May 7th, 2020

Paper: Relational Neural Networks

e General questions

1. What is this paper about? Could you summarise its contribution
in a paragraph?
This paper proposes a method based on random walks to build a
neural network structure from relational data.

2. How does this work differ from others mentioned in the paper?
As clearly stated in the abstract: “We distinguish ourselves from
current approaches that rely on expert hand-coded rules by learn-
ing relational random-walk-based features to capture local struc-
tural interactions and the resulting network architecture”

3. Do the authors present experiments? What is the methodology
used? Does it sound correct? Why?
Yes. They do present experiments. They applied their method
to well-known relational datasets found in the liteature (unfortu-
nately, very few available :() and compared with other relational
methods, including Markov Logic Networks (MLNs). One result in
Table 4 (perhaps, the most relevant of all, because this would show
the actual benefit of the method) looks weird: for UW-CSE, AUC-
PR is much higher than AUC-ROC, which contradicts all other
results of all tables when comparing these numbers, and which
contradicts some facts in the literature that state that ROCs are
optimistic when compared with Precision-Recall curves, for imbal-
anced data — pls, see excellent paper that compares ROC and PR
curves: https://dl.acm.org/doi/10.1145/1143844.1143874.

4. What are the main results/findings/conclusions? Are the results
useful /relevant? Why?
Despite having produced the result mentioned above, the method
is quite interesting and promising as a way of capturing relevant
relations from data. Moreover, the other results look very good.


https://arxiv.org/pdf/1909.04723.pdf
https://dl.acm.org/doi/10.1145/1143844.1143874.

e Technical questions

1. Regarding the sentence: “While expressive, these models (note:
structured) do not incorporate or discover latent relationships be-
tween features as effectively as deep networks.” , and having played
with the Aleph system, do you think that there is any limitation
in learning latent relationships (for example, in order to learn the
relation grandparent the system may need to learn the relation
parent) in systems such as Aleph?

My personal opinion: I believe that current systems that learn

from relational data (ILP-based, graph-based or neural networks-

based) still lack a component to learn “latent relationships” with

the exception of works by Cropper and Muggleton, which do not

yet solve the problem, but investigate “predicate invention” and

“abduction” (an example: http://andrewcropper.com/pubs/scailb-incomplete.
pdf) as a way of filling missing knowledge in data.

Take as an example the task of learning “grandparent” based in
“father” and “mother”. The ideal thing would be that the system
generates — internally (no need to show these to the user):

gp(X,Y) :- mother(X,Y), mother(X,Y).
gp(X,Y) :- mother(X,Y), father(X,Y).
gp(X,Y) father(X,Y), father(X,Y).
gp(X,Y) father(X,Y), mother(X,Y).

and, internally, executes an algorithm that factorizes that basic
knowledge in a hierarchy:

p(X,Y) :- mother(X,Y).
p(X,Y) :- father(X,Y).

In other words, mother appears twice with the same pattern, so
let’s create a new predicate for that. Likewise, father appears
twice with the same pattern. When we do that, a new knowl-
edge emerges that captures the latent relationship p(X,Y) and a
hierarchy that is hidden in the data:

gp(X,Y) :- p(X,2), p(Z,Y).


http://andrewcropper.com/pubs/scai15-incomplete.pdf
http://andrewcropper.com/pubs/scai15-incomplete.pdf

p(X,Y) :- mother(X,Y).
p(X,Y) :- father(X,Y).

Aleph can do that, but we need to give examples for parent and
grandparent. The ideal thing to do would be to give examples only
to the concept we want to learn: grandparent, and the system be
able to create the hierarchy automatically, which is far from trivial
:(. T am waiting for ideas ;)

. How does Relational Random Walks (RRW) work and how does
it compare with Inductive Logic Programming (ILP)? Does RRW
actually learn latent relationships?

RRW uses an algorithm that is similar to ILP systems, but fol-
lows random paths instead of constructing a lattice based on the
saturated clause. I don’t believe RRW learns latent relationships
due to reason above.

. How does the proposed method allow for a reduction in the num-
ber of network weight parameters? And why is this reduction
important?

The proposed method ensures parameter tying of multiple ground
instances of the rule. This helps reducing the number of network
weight parameters, which will accelerate the neural network learn-
ing phase.

. What are Tensor Based Models?

Roughly speaking, a tensor is a matrix with more than 2 dimen-
sions. This representation is quite useful to model relationships
among multiple multidimensional variables.

. The examples reported in this paper are all about binary rela-
tions. Could you think of a way of extending this to handle n-ary
relations?

It is possible, but at the cost of a very high computational cost.
Once again, I am waiting for solutions ;)

. In the evaluation, the authors use AUC-ROC and AUC-PR to
evaluate the models. Why are they using these evaluation metrics?
(you may need to complement your reading with this).

Comment about the results, discussed above, give a hint on the an-
swer to this question. ROC curves plot sensitivity (Recall or True

3


https://www.biostat.wisc.edu/~page/rocpr.pdf

Positive Rate) against False Positive Rate (FPR). If we have a
skew in the class variable (taking a binary variable, we would have
a much higher proportion of one value against the other), an error
in the smaller class value should weigh more than an error in the
majority class value. However, ROCs will hide this imbalance. On
the other hand, PR curves plot Precision (TP/(TP+FP)) against
Recall, which gives a more realistic idea (not so optimistic as the
ROC) of the performance of the model. More details about the
differences are in the proposed paper above.



