
A Comparison of Conventional Distributed
Computing Environments and Computational

Grids

Zsolt Németh1, Vaidy Sunderam2

1 MTA SZTAKI, Computer and Automation Research Institute,
Hungarian Academy of Sciences,
P.O. Box 63., H-1518 Hungary,
E-mail: zsnemeth@sztaki.hu

2 Dept. of Math and Computer Science,
Emory University,

1784 North Decatur Road, Atlanta, GA 30322, USA
E-mail: vss@mathcs.emory.edu

Abstract. In recent years novel distributed computing environments
termed grids have emerged. Superficially, grids are considered successors
to, and more sophisticated and powerful versions of, conventional dis-
tributed environments. This paper investigates the intrinsic differences
between grids and other distributed environments. From this analysis it
is concluded that minimally, grids must support user and resource ab-
straction, and these features make grids semantically different from other
distributed environments. Due to such semantical differences, grids are
not simply advanced versions of conventional systems; rather, they are
oriented towards supporting a new paradigm of distributed computation.

1 Introduction

In the past decade de-facto standard distributed computing environments like
PVM [12] and certain implementations of MPI[15], e.g. MPICH, have been pop-
ular. These systems were aimed at utilizing the distributed computing resources
owned (or accessible) by a user as a single parallel machine. Recently however,
it is commonly accepted that high performance and unconventional applica-
tions are best served by sharing geographically distributed resources in a well
controlled, secure and mutually fair way. Such coordinated worldwide resource
sharing requires an infrastructure called a grid. Although grids are viewed as the
successors of distributed computing environments in many respects, the real dif-
ferences between the two have not been clearly articulated, partly because there
is no widely accepted definition for grids. There are common views about grids:
some define it as a high-performance distributed environment; some take into
consideration its geographically distributed, multi-domain feature, and others
define grids based on the number of resources they unify, and so on. The aim of
this paper is to go beyond these obviously true but somewhat superficial views
and highlight the fundamental functionalities of grids.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 729−738, 2002.
 Springer-Verlag Berlin Heidelberg 2002



So far, [8] is the only paper that attempts to present an explicit definition
for grids. It focuses on how a grid system can be constructed, and what compo-
nents, layers, protocols and interfaces must be provided. Usually the difference
between conventional systems and grids are expressed in terms of these technical
differences. Our approach is orthogonal to [8] since we try to determine what a
grid system should provide in comparison with conventional systems without
regard to actual components, protocols or any other details of implementation.
These details are just consequences of the fundamental differences. We focus on
the semantics of these systems rather than their architecture and, in this sense,
our approach is novel. The analysis and conclusion presented informally here
is a result of formal modeling [18] of grids based on the ASM [2] method. The
formal model sets up a simple description for distributed applications running
under assumptions made for conventional systems. Through formal reasoning it
is shown that the model cannot work under assumptions made for grids; rather,
additional functionalities must be present. The formal model in its current form
is not aimed at completely describing every details of a grid. Instead, it tries
to find the elementary grid functionalities at a high level of abstraction and
provides a framework where technical details can be added at lower levels of
abstraction, describing the mechanisms used to realize these abstractions.

This paper presents a comparison of “conventional” distributed environments
(PVM, MPI) and grids, revealing intrinsic differences between these categories of
distributed computing frameworks. Grids are relatively new (as of 1999 - “there
are no existing grids yet” [9]) therefore, a detailed analysis and comparison is
likely to be of value. In the modeling, an idealistic grid system is taken into
consideration, not necessarily as implemented but as envisaged in any papers.
Figure 1 serves as a guideline for the comparison. In both cases shown in the
figure, cooperating processes forming an application are executed on distributed
(loosely coupled) computer systems. The goal of these computing environments
is to provide a virtual layer between the application (processes) and the physical
platform. In the paper a bottom-up analysis of the virtual layer is presented
and it is concluded that the virtual layer, and therefore the way the mapping
is established between the application and the physical resources, is fundamen-
tally different in the two framework categories. This fundamental difference is
also reflected as technical differences in many aspects, as discussed in this paper.
Section 2 introduces the concept of distributed applications and their supporting
environments. In Section 3 these environments are compared at the virtual level
(see Figure 1.) In Section 4 fundamental differences between grids and conven-
tional systems are introduced, and Section 5 discusses their technical aspects.
Finally, Section 6 is an overview of possible application areas.

2 Distributed applications

Distributed applications are comprised of a number of cooperating processes that
exploit the resources of loosely coupled computer systems. Although in modern
programming environments there are higher level constructs, processes interact

730 Z. Németh and V. Sunderam 



with each other essentially through message passing. An application may be
distributed

– simply due to its nature.

– for quantitative reasons; i.e. gaining performance by utilizing more resources.
– for qualitative reasons: to utilize specific resources or software that are not

locally present.

Distributed computing may be accomplished via traditional environments
such as PVM and some implementations of MPI, or with emerging software
frameworks termed computational grids. In both cases the goal is to manage
processes and resources, provide support for communication or other means of
interaction, and in general provide a coherent view to the application by virtually
unifying distributed resources into an abstract machine. In both scenarios the
structure of an application is very similar. The processes have certain resource
needs that must be satisfied at some computational nodes. If all the resource
needs of a process are satisfied, it can execute the computation. In this respect,
there is not much difference between conventional and grid systems, and any
variations are technical ones. The essential difference is in how they acquire the
resources – in other words, how they establish a virtual, hypothetical machine
from the available resources.

3 The virtual layer

3.1 The pools

A conventional distributed environment assumes a pool of computational nodes
(see left side in Figure 1). A node is a collection of resources (CPU, memory,
storage, I/O devices, etc.) treated as a single unit. The pool of nodes consists
of PCs, workstations, and possibly supercomputers, provided that the user has
personal access (a valid login name and password) on all of them. From these
candidate nodes an actual virtual machine is configured according to the needs
of the given application. In general, once access has been obtained to a node on
the virtual machine, all resources belonging to or attached to that node may be
used without further authorization. Since personal accounts are used, the user is
aware of the specifics of the local node (architecture, computational power and
capacities, operating system, security policies, etc). Furthermore, the virtual pool
of nodes is static since the set of nodes on which the user has login access changes
very rarely. Although there are no technical restrictions, the typical number of
nodes in the pool is of the order of 10-100, because users realistically do not have
login access to thousands of computers.

Some descriptions of grids include : “a flexible, secure, coordinated resource
sharing among dynamic collections of individuals, institutions, and resources”
[8], “a single seamless computational environment in which cycles, communica-
tion, and data are shared, and in which the workstation across the continent is no

731A Comparison of Conventional Distributed Computing Environments



Application

Virtual
machine

level

Physical
level

Virtual
pool
level

A3A2

A1
A4 A1

A2
A3

A4

Fig. 1. Concept of conventional distributed environments (left) and grids (right). Nodes
are represented by boxes, resources by circles.

less than one down the hall” [14], “widearea environment that transparently con-
sists of workstations, personal computers, graphic rendering engines, supercom-
puters and non-traditional devices: e.g., TVs, toasters, etc.” [13], “a collection of
geographically separated resources (people, computers, instruments, databases)
connected by a high speed network [...distinguished by...] a software layer, often
called middleware, which transforms a collection of independent resources into
a single, coherent, virtual machine” [17].

What principles and commonalities can be distilled from these definitions?
Grids assume a virtual pool of resources rather than computational nodes (right
side of Figure 1). Although current systems mostly focus on computational re-
sources (CPU cycles + memory) [11] grid systems are expected to operate on a
wider range of resources like storage, network, data, software [14] and unusual
ones like graphical and audio input/output devices, manipulators, sensors and so
on [13]. All these resources typically exist within nodes that are geographically
distributed, and span multiple administrative domains. The virtual machine is
constituted of a set of resources taken from the pool.

In grids, the virtual pool of resources is dynamic and diverse. Since compu-
tational grids are aimed at large-scale resource sharing, these resources can be
added and withdrawn at any time at their owner’s discretion, and their perfor-
mance or load can change frequently over time. The typical number of resources
in the pool is of the order of 1000 or more [3]. Due to all these reasons the user
(and any agent acting on behalf of the user) has very little or no a priori knowl-
edge about the actual type, state and features of the resources constituting the
pool.

732 Z. Németh and V. Sunderam 



3.2 The virtual machines

The working cycle of a conventional distributed system is based on the notion
of a pool of computational nodes. First therefore, all processes must be mapped
to nodes chosen from the pool. The mapping can be done manually by the user,
by the program itself or by some kind of task dispatcher system. This is enabled
and possible because the user and thus, any program on the user’s behalf is
aware of the capabilities and the features of nodes. There can be numerous
criteria for selecting the right nodes: performance, available resources, actual
load, predicted load, etc. One condition however, must be met: the user must
have valid login access to each node. Access to the virtual machine is realized by
login (or equivalent authentication) on all constituent nodes. Once a process has
been mapped, requests for resources can be satisfied by available resources on
the node. If a user can login to a node, essentially the user is authorized to use
all resources belonging to or attached to the node. If all processes are mapped
to nodes and all the resource needs are satisfied, processes can start working,
i.e. executing the task assigned to the process.

Contrary to conventional systems that try to first find an appropriate node
to map the process to, and then satisfy the resource needs locally, grids are based
on the assumption of an abundant and common pool of resources. Thus, first the
resources are selected and then the mapping is done according to the resource
selection. The resource needs of a process are abstract in the sense that they
are expressed in terms of resource types and attributes in general, e.g. 64M of
memory or a processor of a given architecture or 200M of storage, etc. These
needs are satisfied by certain physical resources, e.g. 64M memory on a given
machine, an Intel PIII processor and a file system mounted on the machine.
Processes are mapped onto a node where these requirements can be satisfied.
Since the virtual pool is large, dynamic, diverse, and the user has little or no
knowledge about its current state, matching the abstract resources to physical
ones cannot be solved by the user or at the application level based on selecting
the right nodes, as is possible in the case of conventional environments. The
virtual machine is constituted by the selected resources.

Access to the nodes hosting the needed resources cannot be controlled based
on login access due to the large number of resources in the pool and the diversity
of local security policies. It is unrealistic that a user has login account on thou-
sands of nodes simultaneously. Instead, higher level credentials are introduced
at the virtual level that can identify the user to the resource owners, and based
on this authentication they can authorize the execution of their processes as if
they were local users.

4 Intrinsic differences

The virtual machine of a conventional distributed application is constructed from
the nodes available in the pool (Figure 2). Yet, this is just a different view of
the physical layer and not really a different level of abstraction. Nodes appear
on the virtual level exactly as they are at physical level, with the same names

733A Comparison of Conventional Distributed Computing Environments



(e.g. n1, n2 in Figure 2), capabilities, etc. There is an implicit mapping from the
abstract resources to their physical counterparts because once the process has
been mapped, resources local to the node can be allocated to it. Users have the
same identity, authentication and authorization procedure at both levels: they
login to the virtual machine as they would to any node of it (e.g. smith in Figure
2).

On the contrary, in grid systems, both users and resources appear differently
at virtual and physical layers. Resources appear as entities distinct from the
physical node in the virtual pool (right side of Figure 2). A process’ resource
needs can be satisfied by various nodes in various ways. There must be an explicit
assignment provided by the system between abstract resource needs and physical
resource objects. The actual mapping of processes to nodes is driven by the
resource assignment.

A1A1

Smith
4 nodes

smith@n1.aa

smith@n2.aa

smith@n2.aa
smith@n1.aa

Smith
4 CPU
128 M
2G disk

Smith
1 CPU

Smith
500M disk

user1@m1.bb
p12@n28.cc

Fig. 2. Users and resources at different levels of abstraction. (Conventional environ-
ments on the left, grids on the right.)

Furthermore, in a grid, a user of the virtual machine is different from users
(account owners) at the physical levels. Operating systems are based on the
notion of processes; therefore, granting a resource involves starting or managing
a local process on behalf of the user. Obviously, running a process is possible for
local account holders. In a grid a user has a valid access right to a given resource
proven by some kind of credential (e.g. user Smith in Figure 2). However, the
user is not authorized to log in and start processes on the node to which the
resource belongs. A grid system must provide a functionality that finds a proper
mapping between a user (a real person) who has the credential to the resources
and on whose behalf the processes work, and a local user ID (not necessarily a
real person) that has a valid account and login rights on a node (like users user1
and p12 in Figure 2). The grid-authorized user temporarily has the rights of a
local user for placing and running processes on the node.

Thus, in these respects, the physical and virtual levels in a grid are completely
distinct, but there is a mapping between resources and users of the two layers.

734 Z. Németh and V. Sunderam 



According to [18] these two fundamental features of grids are termed user- and
resource-abstraction, and constitute the intrinsic difference between grids and
other distributed systems.

5 Technical differences

The fundamental differences introduced in the previous sections are at too high
a level of abstraction to be patently evident in existing grid systems. In practice
the two fundamental functionalities of resource and user abstraction are realized
on top of several services.

The key to resource abstraction is the selection of available physical resources
based on their abstract appearance. First, there must be a notation provided in
which the abstract resource needs can be expressed (e.g. Resource Specification
Language (RSL) [5] of Globus, Collection Query Language [4] of Legion.) This
specification must be matched to available physical resources. Since the user has
no knowledge about the currently available resources and their specifics, resource
abstraction in a real implementation must be supported at least by the following
components that are independent from the application:

1. An information system that can provide information about resources upon
a query and can support both discovery and lookup. (Examples include the
Grid Index Information Service (GIIS) [6] in Globus and Collection [4] in
Legion).

2. A local information provider that is aware of the features of local resources,
their current availability, load, and other parameters or, in general, a module
that can update records of the information system either on its own or in
response to a request. (Examples are the Grid Resource Information Service
(GRIS) [6] in Globus and information reporting methods in Host and Vault
objects in Legion [4].)

A user abstraction in a grid is a mapping of valid credential holders to local
accounts. A valid (unexpired) credential is accepted through an authentication
procedure and the authenticated user is authorized to use the resource. Just as
in the case of resource abstraction, this facility assumes other assisting services.

1. A security mechanism that accepts global user’s certificates and authenti-
cates users. In Globus this is the resource proxy process that is implemented
as the gatekeeper as part of the GRAM [7].

2. Local resource management that authorizes authentic users to use certain
resources. This is realised by the mapfile records in Globus that essentially
controls the mapping of users [7]. Authorization is then up to the operating
system based on the rights associated with the local account. (In Legion both
authentication and authorization are delegated to the objects, i.e. there is no
centralized mechanism, but every object is responsible for its own security
[16].)

735A Comparison of Conventional Distributed Computing Environments



The subsystems listed above, with examples in the two currently popular grid
frameworks viz. Globus and Legion, are the services that directly support user
and resource abstraction. In a practical grid implementation other services are
also necessary, e.g. staging, co-allocation, etc. but these are more technical issues
and are answers to the question of how grid mechanisms are realized, rather than
to the question of what the grid model intrinsically contains.

6 Application areas

The differences presented so far reflect an architectural approach, i.e. grids are
distinguished from conventional distributed systems on the basis of their archi-
tecture. In this section a comparison from the user’s point of view is presented,
to determine which environment is more appropriate for a given application.

It is a common misconception that grids are used primarily for supporting
high performance applications. The aim of grids is to support large-scale re-
source sharing, whereas conventional distributed environments are based on the
resources the user owns. Sharing, in this context, means temporarily utilizing
resources to which the user has no longterm rights, e.g. login access. Similarly,
owning means having a permanent and unrestricted access to the resource.

What benefits follow from resource sharing? Recall, that in general, applica-
tions may be distributed for quantitative or qualitative reasons. Resource sharing
obviously allows the user to access more resources than are owned, and from a
quantitative standpoint, this makes grids superior to conventional environments.
The sheer volume of resources made available by coordinated sharing may allow
the realization of high performance computation like distributed supercomput-
ing or high-throughput computing [3]. On the other hand starting an application
on a grid infrastructure involves several services and layers that obviously intro-
duce considerable overhead in constituting the abstract machine. For example, a
resource discovery in the current implementation of GIIS may take several min-
utes in a grid of 10 sites and approximately 700 processors [1]. If the resource
requirements of the application can be satisfied by the resources owned, or the
difference between the required and available owned resources is not significant,
a conventional distributed environment may perform better than a grid.

Certain devices, software packages, tools that are too specialized, too expen-
sive to buy or simply needed only for a short period of time, can be accessed in
a grid. Conventional environments do not provide support for such on-demand
applications, whereas the sharing mechanism of grids is an ideal platform for
these situations. Even though grids may exhibit some overhead at the resource
acquisition phase as discussed before, in this case the potential for obtaining cer-
tain non-local resources likely has higher priority than the loss of performance
at the startup phase.

Conventional distributed environments usually consider an application as
belonging to a single user. This corresponds to the architectural model where
users appear identically at different levels of abstraction and processes consti-
tuting an application are typically owned by a single user. The shared resource

736 Z. Németh and V. Sunderam 



space and the user abstraction of grids allows a more flexible view, where virtual
machines may interact and processes of different users may form a single appli-
cation. Although, grids are not collaborative environments, they provide a good
base on which to create one [14][3]. For example the object space of Legion is
an ideal platform for objects belonging to different users to interact. Because of
the geographical extent of grids, such collaborative environments may be used
for virtual laboratories, telepresence, teleimmersion and other novel, emerging
applications.

7 Conclusion

With the increasing popularity of so-called grid systems, there are numerous
papers dealing with various aspects of those systems like security, resource man-
agement, staging, monitoring, scheduling, and other issues. Yet, there is no clear
definition of what a grid system should provide; moreover, there are some mis-
leading concepts, too.

The aim of this paper is to identify the fundamental characteristics of grids.
We argue that neither the geographically distributed, multi-domain, heteroge-
neous, large-scale feature of a system nor simply the presence of any of the afore
mentioned ’grid services’ makes a distributed system grid-like. Rather, grids are
semantically different from other, conventional distributed environments in the
way in which they build up the virtual layer. The two essential functionalities
that a grid must support are: user abstraction and resource abstraction, where
the physical world is separated from the virtual one. By user abstraction a user
that has a valid credential for using the resources in the virtual pool is associ-
ated with local accounts. Resource abstraction means a selection of resources by
their specifics in the virtual pool that are subsequently mapped onto nodes of
the physical layer. We suggest a semantical definition for grids based on these
differences. Technically, these two functionalities are realised by several services
like a resource management system, information system, security, staging and
so on.

Conventional distributed systems are based on resource ownership while grids
are aimed at resource sharing. Both environments are able to support high per-
formance applications, yet, the sheer volume of resources made available by grids
can yield more computational power. Further, the shared virtual environment
of grids provides a way to implement novel applications like collaborative sys-
tems, teleimmersion, virtual reality, and others that involve explicit cooperation.
Conventional systems do not provide direct support for such applications.

Acknowledgments

The work presented in this paper was supported by US Dept. of Energy grant
DE-FG02-99ER25379 and by the Hungarian Scientific Research Fund (OTKA)
No. T032226.

737A Comparison of Conventional Distributed Computing Environments



References

1. G. Allen et al.: Early Experiences with the EGrid Testbed. Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid (CCGrid2001), Bris-
bane, Australia, 2001

2. E. Börger: High Level System Design and Analysis using Abstract State Machines.
Current Trends in Applied Formal Methods (FM-Trends 98), ed. D. Hutter et al,
Springer LNCS 1641, pp. 1-43 (invited lecture)

3. S. Brunet et al.: Application Experiences with the Globus Toolkit. 7th IEEE Symp.
on High Performance Distributed Computing, 1998.

4. S.J. Chapin, D. Karmatos, J. Karpovich, A. Grimshaw: The Legion Resource Man-
agement System. Proceedings of the 5th Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP ’99), in conjunction with the International Parallel
and Distributed Processing Symposium (IPDPS ’99), April 1999

5. K. Czajkowski, et. al.: A Resource Management Architecture for Metacomputing
Systems. Proc. IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel
Processing, 1998

6. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman: Grid Information Services
for Distributed Resource Sharing. Proc. 10th IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), IEEE Press, 2001.

7. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke: A Security Architecture for Compu-
tational Grids. In 5th ACM Conference on Computer and Communication Security,
November 1998.

8. I. Foster, C. Kesselman, S. Tuecke: The Anatomy of the Grid. International Journal
of Supercomputer Applications, 15(3), 2001.

9. I. Foster, C. Kesselman: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

10. I. Foster, C. Kesselman: Computational grids. In The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, 1999. pp. 15-51.

11. I. Foster, C. Kesselman: The Globus Toolkit. In The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, 1999. pp. 259-278.

12. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, V. Sunderam: PVM:
Parallel Virtual Machine - A User’s Guide and Tutorial for Network Parallel Com-
puting. MIT Press, Cambridge, MA, 1994

13. A. S. Grimshaw, W. A. Wulf: Legion - A View From 50,000 Feet. Proceedings of
the Fifth IEEE International Symposium on High Performance Distributed Com-
puting, IEEE Computer Society Press, Los Alamitos, California, August 1996

14. A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, P. F. Reynolds: Legion:
The Next Logical Step Toward a Nationwide Virtual Computer. Technical report
No. CS-94-21. June, 1994.

15. W. Gropp, E. Lusk, A. Skjellum: Using MPI: Portable Parallel Programming with
the Message Passing Interface. MIT Press, Cambridge, MA, 1994.

16. M. Humprey, F. Knabbe, A. Ferrari, A. Grimshaw: Accountability and Control of
Process Creation in the Legion Metasystem. Proc. 2000 Network and Distributed
System Security Symposium NDSS2000, San Diego, California, February 2000.

17. G. Lindahl, A. Grimshaw, A. Ferrari, K. Holcomb: Metacomputing - What’s in it
for me. White paper. http://www.cs.virginia.edu/ legion/papers.html

18. Zs. Németh, V. Sunderam: A Formal Framework for Defining Grid Systems. Pro-
ceedings of 2nd IEEE International Symposium on Cluster Computing and the
Grid (CCGrid2002), Berlin, IEEE Computer Society Press, 2002.

738 Z. Németh and V. Sunderam 


	1 Introduction
	2 Distributed applications
	3 The virtual lay r
	3.1 The pools
	3.2 The virtual machines

	4 Intrinsic di .erences
	5 Technical di .erences
	6 Application areas
	7 Conclusion
	References

