Al Planning in Web Services Composition: a review of current
approaches and a new solution

Luciano A. Digiampietri 1, Jos J. Perez-Alcazar® , Claudia Bauzer Medeiros

Hnstitute of Computing, University of Campinas
CP 6176, 13084-971, Campinas, SP, Brazil

2EACH, University of $i0 Paulo, 03828-00028 Paulo, SP, Brazil,

{l uci ano, cnbm}@ c. uni canp. br, j perez@sp. br

Abstract. Web services represent a relevant technology for interméty. An
important step toward the development of applications basetlveb services
is the ability of selecting and integrating heterogeneceirwises from different
sites. When there is no single service capable of performigyen task, there
must be some way to adequately compose basic services tdesk@suask.
The manual composition of Web services is complex and dildeeo errors
because of the dynamic behavior and flexibility of the Wels ddper describes
and compares Al planning solutions to Web service autoneaticposition. As
a result of this comparison, it proposes an architecturet thapports service
composition, and which combines Al planning with workflow meismas.

1. Introduction

A Web Service (WS), according to W3C’s work group on Web Servigeshitecture
[Austin et al. 2002], is “a software system designed to suppteroperable machine-to-
machine interaction over a network”. It provides a systécraatd extensible framework
for application-to-application interaction, built on topexisting Web protocols and based
on open XML standards [W3C 2003]. Depending on the kind ofiserprovided, and
user needs, one can analyze Web Services (WS) under the softngineering frame-
work of software components. Therefore, a Web service mpessess a description
which allows other Web services to understand its functignand how to use it; allow
other Web services to use it whenever necessary; and beciamsyke. These character-
istics and the use of XML based technologies promote theerand the interoperability
of the applications based in Web services.

An important characteristic required for applicationsdthen Web Services is
the ability to efficiently select and integrate, at runtinneterogeneous services, from
different companies. This has led to efforts toward helgearyice selection and compo-
sition. One such effort is the specification of compositicgchianisms such as: WSBPEL
(“Web Services Business Process Execution Language”) wslet al. 2003], WSCI
(“Web Service Choreography Interface”) and others. Any suelshanism requires man-
ual work to allow process construction and integration.sTdan be a laborious task and
susceptible to mistakes.

The notion of a “Semantic Web” appeared to face some of thes@gms. The
Semantic Web allows data and services to be interpretedatitally by software agents,
without ambiguity problems [Berners-Lee et al. 2001]. Cutréescription languages

(such as WSDL or WSBPEL) must be extended, or new languages raustated to
allow Web Services to be described in a way that is underatdady computers. Some
approaches try to apply semantics to Web Services techyolegamples are the use
of OWL-S [Martin et al. 2004] and the work developed by the WSM&up (“Web Ser-
vice Modeling Framework”) [Fensel and Bussler 2002], to dgve flexible and scalable
platform for the development of workflows based on Web Sesuic

The main idea behind our proposal is that the problem of aatienor semi-
automatic composition of workflow tasks can be seen as afidhatilntelligence planning
problem. This approach has become interesting due to th&rityahat the planning area
has achieved in Al [Long and Fox 2003].

We furthermore consider Web Services in the context of wownkdl(i.e., the prob-
lem of service composition is seen as a problem of workflowgmesvhere workflow
tasks invoke services). The paper thus attacks the probfesonstructing workflows,
under the assumption that they are the basis for specifyidgeaecuting tasks in a dis-
tributed environment. The execution of each activity witeuch a workflow can be exe-
cuted either by invocation of a Web service or of another)sokkflow. Thus we use the
terms “service composition” and “workflow composition/stnuction” interchangeably.

The main contributions are: (i) comparing the state of theBAl planning so-
lutions applied to Web service composition; (ii) based iis ttomparison, discussing
our solution to the problem of Web service composition conmg results from Al and
database systems, thereby providing mechanisms for atitgsemi-automatic and man-
ual composition. This solution has been implemented in topype, applied to bioinfor-
matics [Digiampietri et al. 2007].

The rest of this paper is organized as follows. Section 2rdescrelated work and
concepts. Section 3 describes Al planning solutions thateaexploited in supporting
workflow composition. Section 4 presents the proposed &rciuire and our prototype.
Section 5 contains conclusions and ongoing work.

2. Basic concepts

We consider three main kind of service composition: manit@lative and automatic.

In manual compositionthe user chooses the services that he/she wants to useend th
links between the services interfaces. In ttezative compositionthe user starts the
composition from an abstract activity and, iterativelyca@poses it into more specific
activities until only concrete activities (services) aefided. Automatic compositiors

the process where the user’s request is a goal and the systematically composes
services to achieve this goal.

We focus, in this paper, on the automatic composition prabl8everal solutions
have proposed to solve the problem of automatic compositéhplanning is a well
known area but there are challenges in applying its plantgngniques to Web service
composition. Section 3 presents a comparative analysisaofstieam proposals, which
we compare under criteria discussed in the next two paragrap

According to [Srivastava and Koehler 2003], in order to usaping in the auto-
matic composition of Web services, Al planning conceptstrbesextended to consider
the following characteristics: (i) plans need complex colrgtructures with loops, non-

determinism and conditionals; (ii) the objects managed haay a complex structure and
description; and (iii) plans can produce new objects at @ time.

We highlight other important characteristics, not usuétlynd in Al planning.

One is the use of non-functional attributes, such as costialityg, which can facilitate
the choice of the plan most adequate to the user’s needs Wweendre several plans with
similar functionalities (plan selection). Moreover, ptaneed to support semantic con-
structions such as hierarchies (abstractions), as welbagpatibility with the different
Semantic Web service description standards, such as OWLw8v.glaml.org/services)
and WSMO (www.wsmo.org). Furthermore, plans also must denghe definition of
extended goals involving complex conditions on procesaweh Still other character-
istics needed in service composition but not found in plagnnclude concurrency in
service access, use of Web standards and scalability.

3. Al Planning applied to services

This section discusses classes of planning systems andgaigghat can be considered to
compose Web services. We compare these proposals to jostifyorkflow construction
strategy.

3.1. Overview of proposals

Proposal using Golog Mcllraith and Son [Mcllraith and Son 2002] adopted and ex-
tended Golog [Levesque et al. 1997] to allow the automatitdimg of Web services.
The authors treat the Web service composition problem tgir@eneric procedures (pre-
defined “plan templates”) and restrictions customized leyuser.

PDDL based proposal PDDL is a widely used formal language created by Mc-
Dermott [Ghallab et al. 1998] to describe different kindgptenning problems. McDer-
mott [McDermott 2002] uses PDDL to specify plans, but extetige language to intro-
duce a new kind of knowledge, called “value of the actionatttepresents the passage of
information among the steps of a plan. The planner used isessipn based, and allows
the generation of conditional plans with ramifications.

Hierarchical planning. Hierarchical planning is an Al planning methodology
that creates plans by task decomposition. Well-known hireal planners are SHOP
and SHOP2 (Simple Hierarchical Ordered Planner) [Nau étGi)3].

One system based in this proposal is ISP&E (Integrated &eMlanning and
Execution) [Madhusudan and Uttamsingh 2006], which use®RBHt generates several
alternatives of solution and one of the alternative plarsgisected using a generic notion
of cost. This plan is executed and changes in the executieinoement are checked
periodically. When a failure happens, the plan is re-exetotgif the failure continues, a
mechanism of re-planning is triggered.

Sirin et al [Sirin et al. 2004] use SHOP2 for the automatic position of Web
services. The inputs of their planner are specified in OWL430B2 uses the con-
cept of methods to decompose a task in sub-tasks. These asetlam contain ex-
plicit actions for monitoring that allow the planner to obtéghe necessary data to treat
problems of incomplete information. SHOP2 can implementral lof extended goal
through the specification of composite tasks (methods)dbsdtribe the changes required

by the users. SHOP2 has demonstrated good results when aigingat amount of
methods and operators. It was, recently, extended to delalnen-determinism (ND-
SHOP?2) [Kuter and Nau 2004].

Kim and Gil's proposal. Kim and Gil [Kim and Gil 2004] argues that because
Web service composition is a complex application, it reggiimteraction with users.
So, they developed interactive tools for composing Webiseswwhere users define a
high-level or partial/incomplete description of the deditomposition of services and
the system assists the users by providing intelligent sstgiyes. These suggestions are
supported by service and domain ontologies. This propassmtes only linear compo-
sitions (without cycles and conditions).

Synthy. Agarwal et al [Agarwal et al. 2005] proposed a system cafgathy to
solve the problem of automatic composition of Web serviddss system is based in a
two-staged approach that, according to the authors, askEgdeke information modeling
aspects of Web services, provides support for contexté@inmation during the composi-
tion process, employs efficient decoupling of functional ann-functional requirements,
and leads to improve scalability and failure handling. Thst fstage of composition,
called logic composition, generates abstract workflowanlusing service types). To
do this, the system uses planning and matchmaking techsidine second stage, called
physical composition, generates executable workflows ukatonly service instances.
The system uses optimization techniques to select theiahnice associated to the ser-
vice types. This approach uses a extension of OWL-S to supporice types, allowing
to work with big collections of Web services and with the tatage composition.

Symbolic Model Checking (SMC) based planningModel Checking is a formal
method often used in verification of complex hardware anthvsot systems. Traverso
and Pistore [Traverso and Pistore 2004] use an approack baseSMC for automatic
composition of services described in OWL-S, called MBP (Mdgia$ed Planner). This
technique has presented good practical results for thelggrobf planning with non-
deterministic actions, partial observations of the envinent, complex goals and domains
(very large space of states). One of its problems is thatasdmt explore the hierarchical
and taxonomical aspects of OWL-S.

3.2. Comparison of proposals

Table 1 summarizes the comparison of the proposals. Thec@ilsinn contains the re-
quirements for planning using Web services that we pointédroSection 2. The other
columns cover the main approaches of planning systemsaedie

Only SHOP2, MBP and Synthy use a semantic Web service dasargtandard
(OWL-S). Synthy and [Kim and Gil 2004] use a domain ontologgttassociated to the
service ontology, allow the representation of complex cisjghe dynamic creation of ob-
jects and the generation of the dataflow associated to thpasite Web service. SHOP2,
Synthy and the proposal of [Kim and Gil 2004] make use of @astons and hierarchies
to represent services. However, only Synthy and [Kim and2G@4] make use of spe-
cializations and generalizations in their compositioncess.

The proposals based in Golog, McDermott’s approach anch@yrse conditional
plans. These proposals are limited in dynamic domains Isecaanditional planning
supposes that every failure can be known before plan exgculhus, they only partially

Golog| PDDL [ISP&E Kimé&Gil | Synthy SHOP2 |MBP

Use of standard Y Y Y Y Y Y Y
Complex objects N Y N Y Y N N
Abstraction / N N Y Y Y Y N
Hierarchy

Non-determinism / partial obs. Y Y N N Y, partially Y. Y
of the world ND-SHOP2
Generation of non-linear plans Y |Y,; partially NM N Y; partially [Y; partially Y
Automation level SA A A SA AL SA A A
Plan selection N N Y;, partially N Y N N
Concurrency Y N Y NM NM N Y
Scalability NM NM NM NM G G G
Extended goals Y N NM NM NM Y Y

N = No; Y = Yes; SA = Semi-automatic, A = Automatic
NM - Not mentioned; W = Weak, G = Good.

Table 1. Comparison among planner proposals

solve the problems of non-determinism and partial obsditsabSP&E uses re-planning
to solve non-determinism problems. The solution using SEIthé most general. Other
proposals, such as Kim and Gil's, do not mention non-det@ism. MBP is the best
alternative with respect to the generation of non-lineanp! Other proposals only al-
low conditional plans (Synthy, PDDL). The work of [Sirin dt 2004] treats Web ser-
vice composition as a SHOP2 planning problem. They encod®osite tasks within
SHOP2’'s methods, allowing the representation of iteratemmd conditional processes.

Synthy is the only proposal that allows automatic and sartwfaatic composition
and that uses non-functional attributes (allowing QoSuiess) in the process of compo-
sition. ISP&E mentions the use of optimization in plan sttet, but in a simplified way.

We also observe in Table 1 that none of the reviewed soluttomsrs all issues
stated in column 1. Planning using Web services is a receaareh area and the majority
of these projects are at an experimental stage. For thismeag propose a framework
that collects the best characteristics of the proposallyzed In our prototype, we de-
cided to use SHOP2 for planning, because it provides theviiollg benefits: (a) it enables
embedding domain knowledge to control the search spacengmve efficiency; (b) it
has been successfully used in a variety of real-world plagybased applications; (c) it
allows inclusion of different types of precondition comstts for service operators as
well as calls to external systems; (d) it enables modelinggss abstractions in terms of
method/operator hierarchies; and (e) it enables reusediytding selection of appro-
priate methods from domain-related operator librariesrddeer, we combined SHOP2
with others approaches, such as the two stage compositimm @ynthy), the iterative
composition supported by ontologies (from Kim and Gil) aegbtanning (from ISP&E).

4. An architecture for automatic composition via planning

This section outlines our general architecture for contosof Web services. We recall
that we transform the problem of service composition in&d tf constructing a workflow
that invokes these services. Our plans are consequenttifispgons of scientific work-

flows. Thus, in this section, we will use indistinctly bothrtes (plans and workflows).

4.1. Architecture overview

Figure 1 shows our architecture, highlighting the main neslurepositories and their
interactions. It extends the framework defined by Rao and Sw fRd Su 2004]. This

architecture can be used in different application dom&sextion 4.6 discusses one par-
ticular implementation, for bioinformatics.

Repositories are key concepts to allow semantic compositimhannotation of
the services. The entire workflow design and execution p®ocebased on combining
planning techniques with information stored in three répogs: (1) Ontology Repos-
itory: contains the domain and service ontologies that will be usealow automatic
composition and annotation of services and workflows;3@jvice Catalog: plays the
role of a UDDI registry with extended functionalities toaidl the storing of service non-
functional attributes, such as execution time, reliapgihd availability. While the Ontol-
ogy Repository stores information about domain and seryipes, the Service Catalog
stores information about service instances; and\B8jkflow Repository: stores anno-
tated (sub)workflows. A workflow can range from a simple atomaisk to a complex
specification (including services, produced data and atioois). Beyond storing only
workflow specifications, the Workflow Repository also storescation data. It includes
the resulting data of each step of workflow execution and thiadata associated with this
execution. Instances in the Service Catalog and in the Wovl&epository are annotated
with terms from the Ontology Repository, which qualify theresponding types.

The user interacts with the architecture via the Interfa¥dorkflow Editor. It
allows the user to design, search and edit workflows. It dlswa a user to request the
execution of a workflow and interact with this execution.

This paper is mainly concerned with iterative and automagimposition through
Al planning. We recall that in these cases (especially inl#itier) the process starts
from an abstract specification and proceeds to a concre¢efgable) one - in the text,
these specifications will be also called abstract and comeverkflows. The Workflow
Repository stores workflows at all these levels, to suppatirdit levels of workflow
design and reuse of workflow components [Medeiros et al. R005

4.2. Manual Composition

In manual composition, the user interacts with the Servise@ery module through the
Interface - Workflow Editor, (Figure 1 (1)). This module gdesthe Service Catalog,

Workflow Repository and the Ontology Repository (2), and lestailable services (3).

The user can set the Service Discovery to lists only serviseances (Web services or
concrete workflows). Whenever the user modifies a workflowgusianual composition,

the Checker module can be called (4) to verify the workflow.sNerification is made

based on the semantic compatibility of the service intesa®) and (6). The Checker
send warnings and suggestions to the user (7).

4.3. Iterative Composition

Iterative composition (Figure 1) looks at first glance likamal composition. In the first
iteration, the user request services to Service DiscovEryh@at goes to the Ontology
Repository (2) and returns abstract services (3). The giffatahce is that instead of
just selecting and composing services the user will pragjrely decompose services into
more concrete specifications. To allow this top down spextiba, at each iteration, the
Service Discovery lists (3) the services that decomposeengibstract service. The user
starts from a very abstract workflow and end up with a condestecutable) workflow.
Every step of the iterative composition is also verified by @hecker (4) to (7).

Interface -
Workflow Editor

User Request for services/

Interaction { Results workflows

h h
Available service @Request for Warning and
and workflows verification y [suggestions

Replanning
Execution Service
Engine Discovery [« @)

Checker [+

Fy

New Plan

. e Selected workflow instance @
Re-executin, External Specification
pooaso- i_ ----Composition process ... _____._ \
'
'

'

' .

' Internal Alternative

' | Translator — Planner » Evaluator

H Specification Abstract Plans
'

—| Workflow Ontology |« Service

Repository| Repository Catalog
\r_l/ \I__l/ :

Figure 1. Manual and Iterative Composition

4.4. Automatic Composition

Figure 2 highlights the modules and messages involved iadk@matic composition pro-
cess. This process starts when a user (human or softwart) ageracts with Interface
requesting a service. This request is passed to the Sersce\2ry Module (1). This
module tries to find a service (simple Web service or a workflowthe repositories (2)
that suits the request. The search is based on a matchmdgorghan. If one or more
services are found, they are sent to the Interface - WorkfldwoE (3). If no service is
found, the request is sent to the Translator module (4) thegsponsible for translating
the request to the Planner language (5). The Planner Mootutyr prototype an ex-
tension of SHOP2, combined with the approaches mention&eation 3.2, generates
alternative plans (abstract workflows) that meet the relguesorder to generate these
plans, additional data must be retrieved from the Ontologyd3itory (6). The abstract
plans contain only service types. These abstract planeatecsthe Evaluator (7), where
the types are instantiated by actual services that bestaciit service type in order to ob-
tain the most efficient plan. The Evaluator module uses nimictfonal service attributes,
stored in the Service Catalog (8), to rank the plans throughuie of Quality of Service
(QoS) techniques [Zeng et al. 2004]. The highest ranked (@imsest to user goals) is
sent to Service Discovery (9) and forwarded to Interface rRfiow Editor (10).

4.5. Workflow Execution

Workflow execution has not yet been implemented, and thisosedescribes how this
Is integrated into the architecture. Its implementatioqurees coupling the architecture
with some worflow engine, e.g. [WfMOpen , Altintas et al. 2Q0%he Execution Engine
is responsible for plan (workflow) execution. Workflow exéen can occur for any kind
of composition. Figure 2 contains the messages exchangbd axecution process. This
process starts when a user requests the execution of trentworkflow using Interface
- Workflow Editor (i). Every piece of data produced during thecution is stored in the
Workflow Repository (ii). Whenever a fault is detected, durting execution, the Engine

Interface -
Workflow Editor
A s A A
(D @ Request for services/ Available service Request for Warning and
y | Results workflows and workflows verification y | suggestions
® Replanning
. > : <
Execution [~ Service < Checker |4
Engine [¢ New Plan Discovery |«)
<
afy [+ © 0 7y
. Selected workflow instance
External Specification
o pe-ooe- ¢. ----Somposition process __________ \ ®
. » @
' Internal Alternative N
' | Translator = Planner » Evaluator
Specification Abstract Plans

Ontology
Repository

Workflow
Repository

Service
Catalog

A 4

Figure 2. Automatic Composition and Execution

tries to re-execute (iii) the plan (considering the actualesof the world). This kind of
solution is adequate when a Web service is temporarily uledpba. If the fault persists,
it tries to re-plan starting from the state of the world affee failure. In this process,
the Execution Engine sends a request (iv) to Service Disgdwee a new plan, which is
returned to the Engine (v), to continue the execution of tbekilow. The user interacts
with the Execution Engine through the Interface and cangédme execution flow, pause,
cancel and restart the execution and see the intermedsults€i). The results are passed
from the Execution Engine to the user through the Interfadlerkflow Editor (vi).

4.6. Case Study: genome assembly and annotation

We implemented a prototype of our architecture to solve thélpms of genome assem-
bly and annotation [Digiampietri et al. 2005]. Currently, are using SHOP2 as planner.
Our system allows the three kinds of composition in ordeufpsrt scientific workflows.

In order to implement the architecture we had to construesattpropriate ontolo-
gies. In particular, we have developed a detailed ontolsggcific to genome assem-
bly and annotation, that extends a generic bioinformatitslogy [Stevens et al. 2000].
Through our ontology we annotated bioinformatics data aotstservices in order to al-
low semantic search and automatic composition of servisetetailed description of the
prototype is shown in [Digiampietri et al. 2007].

5. Conclusions and ongoing work

This paper reviewed some of the main proposals in serviceposition. It presented
a new proposal that supports automatic and interactiveiceemomposition through
the use of Al planning. Service search and composition takergage of the use
of ontology semantic annotations. We built a prototype tofyeand validate our
proposal, for bioinformatics problems, specifically fomgene assembly and annota-
tion [Digiampietri et al. 2007]. The choice of this specifiea was made due to our
experience with these tasks and the great need of this kiggstém in bioinformatics.

Our main contributions lie in the comparative study, and ioppsing and pro-
totyping a solution for specifying scientific workflows inettWeb by taking advantage
of Al planning techniques, combined with ontologies and &etic Web standards. Our
architecture is specified in a generic way, and thus can beedtito solve any problem
that involves the storage, coordinated execution and aatioroomposition of scientific
and business processes. It combines the main advantageseohlsapproaches for Web
service composition based in Al Planning.

As future work we intend to explore other promising ways flangsynthesis, such
as combining SHOP2 with Symbolic Model Checking [Kuter e28105]. We also plan
to study the use of plan repair techniques to decrease tliefaoeee-planning. Finally,
we have in mind to couple our prototype with a workflow engioejalidate our proposal
of on-the-fly workflow reconstruction using our planningaségy.

Acknowledgments

The work described in this paper was partially financed by CBFEAPESP, Microsoft
Research fellowship, CNPq and Autonomous University of Buoaraya.

References

Agarwal, V., Chafle, G., Kumar, K. A., Mittal, S., and SrivastaB. (2005). Synthy:
A System for End to End Composition of Web Servicdsurnal of Web Semantics
3:311-339.

Altintas, 1., Berkley, C., Jaeger, E., Jones, M., Badher, B., and Mock, S. (2004). Ke-
pler: An extensible system for design and execution of sifienvorkflows. In16th
Intl. Conference on Scientific and Statistical Database Mgmaent(SSDBM)

Andrews et al., T. (2003). Business Process Execution Layegta Web Services Ver-
sion 1.1. http://www.ibm.com/developerworks/librargAbpel/ (as of 2007-02-11).

Austin, D., Grainger, W., Barbir, A., Ferris, C., and Garg, Z(2). Web services archi-
tecture requirements. Technical report, W3C.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). Thea®&mWeb.Scientific Amer-
ican, 284(5):28-37.
Digiampietri, L., Ferez-Alc@zar, J., and Medeiros, C. (2007). An ontology-based frame-

work for bioinformatics workflows.Int. Journal of Bioinformatics Research and Ap-
plications Accepted for publication.

Digiampietri, L. A., Medeiros, C. B., and Setubal, J. C. (200%).framework based
in Web services orchestration bioinformatics workflow ngeraent. Genetics and
Molecular Research4(3).

Fensel, D. and Bussler, C. (2002). The Web Service Modelingn&nsork WSMF.Elec-
tronic Commerce Research and Applicatioh@&).

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A.,l&%&0, M., Weld, D.,
and Wilkins, D. (1998). PDDL the planning domain definiti@amguage. IrProc. of
AIPS-98 Planning Committee

Kim, J. and Gil, Y. (2004). Towards Interactive CompositidrBemantic Web Services.
In AAAI 2004

Kuter, U. and Nau, D. (2004). Forward-Chaining Planning imbleterministic Domains.
In AAAI 2004 pages 513-518.

Kuter, U., Nau, D., Pistore, M., and Traverso, P. (2005). A&rdichical Task-Network
Planner based on Symbolic Model Checking(IRAPS 2005)pages 300-310.

Levesque, H. J., Reiter, R., Lesperance, Y., Lin, F., and §dReB. (1997). Golog: A
logic programming language for dynamic domairdaurnal of Logic Programming
31(1-3):59-84.

Long, D. and Fox, M. (2003). The 3rd International Planningrpetition: Results and
Analysis. Journal of Artificial Intelligence ResearcB0:1-59.

Madhusudan, T. and Uttamsingh, N. (2006). A declarative@gugh to composing web
services in dynamic environmen®®ecision Support System&l (2):325-357.

Martin et al., D. (2004). OWL-S: Semantic Markup for Web Seres.
http://www.daml.org/services/owl-s/1.1B/owl-s.pdf E#2005-09-08).

McDermott, D. (2002). Estimated-Regression Planning feerbctions with Web Ser-
vices. InAIPS 2001

Mcllraith, S. A. and Son, T. C. (2002). Adapting Golog for Comjpion of Semantic
Web Services. IIKR2002 pages 482—-493.

Medeiros, C. B., Perez-Alcazar, J., Digiampietri, L., Pagtor G., Santanche, A., Torres,
R., Madeira, E., and Bacarin, E. (2005). WOODSS and the Web:ofating and
Reusing Scientific WorkflowACM SIGMOD Record34(3):18-23.

Nau, D., Au, T., lighami, O., Kuter, U., Murdock, W., Wu, D.né Yaman, F. (2003).
SHOP2: An HTN Planning System.Journal of Artificial Intelligence Research
20:379-404.

Rao, J. and Su, X. (2004). A Survey of Automated Web Service @sitipn Methods.
In SWSWPC 20Q40lume 3387, pages 43-54.

Sirin, E., Parsia, B., Wu, D., Hendler, J. A., and Nau, D. SO®0 HTN planning for
Web Service composition using SHORRBwurnal of Web Semantic$(4):377-396.

Srivastava, B. and Koehler, J. (2003). Web Service Compasitldurrent Solutions and
Open Problems. IICAPS 2003pages 28-35.

Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., PdtdN., Goble, C. A., and
Brass, A. (2000). TAMBIS: Transparent Access to Multiple Bformatics Informa-
tion SourcesBioinformatics 16(2):184—186.

Traverso, P. and Pistore, M. (2004). Automated Compositfddemantic Web Services
into Executable Processdsecture Notes in Computer Scien8298:380-394.

W3C (2003). Extensible Markup Language (XML). http://ww\B.xarg/XML/ (as of
2007-02-06).

WFfMOpen. WfMOpen project. http://wfmopen.sourceforgelifas of 2007-02-11).

Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, id, @hang, H. (2004).
Qosaware middleware for web services compositidBEE Trans. Software Eng.
30:311-327.

