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Abstract. Many planning problems can be framed as Markov decisiongsses
(MDPs). In this paper we discuss situations where regulasitie states and
variables lead to compact MDPs, particularly when varialbihese many cate-
gories and strong interrelation. We develop techniques$ tjemerate optimal
policies by exploiting regularities in MDPs. We illustrateese ideas with a real
problem on management of printing clusters.

1. Introduction

Situations that require sequential decision making undeedainty are often modeled by
Markov Decision Processes (MDPs) [Boutilier et al. 1999ehutin 1994]. However, it

is not always easy to specify all transition probabilitidsan building an MDP; moreover,
it is not easy to generate optimal policies in large MDPstfhén et al. 1995]. In this

paper we propose techniques that aim at simplifying thetoactson and manipulation of

MDPs.

The last decade has seen significant discussion of “factatescriptions, of-
ten based on Bayesian networks (BNs) [Boutilier et al. 1999, s@imeet al. 2003].
To further simplify the construction of MDPs, there has beeterest in mo-
dels that explore hierarchical and logical relations amasigtes and variables
[Glesner and Koller 1995, D. Koller 1998, Puterman 1994, Rar8ta 2005]; also, some
design patterns such as “NoisyOR” or “decision-tree distrdns” have been detected
[C. Boutilier and Koller 1996, Glesner and Koller 1995]. Ourpexence in building
MDPs for real problems is that there are further regularitteat have even more prac-
tical significance, and that have not received due atteisooiar.

We offer two contributions in this paper. First, we proposmethodology that
generates compact factored representations by explaitngnon features of practical
MDPs (Section 2). We have found these guidelines to be qftfgetsre in our practical
work, particularly when random variables have many caieg@nd display strong inter-
relation. Our second contribution is a set of techniquegéwreration of optimal policies,
where we exploit regularities in the representation of MQ&ection 3). We also describe
an application of these guidelines to a real problem in itrgug fact, the present work
was motivated by our frustration with existing techniquedealing with this real problem
(Section 4).



2. MDPs and Compact Representations

A (completely observable and stationary) Markov DecisioocBss consists of a set of
statesS, a set of actionsl, a transition matrix” for each actior in A, a reward function
R and a cost functio' [Puterman 1994]. Thénite setS contains all possible states
(each is a complete description of the system), and the agest find apolicy that
prescribes an action for each state. A transition m&t(ix s’, a) specifies the probability
of moving froms to s after actiona. Finally, a reward functiorz(s) associates a real
value with each state and a cost functiofs, a) associates a real value with each pair
state/action. There exists algorithms that can find an @tpulicy and determine the
value of each state for this policy, according to severdegd (finite horizon, infinite
horizon with discount, and others); two of these algoritlarealue iterationandpolicy
iteration [Bellman 1957, Boutilier et al. 1999].

The first step in constructing an MDP is to represent the systiate by means
of variables that capture its relevant characteristicst ;e be the system state at the
present point in time and |&fr be the system state at the next point in time. We must
specify the probability value®(Sr = s;|Sp = s;,A = a;). A compact representa-
tion for these probabilities can be produced using a Bayeasiédwork (BN) per action
[Boutilier et al. 1999, Guestrin et al. 2003]. We use suchdied representations in the
remainder of the paper.

Example 1 Consider a printer that is modeled by two binary variables:nging queue
(¢) and job size {s) and action setA = { Print, Ignore}. The printer state is given by
(q,7js); there are 4 states. We can writ® = (¢p, jsp) andSr = (qr, jsr). If the action

is Print, suppose;r depends ompr and jsp, but jsr does not depend on any previous
state (Figure 1.a shows the Bayesian network).

The structure of the BNs implies probabilistic independsr{talowing from the Markov
condition for Bayesian networks; that is, a variable is iretegent of its nondescendants
given its parents [Pearl 1988]).

Example 2 In Example 1, we write the state transition probability foriaat Print as:
P(Sr = (qr,jsr)|Sp = (qp,jsp)) = plarlap, jsp) X p(jsr).

Factorization techniques are of limited help when varighbl@vemanycategories,
as conditional transition matrices may become too largexplicit specification. In prac-
tical systems we often observe regularities that go beyotejdendence among variables.
We now introduce a few “design patterns” that have signitigeactical impact.

1 Suppose that categories of a variallleare ordered (for exampley is integer-
valued) and any change iXi occurs only by a limited increase or decrease (thus
many transitions have probability zero). Th&ns said to be ofimited variation

Example 3 Consider the printing queue variable)(in our printer model. Assume this
variable has ten categories varying from 1 to 10. It is readae to assume that the queue
level can vary just two levels at each transition (up or down).

2 Suppose thaP(Xr = x + t|Xp = x), the probability thatX makes a transition
from a levelz to a levelx + t, does not depend on We assume this property to
hold for negative and positive integer valuesg okith the exception of extremities
in the variable scale. Thek is said to be ohomogeneous variation



Example 4 Consider again the printing queue variable) (n our printer model. The
probability of the printing queue increasing one level idaet independent of the actual
level; for instance,P(qr = 2|¢gp = 1) = P(qr = 3|qp = 2) (however, whergp = 10
thenP(¢r = 11|gp = 10) = 0 as this is an extreme situation).

3 SupposeX has conditional probabilities that relate proportionalyonditioning
variables, and this relation depends on the state of thersysThis property is
called proportional variation Note that to use this property it is necessary that
homogeneous variatiamolds as well.

Example 5 Now consider;s has five categories in our printer model. The probability
of the queue increasing one level is directly proportiorattie job size:p(qr = qp +
llgp, jsp) = k x jsp, wherek is a normalization constant.

The use of these properties together allow conditional glodities to be specified
in a very compact way. Such properties are rather valualdeshauld be included in a
specification language, for instance PPDDL [Littman andri¥é®i2004], in the future.

As a final point, we note that in the presence of large spad¢essteeward/cost
functions require compact representation as well, oftémeaed in the literature through
additivity assumptions [Boutilier et al. 1999].

Example 6 We can write that the cost of executifgint is proportional to queue level
and proportional to job sizeC'((gp, jsp), Print) = k X qp X jSp.

3. Exploiting Regularities in Factored MDPs Solution

Traditional algorithms such aglue iterationand policy iterationare not efficient for
large-scale MDPs [Bouitilier et al. 1999, Littman et al. 1998k now propose two tech-
niques that reduce the computational burden in structurbé$/

3.1. Offline sub-division of states

Our MDP construction method brings to the surface the lef/ebanection in the state

space; usually pieces of the state space can often be sabiegendently. This in itself is

not a new observation [Puterman 1994]. However, what is niapobis to notice that even

if an MDP cannot be divided into independent pieces, it maghianited state transitions

that can be exploited. That is, one can identify a subseteo$tiate space that is “closed”
in the sense that an optimal policy for it can be found onlycpssing its states. The
solution of this fragment can then be used when processmwhtole MDP. The idea is

similar to dynamic programming; however we are not opegaiackwards with respect
to transitions but rather operating piecewise with respectates. An example should
clarify the idea.

Example 7 Consider a printer model with two variables: printing queug and tray
level ¢r), each with 10 categories, and an actions det { Print, Ignore}. If the action

Is Print, thentr can only decrease or stay constant; if the actiodgisore, bothqg andtr
can only decrease or stay constant. Note tiratan never increase; thus we can start with
a reduced MDP where this variable is set to its lowest levelerAgblving this reduced
MDP, we construct a new MDP in whidh is limited to its 2 lowest levels. This adds
10 new states and the solution for the 10 initial states dag<hange. Thus we need to
solve just 10 states in this step. This process is repeatéidhmwhole MDP is solved.



Dividing a state spacg into n fragments decreases the number of operations per iteration
of value iteration taD(|S|?| A| /n+|S|?/n?). Besides, the required number of iterations to
convergence is polynomial iy |, thus the number of iterations in each fragment is lower
than in the whole MDP.

3.2. Online reduction of state space

Itis often difficult even to store an optimal policy for an MPIR these cases one might re-
sort to online solution of the Bellman equation, or, follogiie discussion in the previous
section, online solution of fragments of the state spaceolime solution is particularly
difficult when variables have many categories. Supposettigrone produces an online
solution by drastically reducing the size of the state spaage consider a strategy where
each variable has its categories mapped into just two valtlesrow have to define state
transition probabilities for the resulting binary variabl Our proposal is to employ the
original variables in the construction of algebraic expressionghfese probabilities, so
that each transition leads to a different approximatioredas theoriginal probabilities.
Doing so, the information loss caused by the transformatianitigated (however note
that probability distributions are no longer stationaigain, the best way to understand
our proposal is to examine an example.

Example 8 In Example 7, transform variablesand ¢ into binary variablesj and tr.
The new variable indicates whether the queue is fujl € 1 for ¢ = 10) ornot (G = 0
for ¢ < 10). The new variablgr indicates whether the tray level is empty & 0 for

tr = 1) or not (fr = 1 for tr > 1). We can write the probability of empty tray level
as directly proportional to queue leveland inversely proportional to the tray levelt,
that is, P(trp = 0 | trp = 1) = kyq/tr. Also, the probability of nonempty tray level is
P(trp=1|trp=1)=1/(1 +q/tr).

Note first that the homogeneous variation property doesaidtih this method; however
the proportional variation property is still valid. Secortde solution is not stationary;
the solution is really dependent on an online scheme. Finalk clear that the level of
reduction in the state space size depends on the numberegbcis in each variable.

4. Modeling Printers with MDPs

To illustrate how the patterns and techniques discussetbpity can be used in practice,
we discuss here a real application of planning under urniogyta he problem is to create
policies for printers connected in clusters, continuowggrating and receiving jobs from
many users. Some printers may be faster, some may be slawee; may have features
such as color printing, while others may excel in black-arte printing. There may be
additional constraints for the cluster, such as having rétiters keep an approximately
identical toner level (so as to minimize visits from perseinresponsible for changing
toner cartridges). Jobs are sent to the cluster of printélsawariety of characteristics,
and to do so in a decentralized manner (no central routerbsf i@ prevent that a single
failure may disrupt the whole cluster).

In this setting, we consider each printer as an “agent” inraraanity, evaluating
its own options and adopting its own actions with the obgetimaximize user satisfation
in using the cluster. The routing strategy is based on augtias follows. First, the user
chooses his preferences for the job and sends it from a PCytofahe printers in the



Table 1. System variables and number of categories per variable.

Variable Number Interval Name
of categories| for categories (brief description)
Q 10 1,2,..,10 gueue (length of queue)
Tr 10 1,2,..,10 tray (level of tray)
Tb 10 12, ..10 black toner (level)
Te 10 1,2,..,10 color toner (level)
Js 5 1,2,..,5 | jobsize (in pages, less than 100)
Je 2 0,1 job color (color or b/w)
Ju 2 0,1 job urgency (urgent or not)
174 5 1,2,..,5 velocity (printer speed)

Figure 1. Bayesian Networks: (a) Example 2; (b) Ignore; (b) Print.

cluster. The receiving printer (P0O) sends the job charaties to other printers in the
cluster. Then each printer assesses its state and chooaesanPrint or Ignore using

its own MDP. A printer sends its selected action and the valuts state to PO. The value
sent is the “bid” for the job. Finally, PO selects the bestloétween printers with action

Print and sends the job to the winner printer. If all printers cleafysore, then the best
bit for this action is the winner.

This system allows many auctions to occur at the same timeh ganter follows
an optimal “local” policy, thus deciding how to participatethe auction. Although this
solution does not necessarily achieve a global optimumyliitlé the desired objetives
and it gives flexibility to the system, allowing entrance al®parture of printers in the
cluster. We now focus on the MDP used by each printer, asgltigeifocus of this paper.

4.1. State space, actions, transitions, and costs

A printer is modeled by eight variables, indicated in TableThese variables capture
data from the printer@, T'r, Th, Tc, V'), the job (/s) and user preferences for the job
(Je, Ju). The space state formed Ky, tr, tb, te, js, jc, ju,v) containsl0° states (0° =

10 x 10 x 10 x 10 x 5 x 2 x 2 x 5). Note that job size is assumed to be smaller than a
hundred pages. Variables are denoted by capital lettels wéiiegories are not.

A printer has two actionsA = { Print, Ignore}; clearly the first means that the



Table 2. Conditional probabilities: ¢ (top) and ¢r (bottom).

Print action Ignore action
trpzl‘ try # 1 trpzl‘ trp # 1
ar | P(qr|ap,trp,jsp, vp) ar | P(gr|gp, trp, vp)
qp+2 | kojsp kijsp/vp
qp+ 1| 4kojsp | 2kijsp/vp
qp | 5ko/jsp | 4kijsp/vp qp 1 5ka/vp
gp — 1 0 2kyvp/jsp || qp — 1 0 4ksvp
qp — 2 0 kivp/jsp | qp —2 0 kavp
Print action Ignore action
trg | P(trp|qp, trp, jsp, vp) trr | P(qr|qp,trp, vp)
trp 70k3/((QP +j5p)vp) trp 70/€4/(vap)
tT’P -1 2]433(6]]3 + jSP)Up t’l”p —1 2k4gpvp
trp —2 ks(qgp + jsp)vp trp —2 kigpvp

next job will be printed, while the second ignores the regu&snsitions occur when a
job arrives at the printer and the appropriate action iscéete We differentiate between
variables “before” transitions and “after” transitions agpending subscript® and F
respectively.

Figures 1.b-c show BNs foPrint and Ignore actions. The probabilities
P(SFr|Sp), for both actions, are then written in product form follogithese BNs. Terms
P(jsr), P(jcr) andP(jur) are totaly independent of other variables and of the salecte
action. Their values are constant, equdl.ty 0.5 and0.5 respectively. Likewise, the print
velocity does not change; thus the teftfwr|vp) is equal to 1 ifvp = vp and 0 other-
wise. TermsP(qr|Sp), P(trr|Sp), P(tbp|Sp) and P(tcp|Sp) are expressed through
algebraic formulas of conditioning variables. This is polesbecause variableg tr, tb
andtc exhibit proportional variationandhomogeneous variatioproperties. These for-
mulas are different depending on the chosen action. In baiibres, ifirp = 1, then
the printer has no paper and cannot print. Thus, the pristenat consume its other re-
sources such as toner, and its queue cannot decrease. dhegarfables also exhibit the
limited variationproperty and this reduces the number of formulae. Prinsauees do
not change drastically, so they can increase or decreasdete by at most two units
at each transition. Moreover, variables tb andtc cannot make transitions to higher
values. This happens because we are not interested in $tireggecharges of resources.
TermsP(qr|Sp), P(trp|Sp), P(tbp|Sp) andP(tcp|Sp) are summarized in Tables 2 and
3 respectively. These terms are expressed through fornmidke allowed changes in
each variable. Table 3 (bottom) conveys one more importacepof information. If the
action is Print andtrp # 1, then the probability of change e depends onc. More-
over, if the user wants a color johd(p = 1), then this probability depends on job size
(jsp), otherwisejsp is irrelevant in this probability. Again, in the extreme wes ofqp,
trp, tbp andtcp, these formulas do not apply exactly (because a transibi@nvalue out
of the range of the variable is not allowed); the probabiidjyue must be accumulated in
the probability of the closest allowed value for this valeab

The printer model does not have a reward function, because tis no fi-



Table 3. Conditional probabilities: tb (top) and tc (bottom).

Print action Ignore action
trpzl‘ try # 1 trpzl‘ try # 1
tbF P(tbF‘qp,tI‘p,tbp,jSp,Vp) tbF P(tbF‘qp,tI‘p,tbp, Vp)
tbp 1 70k5/((qP+jSP)Up) tbp 1 70k6/(qp’l)p)
tbp —1 0 2]{15((]13 +j8p)vp tbp -1 0 2]€6qu]3
tbp -2 0 k5(q13 + jSp)Up tbp -2 0 k@(]pvp
Print action Ignore action
try try
=1 #1 =1 #1
jep =0 | jep =1
tcp P(tcr|gp, trp, tcp, jsp, jcp, vp) tep P(tcr|gqp, trp, tcp, vp)
tep | 1| g% Gy || ter | 1 i
th —1 0 2]{37((]131);)) ng(qp -l-jSP)UP th -1 0 2k:9q1311p
tecp =2 | 0 | ke(qpvp) | ks(gp +jsp)vp |[tecp—2| O kogpvp

nal, objective state. However there are two cost functiamsg for each action:
C(Ignore) = Gujeptep + (Gstrptbpup)/(qrjsp) and C(Print) = (Gijep)/tep +
(Gagupqpjsp)/(trptbpvp) + G3/tbp, WhereG,; are constants. These functions “pun-
ish” idleness of resources.

4.2. Offline sub-division in the Printer MDP

We are interested in a policy that yields minimum cost as ttietgr operates conti-

nuously. We thus look for an infinite-horizon discounted@o]Puterman 1994]. Current

algorithms would have significant difficulty dealing with® states; here we note that fac-
tored representations are just descriptive techniquesdantbt by themselves simplify

the search for an optimal policy. However, when an MDP is troeged using common

patterns in the domain, it becomes easy to identify regidarihat can be exploited in the
solution.

By analyzing the Printer MDP, it is easy to see that it can b&ld in five in-
dependent MDPs — this is possible because printers doedange their own printing
speeds. Thus, each new MDP has a fixed value for the vaniable

Second, we exploit the fact that variabtestb and¢c can change their levels only
downwards. Thus, we start solving the MDP with these vagmlfixed at their lowest
level. When we do this, the state space contains only 200sstateumber that can be
easily handled by existing algorithms. Then, after solvingse small MDPs, we use
the result to evaluate MDPs with a “higher” category in on¢ghefe three variables. This
procedure is repeated until the original MDP is solved. Hash category adds 200 states
in state space, but just these new states are solved in egzhTdtis procedure is orders
of magnitude faster than taking the whole MDP into a solutitgorithm.

4.3. Online reduction in the Printer MDP

The first step to construct a “binarized” state space for ountgr model is to transform
the original variables. Let be the new binary variable that relatesatothe original



Table 4. Conditional probabilities: § (top) and ¢r (bottom).

Print action. Ignoreaction.
gp =0 gp =1 gp=0| gp=1
tTp tTP tT‘p tTp
0 \ 1 0 \ 1 0 \ 110 \ 1
dr P(qF | dp, trp, jsp, Vp) dr | P(dr | dp,trp, vp)
ko ko |olBe o 1] 1 [0] kwp
1 | kojspap | ™22 [ 1] ky || 1 [0] 0 [1] ks
Print action. Ignoreaction.
trp=0 | trp =1 trp=0] trp=1
try P(trr | dp, trp, jsp, V) trp | P(trr | dp, trp, vp)
0 1 ky 0 1 ks
1 0 k4(jSP + qP)Up/tT'p 1 0 k5(]p?)p/t7"p

variable. We use the transformations in the following tabdeunderstand how to read
this table, consider its second colump:= 0 maps tol < ¢ < 9 andq = 1 maps to
g = 10. Printer velocity does not change, thug is not transformed. Thus:

’ H q ‘ tr tb ‘ te ‘ jAs ‘ jAc ‘ Ju ‘
Ol¢:1la9| wr:1 th: 1 te: 1 js:la2| je: 0| ju: 0
1| ¢:10 |tr:2a10|th:2a10| tc: 2210] js: 3a5| je: 1| ju: 1l

In this model, binary variables point to extreme situationa printer. For exam-
ple, ¢ points if printing queue is full{ = 1) or if it is not (§ = 0). tr points if printer has
paper (r = 1) or if it has not (rr = 0). tb pomts if there is black tonet = 1) or if there
is not (b = 0). {c points if there is color toner{ = 1) if or there is not {c = 0). ju points
if the user has urgencyi¢ = 1) or if he has not{u = 0). In our model only;c does not
have such interpretation. We emphasize that the informéaist in the transformation is
minimized with the use of original variables in probabiléypressions.

In the reduced model, variables inherit the same indeperdetations that origi-
nal variables, thus the new BNs are the same of Figure 1, jastgthg variables to z.
However, the key point is thadt each transition, the variables in the original network are
used to evaluate probability valueshat is, the MDP is solved online for the probability
values that hold in the original model. The terms that areifipd through the BNs are
summarized in Tables 4 and 5. Ter$jsy), P(jcr) and P(juy) are independent of
the chosen action and of the actual state. These terms Vatueach. Printer velocity
does not change, thusif: = vp thenP(vr | vp) is 1 else it is0.

In the reduced model, the MDP can be solved in real time useujtional al-
gorithms like value iteration, as the online processingimegnents are relatively simple.
We again emphasize that, as probabilities change frontiterto iteration, the model is
not stationary as a whole.

5. Experimental Results

A simulator program was used to analyze which printer modadlpces the best cluster
performance. In this simulator, three different models whter were employed in bid



Table 5. Conditional probabilities: tb (top) and tc (bottom).

Print action. Ignoreaction.
th, = 0 thy, =1 thy, = 0 thy =1
trp trp trp trp
0] 1 |0] 1 0] 1 |0] 1
tBF P(tBF ‘ qu,tI"\P,tBP,jSAp,VAP) tBF P(tBF | qu,tfp,th,vAp)
0 |1| 1 [of feleefiseier o [1] 1 ]o0 b
1 |0 0 |1 ke 1 /0] 0 |1 k7
Print action. Ignoreaction.
tc, =0 te, =1 tc, =0 te, =1
trp trp trp trp
0O 110 1 0] 110 1
jc=20 je=1
téF P(téF ‘ q}),tfp,tép,jSAp,jép,VAp) téF P(téF ‘ (ﬁ),tfp,tép,VAP)
ol1l 1 1o kSg;UP kQ(QPt“;fDSP)”P o 1] 1 1o kugi;;vp
1 0] 0 |1 ks kg 1|0 0 |1 k1o

generation for jobs: a heuristic printer model, a model wittine division of states, and

a model with online reduction of states. The heuristic pnatdel calculates its bid by
adding variablestr + max(tb,tc) — ¢q. This model does not consider uncertainty and
is considered a baseline for comparisons. The tests wedrctad under four different
cluster configurations:

e 4 printers with different velocities, where 2 are color pens, and 10 users;
¢ 4 printers with different velocities, where 2 are color pens, and 15 users;
e 4 equal color printers and 10 users;
e 4 equal color printers and 15 users.

This way homogeneous cluster were compared against hetexogs ones. Also, dif-
ferent workloads (10 and 15 users) were compared too. Twaunes were utilized to
analyze cluster performance: the mean time for a urgentjebution, and compliance
with color requisition for the jobs (for instance, a colob joould be executed in black and
white due to redirection to a printer without color toner)gle 2 shows the simulation
results for the first measure. We notice that the offline agpghidas a better performance
in a heterogeneous cluster. In an homogeneous cluster time a@olution is better than
the offline solution. The online approach has to solve the MiRach job, adding some
time to the execution. The offline approach has the solutievipusly calculated and
stored, thus requiring only more memory space. With redjpeitte second measure, the
two MDP solutions have an equivalent performance near t84l0Dhe heuristic model
has the best first measure for a homogeneous cluster, bt & paor performance in the
second measure for this case.

6. Conclusion

Recent years have seen growing interest in “structured” MidRsre the structure may be
due to factorization, or hierarchical relationships amweagables, or logical constraints.
It is important to have guidelines for constructing MDPslsat these regularities surface



naturally. We have tried in this paper to contribute with ndeas in this direction. Con-
cepts such as limited and homogeneous variation should the inands of designers, so
that a solid methodology can be in place for the construatiostructured MDPs. We
have also shown how regularities can be exploited duringctieh of optimal policies.
Finally, we have described an application of our ideas tcahdemain: we have shown
an application where jobs are routed in a cluster of printetsere each printer bids for
jobs using its own MDP.
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