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Abstract. Complex phenomena can be studied by breaking them into smaller
components and understanding the interactions between its parts. In this
article, we propose a multi agent system that smulates the behavior of
consumers and providers of services in an environment of concurrency. Each
agent has its own preferences and makes his decision without communicating
with the others. The isolate decision of each agent leads to a global emergent
behavior where the minimum amount of providers that satisfy global demand
is selected; potentially leaving unattended providers. The results provide
useful insights for the resource allocation domain and suggest that the model
developed may be useful in a wide range of problems involving multi agent
self-organization.

1. Introduction

The resource provider and consumer problem can be modedediay to resemble the
well known bars and customers model. This metaphor isd use this
paper as a means to achieve a clearer picture of theelmowithout
loss of generality.

The capacity of a certain bar contributes directlytfe amount of profit the company is
able to make. However, there is a limitation in tlkenber of customers that will actually
go into the bar. In order to estimate the size oftéinget audience, one has to consider
the competing bars and customer preferences.

In this paper, we present a novel approach to capaciwyipta Using a simulation
model, it is possible to predict the occupancy of the baa given area. The model is
based on the idea that people will usually avoid entenngnapty place, if they have the
option of choosing another that has a considerable euaftpeoplé It is important to
note, however, that a very crowded place is also ahagl. If the number of people in
the bar is greater than what the manager is expedtisdikely that the waiting time for
orders will be high, and the service will not be good.

We assume that each customer makes his choice ajmeiriy the fact that there may
be groups of friends). Each one leaves his house atanceme (given by a probability

! This can happen for a number of reasons, like thettiattan empty place is usually interpreted as an
indicative of poor quality or that people willing to finddate will prefer the bar with more people
inside.



distribution) and examines several different bars witbosing to enter one. After
entering a bar, the person can stay and consume or é¢@dg time to leave and go to
a different one. For example, a person could have ehteecbar when there were lots
of people in it, and after some time, the place statbedet empty. In this case, the
subject is likely to leave the bar and choose anather

The decision of a customer regarding going to a bar waset in the classical El farol
bar article [2]. In that paper, it is observed a cogeace of the occupancy of the bar at
0.6 of capacity, despite differences in the customer en@afutunction. In our approach,
a convergence is also observed, yet different in naasrevill be presented in section 3.

Now let's see the problem from the point of view lug bar owner. Suppose a bar is
always fully occupied. If the owner wants do improve fmsfit, he has at least three
choices: increase his margin (with possible negatiyeact on quality), increase the
capacity of the bar, or open a new one. If, on tleroband, the bar is not generating
enough profit, the owner could try to change its sizéuee price, or change the product
mix, for example. In either case, he must think ofithgact each of this changes would
have on his customers. We will show that our modelbeaaf help in predicting the best
decision.

This paper is organized as follows: Section 2 descrimsnodel in detail, showing the

equations that give the probability of an individual entgor leaving a bar. Section 3

shows the simulation results in the case where adl &ge equal. Section 4 introduces
new features in the model, with the results shownrettien 5. Finally, we show the

contributions and future work in section 6.

2. The Model

We assume the customer agents will choose a regiorgtbaps a number of bars of
similar kind. That is, in a given city, there is a nemlof bars that have the same
customer profile, as well as the same sort of offstirsimilar bars group themselves in
clusters. From this situation, the bar agent is givehcace of varying the offer it makes
to the consumers, but restrained by the mood of thellister it is into (see [3]).

As we are interested in modeling the instant choidd@tonsumer, the consumer agent
will have no memory of its previous visits to the lsarster nor from previous visits to
any single bar. The consumer is then present in arredibars, and has to choose which
one he will enter. Two factors affect the consunferiee, namely the current occupancy
of the bar and a proxy for the attractiveness of &ach

We constructed a multi-agent system where there ardiffeoent kinds of agents acting

together, the customer agent and the bar owner ageridgbat). The bar agent has no
active role in the simulation, as his choices requime and cannot be made implanted
within one night time. At each time step of the simhalss, each customer agent is
presented with an opportunity to change his status. A mastagent inside a bar can
decide to stay or to leave, and an exploring agent camsehto enter any bar.

The choice of the bar agent is limited to the recigtaspects of customer choice, that
is, bar capacity and bar attractiveness. The baacitteness, in conjunction with the
consumer interests can be as complex as we choosetthde. In the simulation,

however, they were modeled as a single parameterveetatithe bar and generalized to



all consumers. As all consumers have no differend@anchoices they make i.e. only
their count (not influenced by any individual consumerratigristic) in a given bar
influences other consumer agents. All consumers argidsrd to be exactly equal for
the purposes at this point.

The simulation is run for the period of one night osly,the bar agent has no choice to
change its characteristics within the simulation. e Har can raise its attractiveness,
increasing the chance of higher occupancy, but thisirdseases the cost of maintaining
the bar, and can have a negative effect in totaltpiidie bar agent can increase or lower
the bar capacity, influencing in the customer choibaswith nontrivial effects in the bar
profit.

A model that fits these constraints is presented inaiid considers how individual
cockroaches form groups that lead to the optimum berefaah individual without any
communication among them. Each individual cockroach aareither exploring the
environment or resting inside a shelter. For any gesgrloring cockroach the probability
it will join shelter i (Ri) is given by equation 1.

R :u[l—isij © Q=@ X"

1”{2}” B(a,b)

In equation 1u represents the kinetic constant for a cockroacledwe its exploring
state and enter a shelter;is the current occupancy afds the total shelter capacity.
The chance of a cockroach entering a shelter isnmax when the shelter is empty and
decreases linearly with the occupancy.

The other influence in the individual cockroaclitsschance of leaving a shelter once it is
inside. It is given by equation 2.

Parametep represents shelter qualiy;is related to total carrying capacity of shelter;
and S have the same meaning as in equation 1 ramdpresents the level of social
interaction among cockroaches. Wheis equal to 1, there is no social interaction and
all shelters tend to hold the same number of caaltres at the end of experiment.

The correspondence we explore is then from cockexato customers and shelters to
bars. We used andp constant among all bars. In the simulations desdrin section 3
we used constant valuesgoandS equal for all bars.

All simulations were run over a period of 100,000¢et steps, where each customer agent
chooses to act in each time step.

The rate of customer entrance in the simulatioacsdf its final result. If the customers
keep coming into the simulation up to its end, ¢hir not enough time for the bars
occupancy to converge and the results are mislgfadiVe chose a beta distribution
over the first third of the total number of evemigh a = 3 and b = 5, as show in
equation 3.

2 Besides, this is not a reasonable assumption, as peopmleto concentrate on the beginning of the
night to leave home and celebrate.



In the simulation where all agents begin to seéwctbars at time = 0, the final result is
identical to the one obtained with distributed \ation. The dynamic of bar occupancy,
however, is altered and the results to bar owneesnaisguiding. It was therefore
abandoned in our simulations.

3. Results

The parameters used were0.001; #=0.01; n=2; p=1667 (see [1]). Every result
presented here was averaged over 30 runs. The nuhbar agents was picked from
the interval [2, 10], and the number of customesraig) was in the interval [20, 1.2*T],
where T is the sum of the capacity of all barsesmlotherwise stated.

3.1. Bar occupancy over time

The first set of tests was performed to observestindution of bar attendance over time.
In these simulations, there are 50 customer agamis3 bar agents. Each bar has a
capacity of 40 customers. Figure 1 shows the il individual simulations. Note
that it is not relevant what individual bar is telh to each line, since the bars are all

equal.
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Figure 1 - Bar occupancy over time. The graphics sh  ow two simulation results
with 50 customer agents and 3 bar agents. Each line represents one bar, and y
axis is the number of customers that were in the ba  r at each time step.

In the case shown on the left corner of Figure Hemthe agents start activating, we can
see the growing occupancy of bar 1. When bar baua2/3 full, and the number of
activated agents continues to increase, they siagnter bars 2 and 3. However, the
total number of agents is not enough to fill 3 bars the best global solution is to use
only 2. Indeed, in time 40.000, the agents stamnigrate from bar 3 to bar 2. Finally,
the system reaches a stable state with bars 1 amctupied and bar 3 empty. It is
important to note that the customer agents do notvkthe total number of customers
or bars. Still, they are able to reach a globaltgm that fits 2 constraints: (i) use the
minimum necessary number of bars and (ii) distabtitemselves evenly between the
chosen bars. Up to this point, our model showsltsesimilar to those in [1].



3.2. Bar occupancyversus total number of customers
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Figure 2 - Bar attendance X Number of customers. a) Average final bar
occupancy with 2 bars, as the number of customer in creases. Each point in
this plot corresponds to the average result of 30 s imulations. Vertical lines

show standard deviation. b) Vertical bars show the number of times some
customer entered the bar at each time interval. c) Average final bar occupancy
with 3 bars.

The next step is to investigate the relation bebhnwtbe total number of agents and the
number of bars occupied. To do so, we ran sevamallations changing these
parameters and observing the results. An impopeegrocessing step on the data in this
case is to sort the bars (without loss of gengjaditcording to their final occupancy, in
order to differentiate between the occupied andtetvgrs. This happens because, as the
bars are undistinguishable for the customers, thrdynumber of empty bars is constant
in the simulations, but any specific bar will bedamly empty or with the same amount
of customers as other bars.

Figure 2a shows the final occupancy of two baraxig) as the number of customer (x
axis) is changed. The standard deviation is reptedeas vertical lines over the points in
the graphic. The bottom plot represents the nurobeustomer entrances in the bar in
each time interval. Notice that the number of co&pentering the bar is approximately
the same over time, except for the region indicétgdhe line below the bars in figure

2b, between 10 and 35 customers. Both bars haapacity of 30 customers. When the
number of customer agents is small (0-20), thewrdwsys only one bar chosen as the
populated bar. As the number of agents increaseever, the second bar starts to be
populated as well.

The point in Figure 2a where the occupancy of g#@sd bar starts to increase shows
some distinct features. At first, the standard ak#wn is very high. This happens because
it is the frontier between the two regions withtidit behaviors: occupying one bar
(when the number of agents < 20) or occupying bGti.some executions, the agents
would gather in one bar, while on others they wivied in two. Also worth of note is
that the bars with smaller occupancy have a higherber of entries. Customers will go
into the bar, but won't stay long, since the prdibako leave is higher (see equation 2).



With more than 2 bars, the results are similarufeé@2c shows what happens with 3. We
can see that when the number of customers exc&edbe®d/ start to occupy two bars,
and when it reaches 60 (2/3 of the total capaditijhree bars are occupied.

3.3. Analyzing the number of enterings

We now turn to the point of analysing how many 8sme bar has been visited by
customers. We call this the total number of entigthe bar.
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Figure 3 - Final bar occupancy and total number of entries. Each plot shows
30 simulation results, with bar 1 represented as cr  osses and bar 2 as circles.
Left plot shows low bar occupancy (x axis) and a hi gh number of bar entries (y
axis). Center plot ilustrates the case where only o  ne bar is occupied. With
more agents on the simulation, the bar occupancy in creases and the number
of enterings decreases, as shown on the right plot.

Figure 3 shows two scatter plots representingdted humber of entries in a bar (y axis)
and the final occupancy of the bar (x axis). Bas flepresented as crosses and bar 2 as
circles. Each plot shows the result of 30 runs.

With 5 agents on the simulation, none of the bars ke fully occupied. The number of
entrances is high for both bars, indicating tha&t $iistem is in an unstable state. When
there are 15 agents, it can be seen that one ditiseis almost always empty, while the
other shows an average occupation close to thériotaber of customers. Moreover,
the number of visits is higher for the empty bas.we increase the number of agents, the
clusters representing the two bars start to mertge ane, showing that both bars are
occupied, and the total number of entrances is Itnwfact, when the number of agents
is 60, both bars are indistinguishable.
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Figure 4 - Correlation between number of agents in the bar and number of bar
entries. Each bar shows the minimum and maximum cor relation, grouped by 5
agents.



An interesting aspect of the dynamic of bar occopateveals itself when the number of
customers in a bar is compared with the numbernbfaeces in the bar. The less
occupied bars have a higher rate of entrance thamtore occupied ones. Figure 4
presents a graph of the number of agents in a hartlze correlation between this
number of agents and the number of entries. Asepted in subsection 3.2, when the
total number of agents is close to 20, there igghen variance on the bar occupancy.
This fact is reflected in figure 4, where the cé@tien is (negative) strongest precisely
close to 20 agents.

4. Extending the Model

The results presented so far show that the cockrommdel can lead to the optimal
selection of bars in an autonomous way. Howevdacks the capacity to accomodate
distinct individual behaviours. In order to includee individual preferences of each
agent, the model had to be extended. We considieecidllowing effects:

» There are different kinds of bars, and the agemtglike ones better than others;

« The agents also have characteristics and prefereabeut other agents’
characteristics, seeking agents with certain g®fihat match those preferences.
They may also dislike other certain agents’ charastics.

The characteristics of the bars are modeled byturfe vectoro. Each position in the
vector corresponds to a certain feature, and ialéqut+1 if the bar has that feature, and
-1 otherwise.

The agents have one feature vector and two prefesevectors. The agent's feature
vector ¢ is similar to the bar feature vector. The ageb#ls preferences vectoy®
describes the types of bar the agent prefers. dttha same dimensionality es The
values in this vector are in the range [-1, 1], hd means that the agent does not like
bars with that feature, +1 means he likes, and @nsx¢he feature does not influence
agent’s choice. The agent's agent-preferences rvattalefines the characteristics of
other agents that the agent likes (or not) to hib.viis values are also in the range [-1,
1].

Every time an agent visits a bar, it makes an atialn, given by equation 4:

; I,
w3
D DY
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Where X is the set of all agents currently in dam is the number of agents in bar
2 JAi| denotes the sum of the absolute value of all componétie vecto\, andPs and
Pa are constants that set the relative weight of Baluation and agent evaluation.

Note thate will always lie in the interval [-1, +1]. I1E50, the bar suits the agent's
preferences, so its probability of entering it willlogher, as shown in equation 5:

R =(PEe+1)u[1—iSij (5)



The probability Qof leaving the bar is also affected by the evadmatbut in the inverse
proportion:

Q=(-Pe+)— 2 (5)

X.
1+p &
o5

Pe is the weight that defines the amount of influeti@eevaluation has on the probability
of entering or leaving the bar. For exampleRdf£0.1, a maximum evaluation of a bar
(e=1) will increase R (and decreasg) @y 10%. When the evaluation is O, the
probabilities are unchanged. Negative values décrease entering and increase leaving
probabilities.

5. Further Results

To test the new model, we simulated a scenario 48 agents and 8 bars. The bars
have a capacity of 40 and are of two kinds, B (I0a8 and R (bars 4-7). There are 70
agents that like bars like B, and 60 that like b&esR. The customers also have another
attribute for which 50 have type A, 20 are B and timers are neither A or B. Half the

agents are male and the oher half, female.

The inclusion of agents’ preferences into the mqgolelserved the global emerging
pattern previously presented (using an optimal rermddf bars to accommodate all
agents) while having great impact in the agentsiloligion into the bars. The choice of
the bar by the agents is directly influenced bynagloice and the weight of its choice.

Figure 5 presents the distribution two agents @yed over 30 runs) into the eight
available bars and the influence of the Agent Eatadm. The two agents were chosen
because they have an opposite preference vectbafsr The first agent prefers the bars
[1-4] while the second prefers the bars [5-8].
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Figure 5 — Bar attendance by agents 10(a) and 120(b ). X axis is the P g
parameter (equation 6), and the vertical bars repre  sent the time in each bar.



For small values of weight of agent choice, the ammf time the agent spends in each
bar does not present any particular trend. As tleght increases, a clear pattern
emerges, with a clear (opposite) preference in ageht.

In fact, there is a strong correlatioro(@1) between the weight of agent choice and the
standard deviation in the bars occupancy, evaluatedall agents. The weight of choice
also has a strong negative correlatiaxg) with the number of entrances in each bar, as
with a higher weight, the agent tend to enter ¢timdybar it prefers and once inside, have
smaller incentive to leave thus reducing totalgitan
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If the agents are divided in three groups, witfedint preferences, their distribution into
the bars that best fit their preference is presemefigure 6. As the agent evaluation
weight increases, the agents tend to concentrabe ibars that match their preferences.

6. Conclusions and future work

In this paper, we present a model that predictslwbars will be occupied, given the bar
sizes, attractiveness, total number of customedstla@ characteristics of agents inside
the bars. We extend the research presented ibydfvestigating in detail the evolution
of occupancy over time, with a more adaptable lasiscan be simulated to any desired
number of agents, while preserving the global eemrbehavior.

The individual agent choice related to other agamis bars characteristics produced a
stark modification in the consumer behavior, prongdhe basic algorithm with means to
be used in a number of situations where individggnts cannot communicate, yet they
profit from the formation of groups with matchingacacteristics. It is important to note
that the model provides agents with opportunitewisit new providers, even when a
satisfying provider has been found, alleviating pheblem of local maxima.

The proposed model reflects important aspects obumer behavior. Directions for
future research include implementing an autononi@isagent with a learning algorithm
that will provide the bar agent with resources tla@ its bar according to customer



behavior. Also, influence of consumer agent menadryhe bars visited before will be
evaluated.
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