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Abstract. Complex phenomena can be studied by breaking them into smaller 
components and understanding the interactions between its parts. In this 
article, we propose a multi agent system that simulates the behavior of 
consumers and providers of services in an environment of concurrency. Each 
agent has its own preferences and makes his decision without communicating 
with the others. The isolate decision of each agent leads to a global emergent 
behavior where the minimum amount of providers that satisfy global demand 
is selected; potentially leaving unattended providers. The results provide 
useful insights for the resource allocation domain and suggest that the model 
developed may be useful in a wide range of problems involving multi agent 
self-organization. 

1. Introduction 

The resource provider and consumer problem can be modeled in a way to resemble the 
well known bars and customers model. This metaphor is used in this 
paper as a means to achieve a clearer picture of the model, without 
loss of generality. 

The capacity of a certain bar contributes directly for the amount of profit the company is 
able to make. However, there is a limitation in the number of customers that will actually 
go into the bar. In order to estimate the size of the target audience, one has to consider 
the competing bars and customer preferences. 

In this paper, we present a novel approach to capacity planning. Using a simulation 
model, it is possible to predict the occupancy of the bars in a given area. The model is 
based on the idea that people will usually avoid entering an empty place, if they have the 
option of choosing another that has a considerable number of people1. It is important to 
note, however, that a very crowded place is also a bad thing. If the number of people in 
the bar is greater than what the manager is expecting, it is likely that the waiting time for 
orders will be high, and the service will not be good.  

We assume that each customer makes his choice alone (ignoring the fact that there may 
be groups of friends). Each one leaves his house at a certain time (given by a probability 

                                                
1 This can happen for a number of reasons, like the fact that an empty place is usually interpreted as an 
indicative of poor quality or that people willing to find a date will prefer the bar with more people 
inside. 



  

distribution) and examines several different bars until choosing to enter one. After 
entering a bar, the person can stay and consume or decide at any time to leave and go to 
a different one. For example, a person could have entered the bar when there were lots 
of people in it, and after some time, the place started to get empty. In this case, the 
subject is likely to leave the bar and choose another one. 

The decision of a customer regarding going to a bar was treated in the classical El farol 
bar article [2]. In that paper, it is observed a convergence of the occupancy of the bar at 
0.6 of capacity, despite differences in the customer evaluation function. In our approach, 
a convergence is also observed, yet different in nature, as will be presented in section 3. 

Now let's see the problem from the point of view of the bar owner. Suppose a bar is 
always fully occupied. If the owner wants do improve his profit, he has at least three 
choices: increase his margin (with possible negative impact on quality), increase the 
capacity of the bar, or open a new one. If, on the other hand, the bar is not generating 
enough profit, the owner could try to change its size, reduce price, or change the product 
mix, for example. In either case, he must think of the impact each of this changes would 
have on his customers. We will show that our model can be of help in predicting the best 
decision. 

This paper is organized as follows: Section 2 describes the model in detail, showing the 
equations that give the probability of an individual entering or leaving a bar. Section 3 
shows the simulation results in the case where all bars are equal. Section 4 introduces 
new features in the model, with the results shown in section 5. Finally, we show the 
contributions and future work in section 6. 

2. The Model 

We assume the customer agents will choose a region that groups a number of bars of 
similar kind. That is, in a given city, there is a number of bars that have the same 
customer profile, as well as the same sort of offerings. Similar bars group themselves in 
clusters. From this situation, the bar agent is given a choice of varying the offer it makes 
to the consumers, but restrained by the mood of the bar cluster it is into (see [3]). 

As we are interested in modeling the instant choice of the consumer, the consumer agent 
will have no memory of its previous visits to the bar cluster nor from previous visits to 
any single bar. The consumer is then present in a region of bars, and has to choose which 
one he will enter. Two factors affect the consumer choice, namely the current occupancy 
of the bar and a proxy for the attractiveness of each bar. 

We constructed a multi-agent system where there are two different kinds of agents acting 
together, the customer agent and the bar owner agent (bar agent). The bar agent has no 
active role in the simulation, as his choices requires time and cannot be made implanted 
within one night time. At each time step of the simulations, each customer agent is 
presented with an opportunity to change his status. A customer agent inside a bar can 
decide to stay or to leave, and an exploring agent can choose to enter any bar. 

The choice of the bar agent is limited to the reciprocal aspects of customer choice, that 
is, bar capacity and bar attractiveness. The bar attractiveness, in conjunction with the 
consumer interests can be as complex as we choose them to be. In the simulation, 
however, they were modeled as a single parameter relative to the bar and generalized to 



  

all consumers. As all consumers have no difference in the choices they make i.e. only 
their count (not influenced by any individual consumer characteristic) in a given bar 
influences other consumer agents. All consumers are considered to be exactly equal for 
the purposes at this point. 

The simulation is run for the period of one night only, so the bar agent has no choice to 
change its characteristics within the simulation.  The bar can raise its attractiveness, 
increasing the chance of higher occupancy, but this also increases the cost of maintaining 
the bar, and can have a negative effect in total profit. The bar agent can increase or lower 
the bar capacity, influencing in the customer choices, but with nontrivial effects in the bar 
profit. 

A model that fits these constraints is presented in [1] and considers how individual 
cockroaches form groups that lead to the optimum benefit of each individual without any 
communication among them. Each individual cockroach can be either exploring the 
environment or resting inside a shelter. For any given exploring cockroach the probability 
it will join shelter i (Ri) is given by equation 1.  −=
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In equation 1, µ represents the kinetic constant for a cockroach to leave its exploring 
state and enter a shelter; xi is the current occupancy and S is the total shelter capacity. 
The chance of a cockroach entering a shelter is maximum when the shelter is empty and 
decreases linearly with the occupancy. 

The other influence in the individual cockroach is its chance of leaving a shelter once it is 
inside. It is given by equation 2.  

Parameter θ represents shelter quality; ρ is related to total carrying capacity of shelter; xi 
and S have the same meaning as in equation 1 and n represents the level of social 
interaction among cockroaches. When n is equal to 1, there is no social interaction and 
all shelters tend to hold the same number of cockroaches at the end of experiment. 

The correspondence we explore is then from cockroaches to customers and shelters to 
bars. We used θ and ρ constant among all bars. In the simulations described in section 3 
we used constant values of µ and S equal for all bars. 

All simulations were run over a period of 100,000 time steps, where each customer agent 
chooses to act in each time step. 

The rate of customer entrance in the simulation affects its final result. If the customers 
keep coming into the simulation up to its end, there is not enough time for the bars 
occupancy to converge and the results are misleading2.  We chose a beta distribution 
over the first third of the total number of events with a = 3 and b = 5, as show in 
equation 3. 

                                                
2 Besides, this is not a reasonable assumption, as people tend to concentrate on the beginning of the 
night to leave home and celebrate. 



  

In the simulation where all agents begin to search for bars at time = 0, the final result is 
identical to the one obtained with distributed activation. The dynamic of bar occupancy, 
however, is altered and the results to bar owners are misguiding. It was therefore 
abandoned in our simulations. 

3. Results 

The parameters used were µ=0.001; θ=0.01; n=2; ρ=1667 (see [1]). Every result 
presented here was averaged over 30 runs. The number of bar agents was picked from 
the interval [2, 10], and the number of customer agents was in the interval [20, 1.2*T], 
where T is the sum of the capacity of all bars, unless otherwise stated. 

3.1. Bar occupancy over time 

The first set of tests was performed to observe the evolution of bar attendance over time. 
In these simulations, there are 50 customer agents and 3 bar agents. Each bar has a 
capacity of 40 customers. Figure 1 shows the results of 2 individual simulations. Note 
that it is not relevant what individual bar is related to each line, since the bars are all 
equal. 

 
Figure 1 - Bar occupancy over time. The graphics sh ow two simulation results 
with 50 customer agents and 3 bar agents. Each line  represents one bar, and y 
axis is the number of customers that were in the ba r at each time step. 

In the case shown on the left corner of Figure 1, when the agents start activating, we can 
see the growing occupancy of bar 1. When bar 1 is about 2/3 full, and the number of 
activated agents continues to increase, they start to enter bars 2 and 3. However, the 
total number of agents is not enough to fill 3 bars, so the best global solution is to use 
only 2. Indeed, in time 40.000, the agents start to migrate from bar 3 to bar 2. Finally, 
the system reaches a stable state with bars 1 and 2 occupied and bar 3 empty. It is 
important to note that the customer agents do not know the total number of customers 
or bars. Still, they are able to reach a global solution that fits 2 constraints: (i) use the 
minimum necessary number of bars and (ii) distribute themselves evenly between the 
chosen bars. Up to this point, our model shows results similar to those in [1]. 



  

3.2. Bar occupancy versus total number of customers 

 
Figure 2 - Bar attendance X Number of customers. a)  Average final bar 
occupancy with 2 bars, as the number of customer in creases. Each point in 
this plot corresponds to the average result of 30 s imulations. Vertical lines 
show standard deviation. b) Vertical bars show the number of times some 
customer entered the bar at each time interval. c) Average final bar occupancy 
with 3 bars. 

The next step is to investigate the relation between the total number of agents and the 
number of bars occupied. To do so, we ran several simulations changing these 
parameters and observing the results. An important preprocessing step on the data in this 
case is to sort the bars (without loss of generality) according to their final occupancy, in 
order to differentiate between the occupied and empty bars. This happens because, as the 
bars are undistinguishable for the customers, only the number of empty bars is constant 
in the simulations, but any specific bar will be randomly empty or with the same amount 
of customers as other bars. 

Figure 2a shows the final occupancy of two bars (y axis) as the number of customer (x 
axis) is changed. The standard deviation is represented as vertical lines over the points in 
the graphic. The bottom plot represents the number of customer entrances in the bar in 
each time interval. Notice that the number of customer entering the bar is approximately 
the same over time, except for the region indicated by the line below the bars in figure 
2b, between 10 and 35 customers. Both bars have a capacity of 30 customers. When the 
number of customer agents is small (0-20), there is always only one bar chosen as the 
populated bar. As the number of agents increase, however, the second bar starts to be 
populated as well.  

The point in Figure 2a where the occupancy of the second bar starts to increase shows 
some distinct features. At first, the standard deviation is very high. This happens because 
it is the frontier between the two regions with distinct behaviors: occupying one bar 
(when the number of agents < 20) or occupying both. On some executions, the agents 
would gather in one bar, while on others they were divided in two. Also worth of note is 
that the bars with smaller occupancy have a higher number of entries. Customers will go 
into the bar, but won't stay long, since the probability to leave is higher (see equation 2).  



  

With more than 2 bars, the results are similar. Figure 2c shows what happens with 3. We 
can see that when the number of customers exceeds 20, they start to occupy two bars, 
and when it reaches 60 (2/3 of the total capacity), all three bars are occupied. 

 

3.3. Analyzing the number of enterings 

We now turn to the point of analysing how many times a bar has been visited by 
customers. We call this the total number of entries of the bar.  

 
Figure 3 - Final bar occupancy and total number of  entries. Each plot shows 
30 simulation results, with bar 1 represented as cr osses and bar 2 as circles. 
Left plot shows low bar occupancy (x axis) and a hi gh number of bar entries (y 
axis). Center plot ilustrates the case where only o ne bar is occupied. With 
more agents on the simulation, the bar occupancy in creases and the number 
of enterings decreases, as shown on the right plot.  

Figure 3 shows two scatter plots representing the total number of entries in a bar (y axis) 
and the final occupancy of the bar (x axis). Bar 1 is represented as crosses and bar 2 as 
circles. Each plot shows the result of 30 runs. 

With 5 agents on the simulation, none of the bars can be fully occupied. The number of 
entrances is high for both bars, indicating that the system is in an unstable state. When 
there are 15 agents, it can be seen that one of the bars is almost always empty, while the 
other shows an average occupation close to the total number of customers. Moreover, 
the number of visits is higher for the empty bar. As we increase the number of agents, the 
clusters representing the two bars start to merge into one, showing that both bars are 
occupied, and the total number of entrances is low.  In fact, when the number of agents 
is 60, both bars are indistinguishable. 

 
Figure 4 - Correlation between number of agents in the bar and number of bar 
entries. Each bar shows the minimum and maximum cor relation, grouped by 5 
agents. 



  

An interesting aspect of the dynamic of bar occupation reveals itself when the number of 
customers in a bar is compared with the number of entrances in the bar. The less 
occupied bars have a higher rate of entrance than the more occupied ones. Figure 4 
presents a graph of the number of agents in a bar and the correlation between this 
number of agents and the number of entries. As presented in subsection 3.2, when the 
total number of agents is close to 20, there is a higher variance on the bar occupancy. 
This fact is reflected in figure 4, where the correlation is (negative) strongest precisely 
close to 20 agents. 

4. Extending the Model 

The results presented so far show that the cockroach model can lead to the optimal 
selection of bars in an autonomous way. However, it lacks the capacity to accomodate 
distinct individual behaviours. In order to include the individual preferences of each 
agent, the model had to be extended. We considered the following effects: 

• There are different kinds of bars, and the agents may like ones better than others; 

• The agents also have characteristics and preferences about other agents’ 
characteristics, seeking agents with certain profiles that match those preferences. 
They may also dislike other certain agents’ characteristics. 

The characteristics of the bars are modeled by a feature vector ω. Each position in the 
vector corresponds to a certain feature, and is equal to +1 if the bar has that feature, and 
-1 otherwise. 

The agents have one feature vector and two preferences vectors. The agent's feature 
vector ϕ is similar to the bar feature vector. The agent's bar preferences vector λB 
describes the types of bar the agent prefers. It has the same dimensionality as ω. The 
values in this vector are in the range [-1, 1], where -1 means that the agent does not like 
bars with that feature, +1 means he likes, and 0 means the feature does not influence 
agent’s choice. The agent's agent-preferences vector λA defines the characteristics of 
other agents that the agent likes (or not) to be with. Its values are also in the range [-1, 
1]. 

Every time an agent visits a bar, it makes an evaluation, given by equation 4: 
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Where X is the set of all agents currently in bar b, n is the number of agents in bar b, ∑|λi| denotes the sum of the absolute value of all components of the vector λ, and PB and 
PA are constants that set the relative weight of bar evaluation and agent evaluation.  

Note that e will always lie in the interval [-1, +1]. If e>0, the bar suits the agent's 
preferences, so its probability of entering it will be higher, as shown in equation 5:  −+=
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The probability Qi of leaving the bar is also affected by the evaluation, but in the inverse 
proportion: 
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PE is the weight that defines the amount of influence the evaluation has on the probability 
of entering or leaving the bar. For example, if PE=0.1, a maximum evaluation of a bar 
(e=1) will increase R (and decrease Qi) by 10%. When the evaluation is 0, the 
probabilities are unchanged. Negative values of e decrease entering and increase leaving 
probabilities. 

5. Further Results 

To test the new model, we simulated a scenario with 130 agents and 8 bars. The bars 
have a capacity of 40 and are of two kinds, B (bars 0-3) and R (bars 4-7). There are 70 
agents that like bars like B, and 60 that like bars like R. The customers also have another 
attribute for which 50 have type A, 20 are B and the ohers are neither A or B. Half the 
agents are male and the oher half, female. 

The inclusion of agents’ preferences into the model preserved the global emerging 
pattern previously presented (using an optimal number of bars to accommodate all 
agents) while having great impact in the agents distribution into the bars. The choice of 
the bar by the agents is directly influenced by agent choice and the weight of its choice. 

Figure 5 presents the distribution two agents (averaged over 30 runs) into the eight 
available bars and the influence of the Agent Evaluation. The two agents were chosen 
because they have an opposite preference vector for bars. The first agent prefers the bars 
[1-4] while the second prefers the bars [5-8]. 

 
Figure 5 – Bar attendance by agents 10(a) and 120(b ). X axis is the P E 
parameter (equation 6), and the vertical bars repre sent the time in each bar.  



  

For small values of weight of agent choice, the amount of time the agent spends in each 
bar does not present any particular trend. As the weight increases, a clear pattern 
emerges, with a clear (opposite) preference in each agent. 

In fact, there is a strong correlation (+0,91) between the weight of agent choice and the 
standard deviation in the bars occupancy, evaluated over all agents. The weight of choice 
also has a strong negative correlation (-0,78) with the number of entrances in each bar, as 
with a higher weight, the agent tend to enter only the bar it prefers and once inside, have 
smaller incentive to leave thus reducing total transit. 
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Figure 6 – Concentration in bars  

If the agents are divided in three groups, with different preferences, their distribution into 
the bars that best fit their preference is presented in figure 6. As the agent evaluation 
weight increases, the agents tend to concentrate in the bars that match their preferences. 

6. Conclusions and future work 

In this paper, we present a model that predicts which bars will be occupied, given the bar 
sizes, attractiveness, total number of customers and the characteristics of agents inside 
the bars. We extend the research presented in [1], by investigating in detail the evolution 
of occupancy over time, with a more adaptable basis that can be simulated to any desired 
number of agents, while preserving the global emergent behavior. 

The individual agent choice related to other agents and bars characteristics produced a 
stark modification in the consumer behavior, providing the basic algorithm with means to 
be used in a number of situations where individual agents cannot communicate, yet they 
profit from the formation of groups with matching characteristics. It is important to note 
that the model provides agents with opportunities to visit new providers, even when a 
satisfying provider has been found, alleviating the problem of local maxima. 

The proposed model reflects important aspects of consumer behavior. Directions for 
future research include implementing an autonomous bar agent with a learning algorithm 
that will provide the bar agent with resources to adapt its bar according to customer 



  

behavior. Also, influence of consumer agent memory of the bars visited before will be 
evaluated.  
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