
A Toolset for Propositional Probabilistic Logic
Paulo S. de S. Andrade1 , José C. F. da Rocha 2 ,

Danillo P. Couto 3 , André da Costa Teves3 , Fabio G. Cozman 3

1 Instituto de Matemática e Estatı́stica da Universidade de São Paulo
Cidade Universitária – São Paulo, SP – Brazil

2Laboratório de Engenharia de Software – Departamento de Informática
Universidade Estadual de Ponta Grossa (UEPG) – Ponta Grossa, PR – Brazil

3Escola Politécnica da Universidade de São Paulo
Cidade Universitária – São Paulo, SP – Brazil

p s s a@yahoo.com.br, jrocha@uepg.br,
danillo.couto@poli.usp.br, andre.teves@poli.usp.br,

fgcozman@usp.br

Abstract. Research in knowledge representation has explored several for-
malisms with logical and probabilistic features. In this paper we present three
tools that support the development of probabilistic logic knowledge bases. The
first tool is a generator of probabilistic propositional satisfiability (PSAT) prob-
lems that is useful in testing algorithms. The second tool is an consistency
checker for PSAT that handles probabilities over CNFs. The third tool is a con-
venient editor for PSAT problems that simplifies the construction of knowledge
bases.

Resumo. A pesquisa em representação de conhecimento têm explorado diver-
sos formalismos envolvendo aspectos lógicos e probabilı́sticos. Neste artigo
apresentamos três ferramentas que dão suporte ao desenvolvimento de bases de
conhecimento lógico-probabilı́sticas. A primeira ferramenta é um gerador de
problemas de satisfatibilidade probabilı́stica proposicional (PSAT), que é útil
para testar algoritmos. A segunda ferramenta é um verificador de consistência
em PSAT que lida com probabilidades sobre CNFs. A terceira ferramenta é
um editor de problemas PSAT que simplifica a construção de bases de conheci-
mento.

1. Introduction
Research in probabilistic logic seeks to define formal languages that can handle logical
sentences and probabilistic assessments [Nilson 1986b]. If successful, this effort can lead
to a major computational framework for knowledge representation and reasoning. Logical
languages are ubiquitous in AI, and probabilistic inference has had a central role in AI
systems; thus the union of these methodologies holds great potential.

Research efforts in probabilistic logic date from Boole’s work [Hailperin 1986];
the topic has resurfaced often [Andersen and Hooker 1994, Hansen et al. 1991,
Nilson 1986b, Richardson and Domingos 2006], but despite this lasting interest in
the subject, it is not easy at all to find software packages that support probabilistic

logic inference. In fact, this is hard even for the propositional probabilistic satisfiability
(PSAT) problem. In our work on knowledge representation, we have noticed a particularly
troublesome lack of computational support for PSAT in three areas:

• When testing algorithms, it is important to randomly generate examples of proba-
bilistic logic knowledge bases; however there is no discussion of this topic in the
literature, and no algorithms are available.

• There are no available implementations of the classic column generation algorithm
for PSAT.

• There is no simple and convenient editor for PSAT problems.
In this paper we present tools that focus on each of these topics. We present a PSAT gener-
ator (Section 3), a consistency checker (Section 4), and an editor (Section 5). The consis-
tency checker described in Section 4 contains an enhanced implementation of Hansen et
al.’s algorithm [Hansen et al. 1991]; we enhance that classic algorithm so that it handles
probabilities over conjunctive normal forms in a highly predictable and efficient manner.
As the editor is capable of handling assessments over arbitrary sentences, the result is a
system that can deal with general probabilistic logic bases.

2. Background
Propositional logic, given its relatively simple sintax and semantics, offers an useful start-
ing point for knowledge representation [Russell and Norvig 1995]. The basic syntatic
element in this logic is the concept of propositional variable or atomic formula that can
assume one of two values, true or false. Atomic formulas are denoted by lower case let-
ters as p, q, r and so on. A literal is either an atomic formula or its negation. Literals are
indicated by indexed upper case letters as A1, A2, and so on. In this text compound for-
mulas are indicated by the greek letters φ, ψ and θ with or without indexes. A disjunction
of literals is a clause. A Conjunctive Normal Form (CNF) is a conjunction of clauses,
denoted by C1 ∧ . . . Cr where Ci is a clause.

The semantics of any expression in propositional logic depends on a mapping
that establishes a correspondence between the variables in the formula to facts in a tar-
get domain. A truth assignment is a vector assigning either value true or false to each
propositional variable of an expression (these assignments are often called possible worlds
[Nilson 1986a]). If we have n propositional variables, there are 2n truth assignments. A
conjunctive formula is true if all its component formulas are true, otherwise it is false. A
disjunctive formula is false only if all its component formulas are false, otherwise it is
true. A negative formula is true (false) if its component formula is false (true).

A formula φ is satisfiable if it is true in some possible world ω; then ω is a model
for φ (M(φ, ω)). If φ has no model it is unsatisfiable. A formula ψ entails a formula θ
(ψ |= θ) if every model for ψ is a model for θ. An inference ψ ` θ determines whether a
premise ψ entails a conclusion θ. The satisfiability problem (SAT) is: given a CNF ψ with
m clauses C1, . . . Cm, is ψ satisfiable? This question has a strong relationship to logic
entailment and logic inference because ψ |= θ iff ψ ∧ ¬θ is unsatisfiable. That is, it is
possible to approach inference as SAT problem. A particular kind of SAT problem is the
k-SAT, a SAT which every clause has k literals.

An important limitation of propositional logic, from a point of view of knowl-
edge representation, is its inability to deal with uncertainty. As stressed by Neapolitan

[Neapolitan 1990]: “We also must acknowledge that in some cases the truth of certain
premisses may be suggestive of the truth of a conclusion, but not imply it conclusively.”
To overcome this difficulty, propositional probabilistic logic extends propositional logic
by attaching probability assessments to formulas. In this context, P(φ) denotes the mea-
sure of all assignments satisfying φ; that is, P(φ) =

∑
ω:M(φ,ω) P(w).

The counterpart of SAT in probabilistic logic is the probabilistic satisfiability prob-
lem (PSAT) [Georgakapoulos et al. 1988]. The PSAT structure is similar to SAT but it
poses the following question: is there a probability distribution satifying a set of m as-
sessments that assign probability interval to P(φi) for a set of formulas {φi}

m
i=1 over n

propositions.
If the assessments are such that no probability distribution p over truth assign-

ments can be specified, the assessments are inconsistent. The consistency problem of
probabilistic satisfiability is: given a set of assessments, determine whether they are in-
consistent or not. The inference problem of probabilistic satisfiability is: given a set of
assessments and a formula φ, obtain the infimum of P(φ) — that is, the infimum value
α such that the constraint P(φ) = α and the assessments are consistent. The infimum is
denoted by P(φ) and called the lower probability of φ. This infimum is attained because
probabilitisc assessments on the logical formulas and constraints ∑

ω P(ω) = 1, P(ω) ≥ 0
define a bounded polyhedron in the space of probability measures over truth assignments.
Like SAT, PSAT is a NP-complete [Georgakapoulos et al. 1988].

3. Generating PSATs
The test of PSAT algorithms requires the ability to generate PSAT problems with specific
features. Here the goal should be to cover the space of PSAT problems as evenly as pos-
sible; to generate satisfiable and non-satisfiable problems; to be able to vary parameters
such as number of clauses, number of variables. We start by noting that it is not hard to
generate inconsistent PSAT problems; in fact, in our initial experiments we noted that just
assigning random values in [0, 1] to randomly generated sets of clauses1 is very likely to
generate an inconsistent PSAT. In fact, our preliminary failed efforts to generate consis-
tent PSATs led us to consider the algorithm presented in this section. The algorithm was
designed to guarantee that every generated instance is consistent, and that the generation
procedure is reasonably fast. The algorithm is implemented in the package PSATGen
(available from the second author).

The basic idea we use is to attach probabilities to logical sentences by comput-
ing probabilities in Bayesian networks. A Bayesian network consists of a directed acyclic
graph (DAG) where nodes represent random variables, and arcs denote conditional depen-
dences [Pearl 1988]. Let X be the set of n random variables associated with nodes in a
Bayesian network; thenXi ∈ X is a variable, andD(Xi) and pa(Xi) areXi’s descendants
and parents in the DAG, respectively. This formalism assumes that Xi is conditionally in-
dependent of X \D(Xi) when the joint state of variables in pa(Xi) is known. If Xi is a
root nodes it stores the marginal distribution of Xi; if that is not the case, Xi stores a local
distribution function p(Xi|pa(Xi)) that defines a collection of conditional distributions

1Clauses, and more generally k-SATs, can be easily generated, for example with makewff (downloadable
from www.cs.rochester.edu/u/kautz/walksat/). We use this software in PSATGen whenever we need to
generate a k-SAT with n variables and m clauses.

p(Xi|pa(Xi) = pa1) . . . p(Xi|pa(Xi) = par), one for each joint instantiation of pa(Xi).
The structure of a Bayesian network encodes a joint probability distribution on X:

p(X) =
n∏

i

p(Xi|pa(Xi)) .

Marginal and conditional probabilities of every variable can be computed by belief updat-
ing algorithms.

PSATGen computes the probability p(Cj) of a clause Cj, with literals A1, . . . Ak

defined on atoms p1, . . . pk of a CNF φ, using a three step procedure. First, it produces a
Bayesian network N with n (n ≥ k) variables with categories true and false and adds a
new binary variable named Yl in N for each negative literal Al in Cj. The new variable
is made a child of Xl and its conditional probabilities are set to P(Yl = true|Xl =
true) = 0, P(Yl = false|Xl = true) = 1, P(Yl = true|Xl = false) = 1 and P(Yl =
false|Xl = false) = 0. These assigments encode the negation operator between Yl and
Xl [Pearl 1988]. Second, a new binary variable Zj is added to N . This variable represents
the clause Cj and for each Al in Cj it is made a child of the variable Xl if Al is positive,
otherwise it is make a child of Yl . The local distributions of Zj are defined as follows. Let
paz to denote a joint instantiation of Z’s parents. If the truth table of paz is evaluated as
true then P(Z = true|paz) = 1 and P(Z = false|paz) = 0; if not P(Z = true|paz) = 0
and P(Z = false|paz) = 1. Finally, the PSATGen runs the belief updating algorithm on
Z to compute the marginal P(Z = true) and associates this value to Cj.

Algorithm 1 The PSATGen algorithm
Input: Let n, k, s and c be the numbers of variables, the number of literals in an clause,

the max number of conjunctive sentences in a PSAT and the number of clauses per
sentence; let z be the number of PSATs that must to be generated; additionally, let
w, e and d be the induced width, the max number of edges and the max degree of an
node in the Bayesian networks generated by BNGenerator.

1: Generate z Bayesian networks with n variables, max-induced-width w, max-degree
d and with no more than e edges.

2: Set i := 1.
3: repeat
4: m = c ∗ r.
5: Generate a k-SAT with n variables and m clauses indicated by C1, ..., Cm.
6: Let N be the ith network generated with BNGenerator.
7: a := 1.
8: for j := 1 to s do
9: Randomly generate an integer l ∈ {1..c}.

10: define φ as the CNF formed by the clauses Ca ∧ . . . Ca+b−1 from the k-SAT.
11: Represent φ in N by adding nodes as describe previously.
12: Compute the marginal P(φ) in N as described before.
13: Associate φ to P(φ).
14: end for
15: Save the resulting PSAT.
16: until i > s.

The probability of a CNF φ with clauses C1, . . . , Cm is calculated similarly. First,
the clauses of φ are inserted in a given Bayesian network N as previously described. Then
a new binary variable W is added to N . The local distributions of W are generated as
follows. Let paw be a joint instantiation of variables Z1 . . . , Zm. As before, if paw is
evaluated as true it causes P(W = true|paw) = 1 and P(W = false|paw) = 0; if not
P(W = true|paw) = 0 and P(W = false|paw) = 1. This assessement encodes the
conjunction operator among the clauses in φ. The value of P(W = true) is obtained by
running belief updating.2

To generate randomly connected Bayesian networks, we use the BNGenera-
tor package [Ide and Cozman 2002]. This package generates samples of Bayesian net-
works with control on several parameters: induced-width, node degree, number of
edges. In particular, induced-width controls the complexity of the generated networks
[Dechter 1996, Zhang and Poole 1996]. As the BNGenerator package guarantees that
samples are generated with (asymptotically) uniform distribution, the PSATGen package
does not introduce biases in the complexity of generated PSATs.

4. Checking PSATs consistency
In this section we consider the following statement of the PSAT problem. Consider given
a set S of m logical sentences, all of them in CNF, where S = {S1, . . . , Sm}, and where
Si consists of clauses in a set C of q clauses, where C = {C1, C2, . . . , Cq}, defined over n
logical variables X = {x1, x2, . . . , xn}; and given a vector π ∈ <m of probabilities. We
then have 2n possible worlds, referred to as wj. We define a matrix A(m+1)×2n , with row
a0 a vector containing only ones, and all other entries ai,j equal to 1 if Si is true in wj and
0 otherwise. We also define a vector d = [1, πT]. The decision form of PSAT is:

min 0p
subject to

Ap = d

p ≥ 0

(1)

where the constraint formed by a0 and d0, and the constraint p ≥ 0 express the fact that
p must be a probability distribution. That is, to decide whether π is consistent, we must
verify whether Expression (1) has a feasible solution.

The method of column generation [Hansen et al. 1991] circumvents the need to
process the exponential number of columns of A, by requiring the iterative solution of
two problems associated with Expression (1), as in the revised simplex algorithm:

• the Restricted Master Problem (RMP) is a linear program where we have a smaller
number of columns than in Expression (1), and where we produce the dual optimal
values for all variables fixed as basic.

• the Subproblem (SP) is an optimization on binary variables, where we start from
the dual optimal values produced by the RMP, and we produces the column that
must enter the basis of the RMP.

2This procedure is similar to Dechter and Smyth’s method to compute Boolean queries in Bayesian
networks [Dechter and Smyth 2000]. In our implementation, Bayesian networks are handled through the
JavaBayes package, downloadable from www.cs.cmu.edu/˜javabayes/Home.

The RMP and the SP are iterated over and over, until we reach either an RMP solution
with value zero (we stop with consistency), or an SP with no negative reduced costs (we
stop with inconsistency). We denote by B the set of indices of columns in the current
basis of the RMP; N is the set of indices of columns not in the current basis of the RMP.

To solve Expression (1), it is sufficient to implement the phase 0 of the revised
simplex method, thus minimizing the sum of artificial variables added to constraints. The
SP to be solved, assuming that B and N are previously fixed, is:

min
j∈N

−cBA
−1
B Aj = min

x∈{0,1}
−u0 −

m∑

i=1

uiSi (2)

where u = cBA
−1
B is the current vector or dual variables resulting from the solution of

the RMP, and cB refers to the coefficients of the objective function for the RMP.
At this point we have a nonlinear problem, specified by Expression (2). We wish

to reduce this problem to an linear integer program. The method suggested by Hansen
et al. [Hansen et al. 1991] is to first transform the sentences Si to nonlinear expressions
using the following equivalences:

xi ∨ xj ≡ xi + xj − xi × xj, xi ∧ xj ≡ xi × xj, ¬xi ≡ 1 − xi. (3)

The resulting nonlinear program is then reduced to a linear integer program. However,
these equivalences are computationally very cumbersome: they produce a nonlinear pro-
gram with a number of terms that cannot be predicted from Expression (2) alone.

We now propose a different reduction of Expression (2) to linear integer program-
ming. We first include new structural variables yi with associated zero coefficient in the
objective function, so as to deal with the negation of clauses — as a negated clause gen-
erates a single multilinear term. These new variables assist in the calculation of values
for variables zi (those evaluate to Si, as zi manipulates the conjunction of variables ¬yi in
Si). Thus the resulting SP, using this procedure and the second and third equivalences in
Expression (3), is:

minx∈{0,1} −u0 −
∑m

i=1 uiSi +
∑q

i=1 0
∏

j∈C−

i

xj

∏
j∈C+

i

¬xj =

minx∈{0,1} −u0 −
∑m

i=1 ui

∏
j∈Si

¬yj +
∑q

i=1 0yi =
minx∈{0,1} −u0 −

∑m
i=1 uizi +

∑q
i=1 0yi +

∑n
i=1 0xi

(4)

where C−
i and C+

i define the sets of indices of negated and non-negated variables that
appear in clause Ci.

These operations aims at producing a linearization by introducing yi and zi, such
that every feasible solution for them takes on the value of the corresponding multilinear
term associated with them. In Expression (4), if for each multilinear term we apply a
linearization scheme as follows:

r
∏

j∈J

bj, (5)

0 5 10 15 20r
0

50

100

150

t

n=18, k=3

0 5 10 15r
0

0,5
1

1,5
2

2,5
3

t

n=50, k=3
n=50, k=4
n=50, k=5

Figure 1. Left: Time (seconds) to check satisfiability of consistent PSATs. Right:
Time (seconds) to check satisfiability of inconsistent PSATs (note that these
problems required less effort).

where r ∈ < and bj ∈ {0, 1} for j ∈ J , then Expression (5) is equivalent to:

rt

subject to
t ≤ bj, j ∈ J

t ≥
∑

j∈J bj − |J | + 1
t ≥ 0

(6)

where |J | denotes the number of elements of J . Note that if ¬bj appears in Expression
(5), then it is replaced by (1 − bj) in Expression (6).

At the end of the linearization procedure, the resulting SP to be exactly solved has
(n+ q +m) variables and (q +m+

∑q
i=1 |Ci|+

∑m
i=1 |Si|) constraints. There is also the

constraint that variables x are binary, and the constraint that all other variables are non-
negative. We note that, in any given iteration of column generation, the call to an SP with
vector u generates the column that is to be used in the RMP by collecting the variables z
(when the optimal value of the SP is negative).

This method has been implemented in a software package called Geracol (avail-
able from the first author). The package generates the RMP and SP, produces the linear
and linear integer programs, and then makes calls to the CPLEX solver from ILOG. It is
possible to replace the CPLEX solver by a free solver, even though the performance of
CPLEX tends to be substantially better than existing options.

To illustrate the Geracol package, we present a summary of several runs on consis-
tent PSAT problems in Figure 1. The figure also shows tests with larger but inconsistent
PSAT problems — in fact we have noted that inconsistent problems are generally easier
than consistent ones. This is further evidence that our PSATGen generator is necessary
to avoid tests that are excessively easy on consistency checker. We also note that in our
preliminary tests we have not seen the phenomenon of “phase transition” that is known to
occur in SAT. We leave for the future a complete investigation of this possibility.

5. The PPL Editor
The construction of a probabilistic logic knowledge base is not a simple task. Formulas
must be inserted; assessments associated with them; consistency must be checked, and

revisions must be made continuously. Currently the only system that allows interactive
development of a probabilistic logic base, to the best of our knowledge, is the Check
Coherence (CkC) package. CkC is distributed for noncommercial use, for Windows plat-
forms only, at www.dipmat.unipg.it/˜upkd/paid/software.html. The package deals with
PSAT and allows conditioning on events of zero probability, a possibility we avoid in this
paper. CkC asks the user to enter each formula and assessment in a sequence of steps, us-
ing an graphical interface to guide the process. While the CkC package is useful and very
general in its operation, we find that the manipulation of formulas is excessively rigid and
a bit difficult at times.3

We have thus decided to investigate a different strategy to edit probabilistic logic
bases. Our idea was to start from a well known prototyping language, and add features to
this language so that it can serve as a convenient, simple and easy-to-learn editor of prob-
abilistic logic bases. We wanted to create a tool that could be easily extended by others;
that could be freely distributed; and that could run in a variety of operating systems. After
a comparative analysis of several prototyping languages currently available, we settled on
the Python language (www.python.org), as it has a clean syntax, a free implementation
and an associated development system. The remainder of this section describes a package
we have written in Python and that allows easy development of probabilistic logic bases.
The package is called PPL (for Propositional Probabilistic Logic), and can be obtained
from the third and fourth authors.

In the PPL package, the user types in arbitrary propositional formulas, using an
intuitive syntax (described in the system manual). The user interacts with the package
using the friendly Python editor (the IDLE system), and the user can benefit from all
Python facilities such as memory control and string processing. The package can call
functions that translate formulas into CNF if so desired. The user can attach either prob-
abilities or probability intervals to formulas, and check consistency at any point in time.
To check consistency, the package executes calls to the consistency checker described in
the previous section.

Consider the following typical interaction with the system, where formulas are
defined, translated into CNF, associated with probabilities and probability intervals, and
then consistency is verified:
>>> import PPL
>>> s1 = ’a <=> (b—c)’
>>> s1
’a <=> (b—c)’
>>> s2 = PPL.toCNF(s1)
>>> s2
’((˜b | a) & (˜c | a) & (b | c | ˜a))’
>>> PPL.p(s1, 0.5)
>>> s3 = ’d | (e & f) | g’
>>> s3

3We note that CkC contains an inference engine; thus the CkC package is similar to the editor we
describe in this section plus the consistency checker discussed in the previous section. We also note that
inferences with CkC is a slow process: in our tests, we observed that it usually takes hours to obtain
inferences for relatively small problems (say 20 variables/50 assessments).

’d | (e & f) | g’
>>> s4 = PPL.toCNF(s3)
>>> s4
’((e | d | g) & (f | d | g))’
>>> PPL.p(s3, 0.3, 0.8)
>>> PPL.checkCoherence()
Coherent!

6. Conclusion
In this paper we have presented three contributions:

• An algorithm for random generation of consistent PSAT problems (we stress that
inconsistent PSAT problems can be easily generated, by producing a random SAT
and then assigning probabilities to clauses randomly).

• A consistency checker that implements the classic column generation algorithm
for PSAT consistency verification, enhanced with a novel method that handles
assessments over CNFs.

• An editor for PSAT that is extensible, portable, easy-to-use, and freely distributed.
These tools are important in practice as researchers gradually address knowledge bases
that mix logical sentences and probabilistic assessments. Given the lack of software pack-
ages that support this task, we expect the tools presented here to be useful, however mod-
est they may be in their current stage.

Acknowledgements
This work has been supported by FAPESP grant 2004/09568-0; the third author is sup-
ported by FAPESP grant 06/58252-1; the fourth author is supported by FAPESP grant
06/58251-5; the fifth author is partially supported by CNPq grant 3000183/98-4.

References
Andersen, K. A. and Hooker, J. N. (1994). Bayesian logic. Decision Support Systems,

11:191–210.
Dechter, R. and Smyth, P. (2000). Processing Boolean queries over belief networks.

Technical Report www1.ics.uci.edu/ dechter/publications, ICS.
Georgakapoulos, G., Kavvadias, D., and Papadimitriou, C. (1988). Probabilistic satisfia-

bility. Journal of Complexity, 4:1–11.
Goodrich, M. T. and Tamassia, R. (2002). Algorithm Design: Foundations, Analysis and

Internet Examples. John Willey and Sons.
Hailperin, T. (1986). Boole’s Logic and Probability. North-Holland, 2nd edition.
Hansen, P. and Jaumard, B. (2000). Probabilistic Satisfiability, Les Cahiers du GERAD,

G-96-31, Montreal.
Hansen, P., Jaumard, B., and de Aragão, M. (1991). Column generation methods for

probabilistic logic. ORSA Journal on Computing 3:135–148.

Pearl, J. (1988). Intelligent Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1st edition.

Ide, J. S. and Cozman, F. G. (2002). Random generation of Bayesian networks. In Proc. of
the XVI Braziliam Symposium on Artifical Intelligence, pages 99–99. Springer-Verlag.

Nilson, N. (1986a). Probabilistic logic. Artificial Intelligence, 28:71–87.
Nilson, N. J. (1986b). Probabilistic logic. Artificial Intelligence, 28:71–87.
Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms

and Complexity. Prentice Hall.
Dechter, R. (1996). Bucket elimination: A unifying approach for probabilistic inference

algorithms. In Proc. of 10th Annual Conference on Uncertainty in Artificial Intelli-
gence, pages 211–219. Morgan Kaufmann.

Neapolitan, R. E. (1990). Probabilistic Reasoning in Expert Systems. Prentice Hall, 1st
edition.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning,
62(1-2):107–136.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Prentice
Hall, 1st edition.

Zhang, N. L. and Poole, D. (1996). Exploiting causal independence in Bayesian network
inference. Journal of Artificial Intelligence Research, 5:301–328.

