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Abstract. We introduce a restricted first-order language that combines logical

sentences and probabilistic assessments in finite domains. In this preliminary

effort to construct a general device for knowledge representation, we present

the language and an inference algorithm based on propositionalization and re-

duction to multilinear programming.

Resumo. Este artigo introduz uma linguagem de primeira-ordem restrita que

combina sentenças lógicas e asserções probabilı́sticas em domı́nios finitos.

Neste esforço preliminar para construir um instrumento geral de representação

de conhecimento, apresentamos a linguagem e um algoritmo de inferência

baseado em proposicionalização e redução para programação multilinear.

1. Introduction

Combinations of logic and probabilities hold a great deal of promise; however, they also

present enormous challenges. While comprehensive probabilistic logics can claim a spe-

cial place in knowledge representation with regard to expressivity, such logics pose seri-

ous difficulties concerning complexity. In fact, a rather general combination of first-order

logic and probability theory has already been defined by [Halpern 2003], together with

results suggesting how difficult inference may be in such a general language.

We look for a language that combines features of first-order logic and probability

theory while still offering some hope of tractability. We start by constraining ourselves

to finite and known domains. We then work towards the use of independence relations as

powerful constraints on the possible models of sentences. In doing so, we intend to start

an investigation towards first-order probabilistic logics that exploit independence relations

for inference in a clever way. Our preliminary ideas in this direction are reported in this

paper.

The remainder of the paper is organized as follows. In Section 2, we discuss

probabilistic logics and their linear and multilinear inference algorithms, particularly for

PPL networks — a recently introduced model for propositional probabilistic logic with

independence constraints expressed in graphical form. In Section 3 we present our main

contributions, focusing on restricted aspects of first-order logic, and deriving solutions for

probabilistic entailment. We conclude with a brief discussion of our results, indicating

some open questions and future work.



2. Probabilistic Logic and PPL Networks

The combination of logic and probabilities has been extensively studied in the last

decades. This promising mixture has old roots and has been rediscovered a few times.

Nilsson’s probabilistic logic [Nilsson 1986] has been a significant influence, as well as

the very general languages proposed by [Halpern 2003].

We may, in rough terms, divide existing languages that claim to be “first-

order (or subsets thereof) probabilistic logics” in two groups. In one group, prob-

ability assessments are rather flexible and independence relations are mostly ig-

nored. Nilsson’s and Halpern’s logics are examples, as are several other for-

mal languages [Lukasiewicz 2001, Giugno and Lukasiewicz 2002, Ognjanović 2006]

and programming languages based on probabilistic logic [Ng and Subrahmanian 1992,

Lakshmanan and Sadri 1994, Lukasiewicz 1998]. In the second group, probabilis-

tic assessments are required to specify a unique distribution and independence is

an essential concept; several of these languages are known as probabilistic rela-

tional models [Jaeger 1997, Ngo and Haddawy 1997, Lukasiewicz 1998, Jaeger 2001,

Getoor et al. 2001, Poole 2003, de Salvo Braz et al. 2006]. The second group of lan-

guages is more restricted than the first in the kinds of logical sentences and prob-

abilistic assessments that are allowed. Often the languages in the second group

are based on graphical models such as Bayesian networks or Markov random fields

[Cowell et al. 1999, Pearl 1988], and an attempt is made to transfer the excellent com-

putational properties of these graphical models to the languages.

In this paper we wish to develop a language that is restricted in some important

respects (finite and known domain, decidable fragment of first-order logic based on re-

lations) but that still allows quite general sentences to be expressed. We also wish to

consider a language where probabilistic assessments can include independence relations

— and we hope to exploit these relations to reduce the computational effort necessary for

inference.

In the remainder of this section we present some basic elements of probabilistic

logic. We do not attempt to review the (rather large) literature on first-order probabilistic

logic; rather, our intention is to indicate the main algorithmic tools one can actually use

to handle progressively general probabilistic logic. Thus we start with propositional logic

without independence, and move to languages based on graphical models. These tools

will be used later when we deal with our restricted first-order logic.

Basically, in a probabilistic logic knowledge base each formula is associated with

a probability interval. The conditional probability of a formula given other formula may

be specified as well. The probability that a formula is true is the sum of the probabili-

ties of all the models (or possible worlds, interpretations, truth assignments) in which the

formula is true. The inference problem (probabilistic entailment) is either to determine

whether the knowledge base is satisfiable (that is, whether or not there is a probability

distribution over all models, that satisfies the logical sentences and the probabilistic as-

sessments) or to find the probability of a given formula.

Consider first propositional probabilistic logicwithout independence relations. To

write a general linear programming program for inference, we follow the notation of

[Chandru and Hooker 1999]. Suppose there are n atomic propositions, which give rise to



N = 2n possible worlds. Let the vector p denote a probability distribution over all possible

worlds. Suppose there are m formulas with probability assessments. Their lower and

upper bounds are π = (π
1
, . . . , π

m
) and π = (π1, . . . , πm), respectively (wemay have π = π).

In addition, there are lower bounds ρ and upper bounds ρ for conditional probabilities

P(G1|H1), . . . , P(Gm′ |Hm′), where Gi and Hi are formulas. To evaluate a range for the

probability of a formula G0, where c is the indicator vector of which worlds satisfy G0,

the linear model can be written as

min /max cT p (1)

s.t. π ≤ Ap ≤ π

Bp ≥ 0

Bp ≤ 0

eT p = 1, p ≥ 0,

where e is a vector of ones, the matrix A has dimension N × m (each line is an indicator

function of those possible worlds that satisfy the line’s formula), and matrices B and B

specify conditional probabilities. That is, ai j = 1 if Gi is true in world j, and ai j = 0

otherwise. Similarly,

bi j =



















1 − ρ if Gi ∧ Hi are true in world j

−ρ if Gi is false and Hi is true in world j

0 otherwise

where ρ is ρ for B and ρ for B. The main algorithmic difficulty here is the size of the ma-

trices that must be manipulated; the most efficient algorithms to date employ the Column

Generationmethod to avoid explicit generation of matrices [Hansen and Jaumard 1996].

Independence of events and variables is an extremely powerful source of prob-

abilistic knowledge. Therefore it is desirable to incorporate independence assumptions

in the knowledge base. In principle, independence relations should be useful, because

they might allow the probabilities in the linear program above to be written in factorized

form; that is, they should lead to a reduction on the size of matrices manipulated during

inference. However, the problem is that probabilistic logic becomes significantly harder

when independence relations are present because they introduce nonlinear constraints that

destroy the linearity of the Program (1) [Chandru and Hooker 1999].

However, it is possible to exploit independence relations if they are introduced in

an organized fashion — similarly to the way they are expressed in Bayesian networks.

We now review a recent proposal for the combination of propositional logic and proba-

bility, the PPL networks [Cozman et al. 2006, Cozman et al. 2007]. In this model, inde-

pendence relations are represented through a directed acyclic graph G, where each node

represents a proposition/variable Xi in X. The parents of Xi are denoted by pa(Xi). Each

variable Xi is assumed independent of its nondescendants nonparents given its parents

(the Markov condition). This leads to the unique factorization

P(X) =
∏

i

P(Xi|pa(Xi)). (2)

Thus our knowledge base is now composed of logical formulas, probabilistic assess-

ments, and independence relations encoded in the graph G. Note that this is far more



general than a standard Bayesian network, because we accept general logical formulas (in

propositional logic) in the knowledge base, and we do not require that all probabilities in

Expression (2) are specified precisely.

The complete model for PPL networks is as follows. A PPL network consists of a

triple (G,L,A), whereG is a directed acyclic graph with n nodes, each one identified with

a variable Xi; L is a list of formulas; A is a list of assessments α jP(ϕ j) ≤ P(φ j ∧ ϕ j) ≤

β jP(ϕ j), where φ j and ϕ j are formulas; all formulas must contain variables in G. In this

paper we do not demand the formulas to be in conjunctive normal form (CNF), although

there is a performance gain in doing so.

Inference in a PPL network relies on an augmented graph G′, which has G as its

subgraph and has an additional node for each distinct formula appearing in L or in an

assessment ofA. These nodes are called formula nodes and have as parents the variables

that define them. The truth-table of their associated formulas are used to specify their

conditional probability tables (CPTs). With this augmented graph, every constraint on

probability values of formulas specified in L orA can be encoded as joint queries in the

network, because each formula in L is just a network query, as it is each sub-formula in

assessments ofA (they appear now as formula nodes in G′).

Note that the factorization (2) leads to a reduction on the number of optimization

variables necessary to produce an inference (when compared to Expression (1)). There

is no need to deal with all 2n optimization variables anymore, as we can expressed any

variable using equation (2). On the other hand, multilinear constraints for specifying inde-

pendence relations are introduced. Approximation techniques [Nilsson 1986], nonlinear

methods [Andersen and Hooker 1994] and more recently exact multilinear programming

algorithms [Cozman et al. 2006] must then be employed.
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Figure 1. Example of Propositional Probabilistic network.

The augmented graph G′ will have nodes associated with propositions/variables

and with formulas. Figure 1(a) shows variable nodes A, B and C, and their dependencies

(A→ B and C → B). Figure 1(b) shows formula nodes φ1(A, B,C) and φ2(A,C) and their



dependencies (φ1 → φ2). We note that in previous publications [Cozman et al. 2006],

nodes in PPL networks are only associated with propositions, and there are no edges “be-

tween” formulas (this assumption was adopted to reduce the complexity of inference).

Here we remove this restriction. Thus there may exist dependencies between variables

(propositions) or between formulas. For instance, the arc from φ1 to φ2 indicates a de-

pendence between them. We may also have P(φ2 | φ1) ≥ 0.3, or even P(φ1) ≤ 0.4. Any

assessment (conditional or not) between variables and formulas is valid. The only manda-

tory dependencies are between formulas and variables they contain, and are introduced

during the construction of augmented graph G′ (Figure 1(c)).

3. A Probabilistic Relational Language with Independence

The networks described in the last section are restricted to propositional logic; this is

obviously a very limited language for knowledge representation. We now propose to lift

PPL networks to a setting where first-order constructs, such as relations and quantifiers,

are present. The task is not entirely obvious: on one hand, the underlying graph of a

PPL network represents independence relations amongst variables; on the other hand,

sentences in first-order logic represent hard dependencies amongst variables. We must be

careful to create a language that accommodates both formalisms while avoiding clashes.

We propose a restricted first-order model where formulas are combinations of

constants, relations, Boolean operators, quantifiers ∃ and ∀, and logical variables. A

sentence is a formula without free logical variables. The semantics is established using

a domain (a set of individuals), which as stated before, is assumed finite and known. An

interpretation assigns individuals to constants and relations in the domain respectively to

constants and relations in the vocabulary [Nerode and Shore 1997]. More precisely, our

model is defined as tuple (D,S,G,L,A), where D is a finite set of individuals, S is a

vocabulary with constants and relations, L is a list of sentences in S where quantifiers

∀ and ∃ are allowed; G is a directed acyclic graph with n nodes, each one can be an

interpretation of a relation in S or a formula in L; A is a list of assessments α jP(ϕ j) ≤

P(φ j ∧ ϕ j) ≤ β jP(ϕ j) based on formulas in the graph. The graph G imposes a Markov

condition on its elements. Dependence relations are allowed among formulas, logical

variables and interpretations of relations, thus extending the set of allowed arcs in PPL

networks.

Figure 2(a) shows a typical network structure for a couple of formulas. For exam-

ple, we have φ1 = ∀x R1(x) ∧ R2(x) and φ2 = ∃x R1(x), where R1 and R2 are relations.

We could also have assessments such as P(φ1) ≤ 0.6, P(φ2) = 0.3 or P(φ2 | φ1) ≥ 0.3.

Furthermore, we allow arcs between interpretations, as R1(u) → R2(v) (suppose the do-

main is composed by u, v and w). Note that arcs between relations/interpretations and

their formulas does not appear in the graph of Figure 2(a), although they are included in

the corresponding augmented graph (see Figure 2(b)).

We shall be concerned with the question of determining the probability of an ar-

bitrary sentence S given a set L of sentences and their probabilities. That is, we consider

the probabilistic entailment of S given L. We resort to a propositionalization scheme

that transform a relational first-order probabilistic network into a PPL network. We note

that propositionalization has been used in connection with probabilistic relational models

(Section 2), but in that previous work propositionalization usually consisted of replicating
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Figure 2. Example of relational first-order probabilistic network.

the network structure for all individuals in a domain. Here we use a different approach:

we add dependencies among instances of variables and probabilistic relational first-order

formulas. Clearly, complexity increases exponentially by the domain size and amount of

possible interpretations. However, the graph structure and the Markov condition allow us

alleviate the problem by providing a factorization of probabilities.

Propositionalization is carried out as follows. According to domain and interpreta-

tions, we explode each logical relation in nodes, creating a node in the augmented version

of G for each possible interpretation of the given relation. This is possible as we assume

that the domain is finite and known. Unfortunately this procedure increases dependencies

among formulas and variables/relations, because all propositionalized nodes of a given

relation may participate as parents of a formula containing the relation (this happens, for

example, when the relation appears quantified in the formula). All interpretations in a

given formula must appear as its parents in the graph. Note that each relation increases

the size of conditional probability tables in formula nodes approximately by 2m times,

where m is the number of valuations or number of possible assignments when predicates

are binaries.

To further illustrate the propositionalization technique, suppose we have a knowl-

edge base called Family, containing:

∀ x, y Father(x, y)→ Male(x) (φ1)

∀ x, y HasChild(x, y) ∧ Male(x) → Father(x, y) (φ2)

0.8 ≤ P(∀ x, y ¬HasChild(x, y)→ S ingle(x)) ≤ 0.9 (φ3)

and the following assertions:

Father(Joao, Peter)

HasChild(Peter, Ann)

Male(Peter)

S ingle(Peter)

Suppose further that the only dependence between formulas is φ2 → φ3. Figure

3(a) shows the network for this example, including extra nodes to show relations and



their formulas. Note that these relations will in fact be replaced by interpretations in

the propositionalized graph, as shown in Figure 3(b). We use initial letters of names to

simplify notation.

Father(x,y)

Single(x)

Male(x)

HasChild(x,y)

φ

φ

φ

1

2

3

(a) Network of Family example.
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(b) Propositionalized graph.

Figure 3. Example of network propositionalization.

After propositionalization is finished, inference is just the process of finding

lower/upper probabilities for a given formula, much as it is done in PPL networks. We can

again use multilinear programming and exploit the factorization defined by the Markov

condition. A good strategy is to resort to credal networks so as to construct a multilin-

ear program out of the PPL network [de Campos and Cozman 2004]. To do so, we must

run a symbolic inference algorithm that produces a compact description of a multilin-

ear program, where the probability values P(φi|pa(φi)) appear as optimization variables.

To handle probabilities over formulas, the probabilistic assessments are treated as joint

queries in the network. Each joint query is a multilinear function
∑

X\XQ

∏

i P(φi|pa(φi))

over the optimization variables and restricted to some rational interval. We can choose

among several algorithms to symbolically factor the summation into smaller multilinear

constraints. Then these multilinear constraints are put together in a single multilinear pro-

gram. The important difference from this setting to a simple query is that we must, at the

same time, satisfy a collection of joint queries that are defined as multilinear constraints.

The resulting multilinear program is the solved; in our implementation we use an opti-

mized version of Sherali-Adams’ branch-and-bound method [Sherali and Adams 1999].

4. Conclusion

In this paper we have extended the PPL networks formalism for combining logic and

probabilities to a restricted relational first-order language. We emphasized the use of in-

dependence, and inference is performed by a nonlinear program formulation. We have

used a graph-theoretical tool with two types of nodes to represent independence: vari-

ables/interpretations and formulas. This structure allows us to obtain a compact model

and a compact multilinear program for inference. One of the interesting features of the

model is the possibility to use already known algorithms for probabilistic entailment with-

out complex reductions or transformations.



Given its generality, the model proposed is promising as a knowledge representa-

tion tool, even though inferences may be computationally intractable. Nevertheless, the

model can still be helpful as a testbed for several probabilistic logic scenarios. When

the domain size is not too large, the use of independence relations and the multilinear

program formulation may achieve great simplifications.

Future work may investigate suitable applications that have natural formulations

with relational first-order probabilistic logic with independence and where the size of

domain and number of interpretations is manageable. Other logics should also be studied,

with the goal of finding a probabilistic logic that is as general as possible, but that is still

associated with practical inference procedures.
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