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Abstract. Genetic algorithms are powerful population based optiniarameth-
ods. Their multi-objective counterparts have been ofteadus effectively op-
timize classification systems, but little is discussed eir tomputational cost
to solve such problems. To better understand this issuenaeaing based ap-
proach to optimize a classification system is proposed asdudsed. Results
are then compared to results obtained with a multi-objeafjgretic algorithm
in the same problem. The experiments performed with isoleadwritten dig-
its demonstrate both the effectiveness and lower compuotdtemst of the an-
nealing based approach.

Resumo. Algoritmos gebticos §o netodos de otimiza&p baseados em
populago. Seus equivalentes multi-é&ito Ao usados fre@entemente na
otimizag@o de sistemas de classifiéam; mas pouco se discute sobre o custo
computacional ao solucionar tais problemas. Para entenaeihor esta
relacdo, &€ proposta a utilizago de uma abordagem baseada simulated an-
nealing Os resultados@o comparados com os obtidos por algoritmoséjerns
multi-critério no mesmo problema. Os experimentos cagitas manuscritos
isolados indicam a eféia e baixo custo computacional da abordagem baseada
emsimulated annealing

1. Introduction

Classification systems will usually require that the imagebinformation be first trans-
formed into an abstract representation (a feature veaitgtse for recognition with clas-
sifiers, a process known &sature extractionThis process is performed to transform the
the data used for classification into a more discriminantaggntation. It has also been
observed that partitioning the image provides better tesbhin when extracting features
from the whole image [Li and Suen 2000]. Thus, a methodolbgyéxtract features must
select the spatial location to apply feature transfornmation the image. This choice re-
gards thedomain contextthe type of symbols to classify, and tdemain knowledge
what was previously done in similar problems. An human eixjgeusually responsible
for the trial-and-error approach used during traditioreattire extraction. The problem is
also exacerbated by the fact that changes in the domaindtaatgiires a new feature set



for proper classification. This context mandates a senoraated approach that uses the
expert’'s domain knowledge to optimize the classificatiosteam.

To minimize the human intervention in defining and adaptitagsification sys-
tems, this problem is modeled as an optimization problemmgukie domain knowledge
and the domain context. This paper discusses the two-I@grbach to optimize clas-
sification systems in Fig. 1. The first level employs theelligent Feature Extraction
(IFE) methodology to extract feature sets that are used®sdhond level to optimize an
ensemble of classifie(EoC) to improve accuracy.
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Figure 1. Classification system optimization approach. Rep resentations ob-
tained with IFE are used to further improve accuracy with EoC S.

One trend for these classification problems is to use gebhesed approaches
[Kuncheva and Jain 2000, Tremblay et al. 2004, Tsymbal &xQf15, Handl and Knowles
2006], speciallymulti-objective genetic algorithm@IOGAs). These approaches have
been found effective to solve these problems. It is now wstded that the advantage of
MOGA lies in the inherent diversity of the optimized solutieet, avoiding the popula-
tion convergence to a single local optimum. However, hoveigffit are these algorithms
is an unanswered question. Population based approacHaateva large number of can-
didate solutions. If using a wrapper approach, training tsting solutions may take a
considerable time. Hence, the use of other algorithms mayighe comparable solutions
associated to a lower computational burden. The algorithasen for this comparative
study is theRecord-to-Record TravéRRT) algorithm [Pepper et al. 2002], an annealing
based heuristic. This local search algorithm featuresategy to avoid local optimum
solutions, a feature often required to optimize classificaproblems.

This paper extends the work in [Radtke et al. 2006a]. The ravtribution is to
investigate an annealing based approach to optimize fitaggn systems for a quantita-
tive comparison with MOGA results. The paper has the foltaystructure. The approach
to optimize classification systems is discussed in Sectjan@ Section 3 discusses the
RRT algorithm. Section 4 details the experimental prot@sa the results obtained. Fi-



nally, Section 5 discusses the goals attained.

2. Classification System Optimization

Classification systems are modeled in a two-level procesgs (fji The first level uses the
IFE methodology to obtain the representation Bt~ (Fig. 1.a). The representations
in RS;rg are then used to train the classifier &ethat is considered for aggregation on an
EoC SFE for improved accuracy (Fig. 1.b). Otherwise, if a singlessiéier is desired for
limited hardware, such as embedded devices, the most aeingle classifie6 may
be selected fronk’. The next two subsections details both the IFE and EoC opditioin
methodologies.

2.1. Intelligent Feature Extraction

The goal of IFE is to help the human expert define represemsin the context of iso-
lated handwritten symbols, using a wrapper approach teropsi solutions. IFE models
handwritten symbols as features extracted from speftificof attention on images using
zoning Two operators are used to generate representations withalEoning operator

to define foci of attention over images, andeature extractioroperator to apply trans-
formations in zones. The choice of transformations for thatdre extraction operator
constitutes the domain knowledge. The domain context redoced as actual obser-
vations in theoptimizationdata set used to evaluate and compare solutions. Hence, the
zoning operator is optimized by the IFE to the domain conéext domain knowledge.

The IFE structure is illustrated in Fig. 2. The zoning operatefines the zoning
strategyZ = {z!,..., 2"}, wherez’,1 < i < n is a zone in the imagé andn the total
number of zones. Pixels inside the zone¥iare transformed by the feature extraction
operator in the representatidn = {f!,..., f*}, where ;1 < i < n is the partial
feature vector extracted fromd. At the end of the optimization process, the optimiza-
tion algorithm has explored the representation/836trp = {F*, ..., F?} (for MOGAS,
RS;rg is the optimal set at the last generation).
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Figure 2. IFE structure.
The result seRRS g is used to train the classifier skt= {K*',..., K?}, where

K' is the classifier trained with representatiéi. The first hypothesis is to select the
most accurate classifiétl, ST € K for a single classifier system. The second hypothesis
is to useK to optimize an EoC for higher accuracy, an approach discuss&ection
2.2. The remainder of this section discusses the IFE opsralmsen for experimentation
with isolated handwritten digits and the candidate sotu@galuation.



2.1.1. Zoning Operator

To compare performance to the traditional human aproabhsalinerepresentation with

a high degree of accuracy on handwritten digits witmalti-layer Perceptron(MLP)
classifier [Oliveira et al. 2002] is considered. Its zonitigtegy, detailed in Fig. 3.b, is
defined as a set of three image dividers, producing 6 zonesdiVlder zoning operator
expands the baseline zoning concept into a set of 5 horizantb5 vertical dividers that
can be eitheactiveor inactive producing zoning strategies with 1 to 36 zones. Fig. 3.a
details the operator template, encoded by a 10-bit binainygst Each bit is associated
with a divider’s state (1 for active, O for inactive).
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Figure 3. Divider zoning operator (a). The baseline represe  ntation in (b) is ob-
tained by setting only  ds, dg and dg as active.

2.1.2. Feature Extraction Operator

Oliveiraet al. used and detailed in [Oliveira et al. 2002] a mixture of casitdas, contour
directions and black pixel surface transformations, exing 22 features per zone (13 for
concavities, 8 for contour directions and 1 for surface)allow a direct comparison be-
tween IFE and the baseline representation, the same feednsformations (the domain
knowledge) are used to assess the IFE.

2.1.3. Candidate Solution Evaluation

Candidate solutions are evaluated with respect to theisifleation accuracy. Thus, the
objective is to minimize the classification error rate on dipdimizationdata set (the do-
main context). To compare optimization methods, candidakations are evaluated with
the projection distanc€PD) classifier [Kimura et al. 1998].

2.2. EoC Optimization

A recent trend in PR has been to combine several classifiengpimve their overall per-
formance. Algorithms for creating EoCs will usually fallimbne of two main categories.
They either manipulate the training samples for each dlassn the ensemble (like Bag-
ging and Boosting), or they manipulate the feature set usé@in classifiers [Kuncheva
and Jain 2000]. The key issue is to generate a set of divetstaaly accurate classifiers
for aggregation [Kittler et al. 1998].



We create EoCs on a two-level process. The first level creatdassifier set
K with IFE, and the second level optimizes the classifiers egpged. We assume that
RS;rE generates a sét of p diverse and fairly accurate classifiers. To realize thik,tas
the classifiers i are associated with a binary stririg of p bits, which is optimized
to select the best combination of classifiers using an opétian algorithm. The classi-
fier K' is associated with thé”" binary value inE, which indicates whether or not the
classifier is active in the EoC.

The optimization process minimizes the EoC classificatimoren theoptimiza-
tion data set. This is supported by [Ruta and Gabrys 2005]. Etratuthe EoC error rate
requires actual classifier aggregation. PD classifiers ggeegated by majority voting,
and votes are calculated once and stored in memory to spethe@ wpimization process.

3. Optimization Algorithm

A local search algorithm is used to optimize the IFE and Eo algorithm chosen is
the Record-to-Record TravéRRT) algorithm [Pepper et al. 2002], an annealing based
heuristic. The RRT algorithm improves an initial solutibhy searching in its neighbor-
hood for better solutions based on their evaluation (di@ssion error rate). The RRT
algorithmn, detailed in Algorithm 1, produces after a numtiieiterations the record so-
lution . The algorithm is similar to a hill climbing aproach, but &® local optimum
solutions by allowing the search towards non-optimal sohg with a fixed deviatiorD.
Earlier experiments indicated that the RRT algorithm diteed solutions during the op-
timization process. The global validation strategy disealin [Radtke et al. 2006b] is
used to avoid this effect, and Algorithm 1 includes supportliis strategy.

Given the inicial solutior, the algorithm will copy it to the record solution
and store its evaluation value RECORD. It also copies as the current solutiop.
Next it will repeat the following process during a number &rations, until the current
solution is worse than the record solution plus the allowmedation. First it will find the
set P, solutions neighbor t@, and select the best neighbdrp’ € P. To avoid cyclic
optimization, solutions already evaluated are not comseitiéory’. If evaluatingy’ yields
results within the allowed deviation, it is copied @a$or the next iteration. Solutiop’
replaces the record solutieronly if it yields better results. If’ is worse than the allowed
deviation, the optimization process stops. The explorddgtisn setS is responsible to
store solutions tested by the RRT algorithm for the globdidesion strategy. At each
iteration, the algorithm inserts int§ the solutions in the neighbor sét At the end of
the optimization process, solutions fhare validated and the most accurate solution is
selected. For the IFE processis the result seRS; - used to create the classifier g€t

Neighbors to solutionX® are created by swapping bits in the binary string with
their complement. For a binary string with p bits, a set ofp neighbors is created by
complementing each bit1 < i < p on solution£®. For the IFE, solution in Fig. 4.a has
solutions in Figs. 4.b and 4.c as two possible neighbors.

4. Experimental Protocol and Results

The tests are performed as in Fig. 1. The IFE methodologyl&ddo obtain the rep-
resentation seRS;rx, which is used to train the classifier séts. For a single classi-
fier system, the most accurate classifidr, S/ € K is selected. EoCs are then created



Data: Initial solution:
Data: DeviationD
Result Record solution
Result Explored solution sef
r=1i
RECORD = eval(r);
pP=1
S =0
repeat
Create the solution sét, neighbor top;
S=SuUP
Select the best solutigit € P such as thap’ has not yet been evaluated;
if eval(p') < RECORD + RECORD x D then

p=p,;

if eval(p’) < RECORD then

RECORD = eval(p');
r=rp,;

end
end
until eval(p) <= RECORD + RECORD x D,

Algorithm 1: Modified record to record travel (RRT) algorithm used toiopt
mize classification systems with global validation.

with K, producingSE. To select resulting solutions, we use the global validatp-
proach detailed in [Radtke et al. 2006b]. Solutions obthexe compared to the baseline
representation defined in [Oliveira et al. 2002] and to sohd obtained with MOGAs
in [Radtke et al. 2006a]. Unlike MOGAs which may produceeliént solutions on each
run, the RRT algorithm will yield the same result sefor the same initial solutior.
Thus, solutions obtained with the RRT are compared to bothage results in [Radtke
et al. 2006a] and to the best result obtained in 30 runs.

The data sets in Table 1 are used in the experiments — isdiatedivritten dig-
its from NIST-SD19. Classifier training is performed with thraining data set. The
validationdata set is used to adjust the classifier parameters (PD pig@s). The opti-
mization process is performed with thptimizationdata set, and theelectiondata set is
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Figure 4. Zoning strategy ( a) and two neighbors ( b and c¢) using the proposed
divider zoning operator.



used with the global validation strategy to select soligion

Data set Size | Origin Sample range
training 50000| hsf 0123 1 to 50000
validation | 15000| hsf 0123 | 150001 to 165000
optimization| 15000| hsf 0123 | 165001 to 180000
selection | 15000| hsf 0123 | 180001 to 195000
test, 60089| hsf7 1 to 60089
testy 58646| hsf4 1 to 58646

Table 1. Handwritten digits data sets extracted from NIST-S ~ D19.

Both the IFE and EoC have initial solutions associated totgrapings. Thus,
there are no dividers active in the initial IFE solution, aradclassifiers associated to the
initial EOC. The deviationD is set empirically toD = 5%. The RRT is a deterministic
algorithm, hence a single run is performed with both proesssAll experiments were
performed on a Athlon64 3000+ processor with 1GB of RAM meynor

Results obtained are detailed in Table 4, wheie the solution zone numbeiS|
is the solution cardinality (either feature number or di@ssnumber),e;..;, ande;q,
are classification error rates oost, andtest,. SolutionsSI,, andSE,; where obtained
with MOGAs, and the baseline representation is defined iivgdh et al. 2002]. These
solutions are included for comparison purposes.

To compare solutions, the following procedure is used. Tdsebne representa-
tion is compared directly with solutionS/ and SE. Moga solutions are observations
with 30 samples. Thus, we calculate the confidence inteovegit and upper values with
a = 0.05 (95% of confidence) for MOGA solutions. One solution is sadhparable to
a MOGA solution only if its error rate is within the confidenicgerval. Otherwise, the
solution may be better if it is bellow the confidence inteneadd worse if it is above.

Solution | Z |S] Ciest, Crest,
Baseline| 6 | 132 | 2.96% | 6.83%
(2.18%) | (5.47%)

57 15| 330 | 2.18% | 5.47%
M (2.18%)| (5.47%)
ST 15| 330 | 2.18% | 5.47%
(2.00%) | (5.14%)

o — | 24.67| 2.02% | 5.19%
M (2.06%) | (5.22%)
SE — | 23 | 2.05% | 5.20%

Table 2. IFE and EoC optimization results — mean values on 30 M
(confidence interval lower and upper values in parenthesis)

for remaining solutions.

SolutionsST and SE obtained with the RRT algorithm outperform the baseline
representation defined by the human expert. Figure 5 detalgoning strategy associ-

OGA replications
and actual error rates



ated toS7 andS1,,. Comparing these solutions &Y,, and S E,;, we conclude that the
RRT performed similarly to an MOGA. Solutiofi/ obtained by the RRT has the same
zoning strategy as'/,;, and the error rate fof £ is comparable t&' F,,. These results
indicate that the RRT algorithm is effective to optimizesslidication systems.

Figure 5. Zoning strategy associatedto ST and SIy,.

The RRT algorithm had a smaller computational cost to sdiese problems. To
optimize the IFE a total of 76 candidate solutions were etaid by the RRT, whereas
the MOGA evaluates 64 candidate solutions only on its inpigoulation in [Radtke et al.
2006a] to optimize the same problem. The same is observédBoCs, the RRT eval-
uated a total of 14000 solutions to optimize the EoC, and thea¥@valuated 166000
solutions thoughout the same optimization process.

5. Discussion

Solutions obtained with the RRT are comparable to solutminisined with MOGAS.
The advantage of the RRT algorithm is the lower computatiboeden to optimize the
classification system discussed. The results obtainedatelthat the RRT algorithm is a
more appropriate choice to optimize classification systetisthe proposed approach.

Solutions obtained with the RRT algorithm were also oveeditto theoptimiza-
tion data set. The global validation strategy detailed in [Radtkal. 2006b] selected
better results in5' than simply selecting the record solutierobtained at the end of the
optimization process. This reinforces the conclusionti@bptimization of classification
systems using wrapped classifiers is prone to solution fitver-

We will pursue two directions to further develop this resdar The first is to
optimize the IFE and EoC using MLP classifiers, a more disoamt classifier. The
experiments in [Radtke et al. 2006a] used the PD as a metaHota to select MLP
classifier. With the current hardware, optimizing classificn systems using an actual
MLP classifier with MOGAs is unfeasible for a large data setud, the interest on
using the RRT algorithm for this task. The second direct®ioi compare algorithmic
performance with other classification problems, such asiWatten letters, a different
domain, or feature subset selection.
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