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Abstract. Genetic algorithms are powerful population based optimization meth-
ods. Their multi-objective counterparts have been often used to effectively op-
timize classification systems, but little is discussed on their computational cost
to solve such problems. To better understand this issue, an annealing based ap-
proach to optimize a classification system is proposed and discussed. Results
are then compared to results obtained with a multi-objectivegenetic algorithm
in the same problem. The experiments performed with isolatedhandwritten dig-
its demonstrate both the effectiveness and lower computational cost of the an-
nealing based approach.

Resumo. Algoritmos geńeticos s̃ao ḿetodos de otimizaç̃ao baseados em
populaç̃ao. Seus equivalentes multi-critério s̃ao usados freq̈uentemente na
otimizaç̃ao de sistemas de classificação, mas pouco se discute sobre o custo
computacional ao solucionar tais problemas. Para entendermelhor esta
relação, é proposta a utilizaç̃ao de uma abordagem baseada emsimulated an-
nealing. Os resultados s̃ao comparados com os obtidos por algoritmos genéticos
multi-critério no mesmo problema. Os experimentos com dı́gitos manuscritos
isolados indicam a efićacia e baixo custo computacional da abordagem baseada
emsimulated annealing.

1. Introduction

Classification systems will usually require that the image pixel information be first trans-
formed into an abstract representation (a feature vector) suitable for recognition with clas-
sifiers, a process known asfeature extraction. This process is performed to transform the
the data used for classification into a more discriminant representation. It has also been
observed that partitioning the image provides better results than when extracting features
from the whole image [Li and Suen 2000]. Thus, a methodology that extract features must
select the spatial location to apply feature transformations on the image. This choice re-
gards thedomain context, the type of symbols to classify, and thedomain knowledge,
what was previously done in similar problems. An human expert is usually responsible
for the trial-and-error approach used during traditional feature extraction. The problem is
also exacerbated by the fact that changes in the domain context requires a new feature set



for proper classification. This context mandates a semi-automated approach that uses the
expert’s domain knowledge to optimize the classification system.

To minimize the human intervention in defining and adapting classification sys-
tems, this problem is modeled as an optimization problem, using the domain knowledge
and the domain context. This paper discusses the two-level approach to optimize clas-
sification systems in Fig. 1. The first level employs theIntelligent Feature Extraction
(IFE) methodology to extract feature sets that are used on the second level to optimize an
ensemble of classifiers(EoC) to improve accuracy.
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Figure 1. Classification system optimization approach. Rep resentations ob-
tained with IFE are used to further improve accuracy with EoC s.

One trend for these classification problems is to use geneticbased approaches
[Kuncheva and Jain 2000,Tremblay et al. 2004,Tsymbal et al.2005,Handl and Knowles
2006], speciallymulti-objective genetic algorithms(MOGAs). These approaches have
been found effective to solve these problems. It is now understood that the advantage of
MOGA lies in the inherent diversity of the optimized solution set, avoiding the popula-
tion convergence to a single local optimum. However, how efficient are these algorithms
is an unanswered question. Population based approaches evaluate a large number of can-
didate solutions. If using a wrapper approach, training andtesting solutions may take a
considerable time. Hence, the use of other algorithms may provide comparable solutions
associated to a lower computational burden. The algorithm chosen for this comparative
study is theRecord-to-Record Travel(RRT) algorithm [Pepper et al. 2002], an annealing
based heuristic. This local search algorithm features a strategy to avoid local optimum
solutions, a feature often required to optimize classification problems.

This paper extends the work in [Radtke et al. 2006a]. The new contribution is to
investigate an annealing based approach to optimize classification systems for a quantita-
tive comparison with MOGA results. The paper has the following structure. The approach
to optimize classification systems is discussed in Section 2, and Section 3 discusses the
RRT algorithm. Section 4 details the experimental protocoland the results obtained. Fi-



nally, Section 5 discusses the goals attained.

2. Classification System Optimization

Classification systems are modeled in a two-level process (Fig. 1). The first level uses the
IFE methodology to obtain the representation setRSIFE (Fig. 1.a). The representations
in RSIFE are then used to train the classifier setK that is considered for aggregation on an
EoCSE for improved accuracy (Fig. 1.b). Otherwise, if a single classifier is desired for
limited hardware, such as embedded devices, the most accurate single classifierSI may
be selected fromK. The next two subsections details both the IFE and EoC optimization
methodologies.

2.1. Intelligent Feature Extraction

The goal of IFE is to help the human expert define representations in the context of iso-
lated handwritten symbols, using a wrapper approach to optimize solutions. IFE models
handwritten symbols as features extracted from specificfoci of attention on images using
zoning. Two operators are used to generate representations with IFE: azoning operator
to define foci of attention over images, and afeature extractionoperator to apply trans-
formations in zones. The choice of transformations for the feature extraction operator
constitutes the domain knowledge. The domain context is introduced as actual obser-
vations in theoptimizationdata set used to evaluate and compare solutions. Hence, the
zoning operator is optimized by the IFE to the domain contextand domain knowledge.

The IFE structure is illustrated in Fig. 2. The zoning operator defines the zoning
strategyZ = {z1, . . . , zn}, wherezi, 1 ≤ i ≤ n is a zone in the imageI andn the total
number of zones. Pixels inside the zones inZ are transformed by the feature extraction
operator in the representationF = {f 1, . . . , fn}, wheref i, 1 ≤ i ≤ n is the partial
feature vector extracted fromzi. At the end of the optimization process, the optimiza-
tion algorithm has explored the representation setRSIFE = {F 1, . . . , F p} (for MOGAs,
RSIFE is the optimal set at the last generation).
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Figure 2. IFE structure.

The result setRSIFE is used to train the classifier setK = {K1, . . . , Kp}, where
Ki is the classifier trained with representationF i. The first hypothesis is to select the
most accurate classifierSI, SI ∈ K for a single classifier system. The second hypothesis
is to useK to optimize an EoC for higher accuracy, an approach discussed in Section
2.2. The remainder of this section discusses the IFE operators chosen for experimentation
with isolated handwritten digits and the candidate solution evaluation.



2.1.1. Zoning Operator

To compare performance to the traditional human aproach, abaselinerepresentation with
a high degree of accuracy on handwritten digits with amulti-layer Perceptron(MLP)
classifier [Oliveira et al. 2002] is considered. Its zoning strategy, detailed in Fig. 3.b, is
defined as a set of three image dividers, producing 6 zones. The divider zoning operator
expands the baseline zoning concept into a set of 5 horizontal and 5 vertical dividers that
can be eitheractiveor inactive, producing zoning strategies with 1 to 36 zones. Fig. 3.a
details the operator template, encoded by a 10-bit binary string. Each bit is associated
with a divider’s state (1 for active, 0 for inactive).
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Figure 3. Divider zoning operator (a). The baseline represe ntation in (b) is ob-
tained by setting only d2, d6 and d8 as active.

2.1.2. Feature Extraction Operator

Oliveiraet al. used and detailed in [Oliveira et al. 2002] a mixture of concavities, contour
directions and black pixel surface transformations, extracting 22 features per zone (13 for
concavities, 8 for contour directions and 1 for surface). Toallow a direct comparison be-
tween IFE and the baseline representation, the same featuretransformations (the domain
knowledge) are used to assess the IFE.

2.1.3. Candidate Solution Evaluation

Candidate solutions are evaluated with respect to their classification accuracy. Thus, the
objective is to minimize the classification error rate on theoptimizationdata set (the do-
main context). To compare optimization methods, candidatesolutions are evaluated with
theprojection distance(PD) classifier [Kimura et al. 1998].

2.2. EoC Optimization

A recent trend in PR has been to combine several classifiers toimprove their overall per-
formance. Algorithms for creating EoCs will usually fall into one of two main categories.
They either manipulate the training samples for each classifier in the ensemble (like Bag-
ging and Boosting), or they manipulate the feature set used to train classifiers [Kuncheva
and Jain 2000]. The key issue is to generate a set of diverse and fairly accurate classifiers
for aggregation [Kittler et al. 1998].



We create EoCs on a two-level process. The first level creates aclassifier set
K with IFE, and the second level optimizes the classifiers aggregated. We assume that
RSIFE generates a setK of p diverse and fairly accurate classifiers. To realize this task,
the classifiers inK are associated with a binary stringE of p bits, which is optimized
to select the best combination of classifiers using an optimization algorithm. The classi-
fier Ki is associated with theith binary value inE, which indicates whether or not the
classifier is active in the EoC.

The optimization process minimizes the EoC classification error on theoptimiza-
tion data set. This is supported by [Ruta and Gabrys 2005]. Evaluating the EoC error rate
requires actual classifier aggregation. PD classifiers are aggregated by majority voting,
and votes are calculated once and stored in memory to speed upthe opimization process.

3. Optimization Algorithm

A local search algorithm is used to optimize the IFE and EoC. The algorithm chosen is
the Record-to-Record Travel(RRT) algorithm [Pepper et al. 2002], an annealing based
heuristic. The RRT algorithm improves an initial solutioni by searching in its neighbor-
hood for better solutions based on their evaluation (classification error rate). The RRT
algorithmn, detailed in Algorithm 1, produces after a number of iterations the record so-
lution r. The algorithm is similar to a hill climbing aproach, but avoids local optimum
solutions by allowing the search towards non-optimal solutions with a fixed deviationD.
Earlier experiments indicated that the RRT algorithm over-fitted solutions during the op-
timization process. The global validation strategy discussed in [Radtke et al. 2006b] is
used to avoid this effect, and Algorithm 1 includes support for this strategy.

Given the inicial solutioni, the algorithm will copy it to the record solutionr
and store its evaluation value inRECORD. It also copiesi as the current solutionp.
Next it will repeat the following process during a number of iterations, until the current
solution is worse than the record solution plus the allowed deviation. First it will find the
setP , solutions neighbor top, and select the best neighborp′, p′ ∈ P . To avoid cyclic
optimization, solutions already evaluated are not considered forp′. If evaluatingp′ yields
results within the allowed deviation, it is copied asp for the next iteration. Solutionp′

replaces the record solutionr only if it yields better results. Ifp′ is worse than the allowed
deviation, the optimization process stops. The explored solution setS is responsible to
store solutions tested by the RRT algorithm for the global validation strategy. At each
iteration, the algorithm inserts intoS the solutions in the neighbor setP . At the end of
the optimization process, solutions inS are validated and the most accurate solution is
selected. For the IFE process,S is the result setRSIFE used to create the classifier setK.

Neighbors to solutionX i are created by swapping bits in the binary string with
their complement. For a binary stringE with p bits, a set ofp neighbors is created by
complementing each biti, 1 ≤ i ≤ p on solutionEi. For the IFE, solution in Fig. 4.a has
solutions in Figs. 4.b and 4.c as two possible neighbors.

4. Experimental Protocol and Results

The tests are performed as in Fig. 1. The IFE methodology is solved to obtain the rep-
resentation setRSIFE, which is used to train the classifier setsK . For a single classi-
fier system, the most accurate classifierSI, SI ∈ K is selected. EoCs are then created



Data: Initial solutioni

Data: DeviationD

Result: Record solutionr
Result: Explored solution setS
r = i;
RECORD = eval(r);
p = i;
S = ∅;
repeat

Create the solution setP , neighbor top;
S = S ∪ P

Select the best solutionp′ ∈ P such as thatp′ has not yet been evaluated;
if eval(p′) < RECORD + RECORD × D then

p = p′;
if eval(p′) < RECORD then

RECORD = eval(p′);
r = p′;

end
end

until eval(p) <= RECORD + RECORD × D ;

Algorithm 1 : Modified record to record travel (RRT) algorithm used to opti-
mize classification systems with global validation.

with K, producingSE. To select resulting solutions, we use the global validation ap-
proach detailed in [Radtke et al. 2006b]. Solutions obtained are compared to the baseline
representation defined in [Oliveira et al. 2002] and to solutions obtained with MOGAs
in [Radtke et al. 2006a]. Unlike MOGAs which may produce different solutions on each
run, the RRT algorithm will yield the same result setS for the same initial solutioni.
Thus, solutions obtained with the RRT are compared to both average results in [Radtke
et al. 2006a] and to the best result obtained in 30 runs.

The data sets in Table 1 are used in the experiments – isolatedhandwritten dig-
its from NIST-SD19. Classifier training is performed with thetraining data set. The
validationdata set is used to adjust the classifier parameters (PD hyperplanes). The opti-
mization process is performed with theoptimizationdata set, and theselectiondata set is

(a) (b) (c)

Figure 4. Zoning strategy ( a) and two neighbors ( b and c) using the proposed
divider zoning operator.



used with the global validation strategy to select solutions.

Data set Size Origin Sample range

training 50000 hsf 0123 1 to 50000

validation 15000 hsf 0123 150001 to 165000

optimization 15000 hsf 0123 165001 to 180000

selection 15000 hsf 0123 180001 to 195000

testa 60089 hsf 7 1 to 60089

testb 58646 hsf 4 1 to 58646

Table 1. Handwritten digits data sets extracted from NIST-S D19.

Both the IFE and EoC have initial solutions associated to empty strings. Thus,
there are no dividers active in the initial IFE solution, andno classifiers associated to the
initial EoC. The deviationD is set empirically toD = 5%. The RRT is a deterministic
algorithm, hence a single run is performed with both processes. All experiments were
performed on a Athlon64 3000+ processor with 1GB of RAM memory.

Results obtained are detailed in Table 4, whereZ is the solution zone number,|S|
is the solution cardinality (either feature number or classifier number),etesta andetestb

are classification error rates ontesta andtestb. SolutionsSIM andSEM where obtained
with MOGAs, and the baseline representation is defined in [Oliveira et al. 2002]. These
solutions are included for comparison purposes.

To compare solutions, the following procedure is used. The baseline representa-
tion is compared directly with solutionsSI andSE. Moga solutions are observations
with 30 samples. Thus, we calculate the confidence interval lower and upper values with
α = 0.05 (95% of confidence) for MOGA solutions. One solution is said comparable to
a MOGA solution only if its error rate is within the confidenceinterval. Otherwise, the
solution may be better if it is bellow the confidence interval, and worse if it is above.

Solution Z |S| etesta etestb

Baseline 6 132 2.96% 6.83%
(2.18%) (5.47%)

SIM

15 330 2.18% 5.47%
(2.18%) (5.47%)

SI 15 330 2.18% 5.47%
(2.00%) (5.14%)

SEM

– 24.67 2.02% 5.19%
(2.06%) (5.22%)

SE – 23 2.05% 5.20%

Table 2. IFE and EoC optimization results – mean values on 30 M OGA replications
(confidence interval lower and upper values in parenthesis) and actual error rates
for remaining solutions.

SolutionsSI andSE obtained with the RRT algorithm outperform the baseline
representation defined by the human expert. Figure 5 detailsthe zoning strategy associ-



ated toSI andSIM . Comparing these solutions toSIM andSEM , we conclude that the
RRT performed similarly to an MOGA. SolutionSI obtained by the RRT has the same
zoning strategy asSIM , and the error rate forSE is comparable toSEM . These results
indicate that the RRT algorithm is effective to optimize classification systems.

Figure 5. Zoning strategy associated to SI and SIM .

The RRT algorithm had a smaller computational cost to solve these problems. To
optimize the IFE a total of 76 candidate solutions were evaluated by the RRT, whereas
the MOGA evaluates 64 candidate solutions only on its initial population in [Radtke et al.
2006a] to optimize the same problem. The same is observed with EoCs, the RRT eval-
uated a total of 14000 solutions to optimize the EoC, and the MOGA evaluated 166000
solutions thoughout the same optimization process.

5. Discussion
Solutions obtained with the RRT are comparable to solutionsobtained with MOGAs.
The advantage of the RRT algorithm is the lower computational burden to optimize the
classification system discussed. The results obtained indicate that the RRT algorithm is a
more appropriate choice to optimize classification systemswith the proposed approach.

Solutions obtained with the RRT algorithm were also over-fitted to theoptimiza-
tion data set. The global validation strategy detailed in [Radtke et al. 2006b] selected
better results inS than simply selecting the record solutionr obtained at the end of the
optimization process. This reinforces the conclusion thatthe optimization of classification
systems using wrapped classifiers is prone to solution over-fit.

We will pursue two directions to further develop this research. The first is to
optimize the IFE and EoC using MLP classifiers, a more discriminant classifier. The
experiments in [Radtke et al. 2006a] used the PD as a meta-classifier to select MLP
classifier. With the current hardware, optimizing classification systems using an actual
MLP classifier with MOGAs is unfeasible for a large data set. Thus, the interest on
using the RRT algorithm for this task. The second direction is to compare algorithmic
performance with other classification problems, such as handwritten letters, a different
domain, or feature subset selection.
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