
Hybrid Swarm System for Time Series Forecasting
Paulo S. G. de M. Neto1, Ricardo de A. Araújo1, Gustavo G. Petry1,

Tiago A. E. Ferreira1, Germano C. Vasconcelos1

1Center for Informatics � Federal University of Pernambuco
Av. Prof. Luiz Freire, s/n, CDU, 50732-970, Recife - PE - Brazil

{psgmn,raa,ggp2,taef,gcv}@cin.ufpe.br

Abstract. In this paper, a hybrid swarm system is presented for time series fore-
casting. It consists of an intelligent hybrid model composed of an Arti�cial
Neural Network (ANN) and a Particle Swarm Optimizer (PSO), which search
the relevant time lags for a correct characterization of the time series, as well
as the number of processing units in the hidden layer, the training algorithm
and the modeling of ANN. The proposed method shows to be an ef�cient proce-
dure to training and adjusting the ANN parameters through the use of a particle
swarm optimization mechanism. An experimental analysis is conducted with the
proposed method using four real world time series and the results are compared
to standard MLP networks according to �ve performance measures.

1. Introduction
Approaches based on Arti�cial Neural Networks (ANNs) have been proposed for the non-
linear modeling of time series [Zhang et al. 1998]. However, in order to de�ne a solution
to a given problem, an ANN requires the setting up of system con�guration parameters,
which are not always easy to determine. In addition to those, in the particular case of
time series forecasting, another element that demands de�nition is the relevant time lags
to represent the time series. In this context, interesting works have been proposed in
literature [Mattos et al. 2005, Ferreira et al. 2006, Araújo et al. 2007].

The Particle Swarm Optimizer (PSO) [vandenBergh and Engelbrecht 2004] is a
stochastic optimization technique based on a �ock of birds or the sociological behavior
of a group of people. The PSO was introduced by Kennedy and Eberhart [Eberhart and
Kennedy 1995] and is widely applied to optimization problems due to its high search
power in state spaces. It has been used to solve many optimization problems, like ANN
training [Eberhart and Hu 1999], [Engelbrecht and Ismail 1999], [van den Bergh and
Engelbrecht 2000] and function minimization [Shi and Eberhart 1998], [Shi and Eberhart
1999].

This paper presents a hybrid swarm system for the time series forecasting prob-
lem. The proposed method is an intelligent hybrid model composed of a Particle Swarm
Optimizer (PSO) [vandenBergh and Engelbrecht 2004] and an ANN. The hybrid swarm
system starts by choosing one of three distinct models used to describe the ANN ar-
chitecture, where each model is trained and adjusted by the PSO, which determines the
relevant time lags for a correct characterization of the time series, as well as the number
of processing units in the hidden layer, the training algorithm and the model structure
ANN. The proposed method is described in section 4. It is shown how this procedure
can enhance forecasting performance making use of four real world time series: Bright-
ness of a Variable Star Series, Sunspot, Dow Jones Industrial Average (DJIA) Index and
Dollar Real Exchange Rate. The experimental results are compared to Multilayer Percep-
tron Networks(MLPs) and Random Walk Model according to �ve performance measures:
mean square error (MSE), mean absolute percentage error (MAPE), U of Theil Statistics,
prediction of change in direction (POCID), average relative variance (ARV).

2. The Time Series Forecasting Problem
A time series is a set of points, generally time equidistant, de�ned by,

Xt = {xt ∈ R | t = 1, 2, 3 . . . N}, (1)



where t is the temporal index and N is the number of observations. Therefore Xt is a
sequence of temporal observations orderly sequenced and equally spaced.

The main objective when applying forecasting techniques to a time series is to
identify certain regular patterns present in the data in order to create a model capable of
generating the future patterns. In this context, a crucial factor for a good forecasting per-
formance is the correct choice of the time lags considered for representation of the time se-
ries. Such relationship structures among historical data constitute a d-dimensional phase
space, where d is the dimension capable of representing the relationship. Takens [Takens
1980] proved that if d is suf�ciently large, such built phase space is homeomorphic to the
phase space which generated the time series.

A crucial problem in reconstructing the original state space is the correct choice
of the variable d, or more speci�cally, the correct choice of the time lags.

3. Particle Swarm Optimizer Fundamentals
The Particle Swarm Optimizer (PSO) [vandenBergh and Engelbrecht 2004] is an opti-
mization technique based on the social behavior (swarm) that a population of individuals
adapts to its environment. In each epoch, each individual of the population of solutions
adjusts its position based on its own experience and the experience of neighbors, includ-
ing the current velocity and position and the best previous position experienced by itself
and its neighbors. In this way, if any particle discovers a promising solution, the swarm
is guided to the new solution in order to explore more thoroughly the region found.

The swarm size is given by s. Each individual (1 ≤ i ≤ s) has a current position
in the search space (xi), a current velocity (vi) and a personal best position in the search
space (yi). Assuming that the function f is to be minimized, the swarm consists of n
particles, and at each iteration, each swarm particle velocity is updated by

vi,j(t + 1) = wvi,j(t) + c1r1[yi,j(t)− xi,j(t)]
+c2r2[ŷj(t)− xi,j(t)]

, (2)

where j ∈ 1, 2, . . . , n, ŷj(t) denotes the current position in the search space (found by any
swarm particle), yi,j(t) represents the personal best position in the search space (found by
each swarm particle), vi,j is the velocity of the j-th dimension of the i-th particle, c1 and
c2 represent the acceleration coef�cients, which control how far a particle will move in
a single iteration, and r1 ∼ U(0, 1) and r2 ∼ U(0, 1) are elements from two uniform
random sequences in the interval [0,1]. The term w is referred to as inertia weight, this
value is typically set to vary linearly from 1 to near 0 during the course of the procedure.
It is worth to mention that this is reminiscent from the temperature adjustment schedule
found in Simulated Annealing algorithms [vandenBergh and Engelbrecht 2004].

Thus, the new particle position is updated by
xi(t + 1) = xi(t) + vi(t + 1). (3)

The personal best particle position and the global best particle found by any parti-
cle during all previous iterations are updated by equations (4) and (5), respectively.

yi(t + 1) =

{
yi(t) if f(xi(t + 1)) ≥ f(yi(t)),
xi(t + 1) otherwise. ; (4)

ŷ(t + 1) = argminf(yi(t + 1)). (5)

The term vi is normalized in the range [−vmax, vmax] in order to reduce the like-
lihood of particles leaving the search space. It is worth to mention that this mechanism
doesn't restrict the values of xi in the range of vi, it only limits the maximum distance
that a particle will move during each iteration [vandenBergh and Engelbrecht 2004].



4. The Proposed Method
The method proposed in this paper uses a Particle Swarm Optimizer (PSO) [vandenBergh
and Engelbrecht 2004] search mechanism for time series forecasting. It is based on the
de�nition of the three main elements necessary for building an accurate forecasting sys-
tem: 1. The minimum number of time lags adequate for representing the series, 2. The
structure of the model capable of representing such underlying information for the pur-
pose of prediction, and 3. The ANN training algorithm.

The proposed hybrid swarm system consists of an intelligent hybrid model com-
posed of an ANN and a PSO [vandenBergh and Engelbrecht 2004]. The procedure con-
sists of: three distinct models used to describe the ANN (multilayer perceptron � MLP)
architecture, where each model is trained and adjusted by the PSO, which determines:
1. The minimum number of time lags for a correct characterization of the time series
(initially, a maximum number (MaxLags) is previously de�ned and then the PSO can
choose any value in the interval [1,MaxLags] for each individual of the population), 2.
The maximum number of processing units in the ANN hidden layer (NHiddenMax) (set
up initially and then the PSO can choose any value in the interval [1, NHiddenMax] for
each individual of the population), 3. The architecture, network parameters con�guration
and the initial weights of the ANN, and 4. The training algorithm (ANNTrain) for the
ANN (Levenberg-Marquardt [Hagan and Menhaj 1994], RPROP [Reidmiller and Braun
1993], scaled conjugate gradient [Moller 1993] or one step secant [Battiti 1992]).

These processes offer the system the effective capacity to seek the most compact
ANN, and thus reduce the computational cost and the probability of the over�tting prob-
lem. Each swarm element represents an ANN (three-layer), where the �rst layer is de�ned
by the number of time lags, the second layer is composed by the number of hidden pro-
cessing units (sigmoidal units) and the third layer is composed by one processing unit
(prediction horizon of one step ahead).

The PSO individuals are evaluated by the �tness function de�ned by,

fitness =
POCID

1 + MSE + MAPE + NMSE + ARV
(6)

where MSE, MAPE, NMSE, POCID and ARV are the mean square error, the mean
absolute percentage error, the normalized mean square error (or U of Theil Statistics),
the prediction of change in direction and the average relative variance used for ANN
performance evaluation, respectively, and will be formally de�ned in section 5.

The termination conditions for the PSO are,
1. The number of PSO iterations (MaxGer);
2. The increase in the validation error or generalization loss (Gl) [Prechelt 1994]:

Gl > 5%;
3. The decrease in the training error or process training (Pt) [Prechelt 1994]: Pt ≤

10−6.
4.1. PSO Individuals Modeling
Each individual of the PSO population is an ANN (three-layer MLP). These individuals
are represented by particles that have the following parameters (ANN parameters):

• Wij: weights of connections between the input layer and the hidden layer
• Wjk: weights of connections between the hidden layer and the output layer;
• b1

j : bias of the hidden layer;
• b2

k: bias of the output layer;
• NetMod: ANN model.
• NHidden: the number of processing units in the ANN hidden layer;
• NLags: the number of relevant time lags;
• ANNTrain: the ANN training algorithm.

Three distinct forms of modeling the ANN are proposed (NetMod = 1, 2, 3),
where each is described in the following subsections.



4.1.1. First ANN model

The �rst architecture for modeling ANNs (NetMod = 1) uses the sigmoidal activation
function for all hidden processing units. The output processing unit uses a linear activation
function where a sigmoidal function is applied to its bias. This architecture was used by
Leung et al [Leung et al. 2003], where the output of ANN is given by

yk(t) =

nhX
j=1

WjkSig

[
ninX
i=1

WijZi(t) + b1j

]
+ Sig(b2k), (7)

where Zi(t) (i = 1, 2, . . . , nin) are the ANN input values, nin denotes the number of ANN
input and nh is the number of hidden units. Since the prediction horizon is one step ahead,
only one output unit is necessary (k = 1). The term Sig is a sigmoidal function de�ned
by:

Sig(x) =
1

1 + exp(−x)
. (8)

4.1.2. Second ANN model

The second model (NetMod = 2) consists of hidden units activated by a sigmoidal
function with its output layer using a linear function. The output of ANN is given by:

yk(t) =

nhX
j=1

WjkSig

[
ninX
i=1

WijZi(t) + b1j

]
+ b2k. (9)

4.1.3. Third ANN model

The third architecture (NetMod = 3) applies the sigmoidal activation function to all
processing units. The output of ANN is given by:

yk(t) = Sig

{
nhX
j=1

WjkSig

[
ninX
i=1

WijZi(t) + b1j

]
+ b2k

}
. (10)

5. Evaluation Measures
Most of the works found in the literature of time series prediction frequently employ only
one performance criterion for model evaluation. The measure used is usually the MSE
(Mean Squared Error),

MSE =
1

N

NX
j=1

(targetj − outputj)
2, (11)

where N is the number of patterns, targetj is the desired output for pattern j and outputj
is the predicted value for pattern j.

Although the MSE measure may be used to guide the prediction model in the train-
ing process, it cannot be considered alone as a conclusive measure for comparison of dif-
ferent prediction models [Clements and Hendry 1993]. For this reason, other performance
criteria should be considered for allowing a more robust performance assertiveness.

A second relevant measure is the MAPE (Mean Absolute Percentage Error), given
by

MAPE =
100

N

NX
j=1

∣∣∣∣∣
targetj − outputj

Xj

∣∣∣∣∣, (12)



where Xj is the time series at point j.
A third performance measure is the U of Theil Statistics, which is given by

UofTheil =

NP
j=1

(targetj − outputj)
2

NP
j=1

(outputj − outputj+1)2
, (13)

which associates the model performance with a random walk model [Mills 2003]. If
the U of Theil is equal to 1, the predictor has the same performance of a random walk
model [Mills 2003]. If the U of Theil is greater than 1, then the predictor has a worse
performance than a random walk model [Mills 2003], and if the U of Theil is less than 1,
the predictor is better than a random walk model [Mills 2003]. In the perfect model, the
U of Theil tends to zero.

Another relevant evaluation measure considers the calculation of the correctness
of Prediction of Change in Direction, or POCID for short,

POCID = 100

NP
j=1

Dj

N
, (14)

where
Dj

�
1 if (targetj − targetj−1)(outputj − outputj−1) > 0,
0 otherwise. (15)

There is also another relevant evaluation measure, the ARV (Average Relative
Variance), which is given by

ARV =

NP
j=1

(outputj − targetj)
2

NP
j=1

(outputj − target)2
, (16)

which associates the model performance with the mean of the time series. Term target
is the mean of the time series. If the ARV is equal to 1, the predictor has the same
performance of the mean of the time series. If the ARV is greater than 1, then the predictor
has a worse performance than the mean of the time series, and if the ARV is less than 1,
the predictor is better than a mean of the time series. In the ideal model, ARV tends to
zero.

6. Simulations and Results
Six real world time series were used for evaluation of the proposed method, two natu-
ral phenomena time series (Star and Sunspot) and four �nancial time series (Dow Jones
Industrial Average (DJIA) Index, National Association of Securities Dealers Automated
Quotation (NASDAQ) Index Series, Petrobras Stock Values and Dollar Real Exchange
Rate). All series investigated were normalized to lie within the interval [0, 1] and were
divided in to three sets [Prechelt 1994]: training set with 50% of the series data, valida-
tion set with 25% of the series data and test set with 25% of the series data. The PSO
parameters are the same for all experiments. The number of PSO iterations is 1000. The
acceleration coef�cients (c1 and c2) are set to 2.05, the inertia weight (w) is set to 0.9,
the vmax is set to 2.048 and the terms r1 and r2 are random numbers in the range [0, 1].
The PSO population is composed of 10 particles, where each individual is an ANN with
the maximum architecture: a 10-10-1 multilayer perceptron (MLP) network, which de-
notes 10 units in the input layer, 10 units in the hidden layer and 1 unit in the output layer
(prediction horizon of one step ahead).



It is worth to mention that each PSO individual is trained by one of the four al-
gorithms below: levenberg-marquardt (LM) [Hagan and Menhaj 1994] or RPROP [Reid-
miller and Braun 1993], scaled conjugate gradient [Moller 1993], or one step secant [Bat-
titi 1992], for a period of 103 epochs. The termination conditions for the ANN training
are the maximum number of epochs, the increase in the validation error or generalization
loss (Gl) beyond 5% and the decrease in the training error process training (Pt) under
10−6.

For each time series, �ve experiments were repeated and the experiment with the
largest validation �tness function is chosen to represent the model. The next subsections
show the experimental results achieved with the proposed model for the four series. For
the sake of comparison results are also shown with a random walk (RW) model [Mills
2003] and with standard MLPs (multilayer perceptron) in exactly the same conditions.
The MLP was trained with the Levenberg-Marquardt (LM) [Hagan and Menhaj 1994]
algorithm with architecture X − Y − 1, which denotes X units in the input layer, Y units
in the hidden layer and 1 unit in the output layer (prediction horizon of one step ahead).
The term X represents the relevant time lags, and for each time series the same time
lags chosen by the proposed model are used. The term Y represents the number of units
in the hidden layer, and for each time series the same number chosen by the proposed
model is also used. The termination conditions for the MLP training with LM [Hagan
and Menhaj 1994] are the maximum number of epochs (104), the increase in the validation
error or generalization loss (Gl > 5%) and the decrease in the error of the process training
(Pt < 10−6).

6.1. Star Series
The Star series corresponds to daily observations in the same place and hour of an oscil-
lating shine star, constituting a database of 600 points.

For the prediction of the Star series (with 1 step ahead of prediction horizon),
the proposed method automatically chose the lags 1, 2, 3, 4, 5, 6 and 8 as the relevant
lags for the time series representation, de�ned the second ANN model (Equation 9) with
architecture 7-7-1, in which NetMod = 2, NLags = 7 e NHidden = 7, and chose
the Levenberg-Marquard algorithm for ANN training. Table 1 shows the results for all
performance measures.

Table 1. Results for the Star series.
RW Model MLP Model Proposed Model

MSE 3.7191 · 10−3 6.4973 · 10−4 2.1960 · 10−4

MAPE 16.14% 6.83% 3.85%
NMSE 1.0000 0.1746 0.0573
POCID 65.98% 73.46% 76.19%
ARV 5.4643 · 10−2 9.5463 · 10−3 3.2266 · 10−3

�tness function 3.6257 9.1655 15.5149

According to Table 1, the proposed model prediction obtained superior perfor-
mance (in terms of �tness function) than the RW model and MLP model. The obtained
NMSE measure (smaller than 1) indicates that the proposed model has a better behav-
ior than a random walk model [Mills 2003] and the POCID measure (greater than 50%)
shows that the proposed model performs better than a coin tossing experiment. Figure 1(a)
shows the actual Star values (solid line) and the predicted values generated by the pro-
posed model (dashed line) for the last 100 points of the test set.

6.2. Sunspot Series
The selected Sunspot series consisted of the total annual measures of the sun spots from
the years of 1700 to 1988, constituting a database of 289 points.

For the prediction of the Sunspot series (with 1 step ahead of prediction horizon),
the proposed method automatically chose the lags 1, 2, 3 and 4 as the relevant lags for the



time series representation, de�ned the second ANN model (Equation 9) with architecture
4-10-1, in which NetMod = 2, NLags = 4 e NHidden = 10, and chose the Levenberg-
Marquard algorithm for ANN training. Table 2 shows the results for all performance
measures.

Table 2. Results for the Sunspot series.
RW Model MLP Model Proposed Model

MSE 2.7003 · 10−2 1.1634 · 10−2 9.5536 · 10−3

MAPE 55.27% 34.28% 31.95%
NMSE 1.0000 0.3980 0.3237
POCID 76.81% 81.15% 91.30%
ARV 0.4050 0.1744 0.1432

�tness function 1.3325 2.2625 2.7310

According to Table 2, the proposed model prediction obtained much superior per-
formance (in terms of �tness function) than RW model and MLP model. The obtained
NMSE measure (smaller than 1) indicates that the proposed model has a better behavior
than a random walk model [Mills 2003] and the POCID measure (greater than 50%) shows
that the proposed model performs better than a coin tossing experiment. Figure 1(b) shows
the actual Sunspot values (solid line) and the predicted values generated by the proposed
model (dashed line) for the last 70 points of the test set.

6.3. Dow Jones Industrial Average Index Series
The Dow Jones Industrial Average (DJIA) Index series corresponds to daily records from
January 1st 1998 to August 26th 2003, constituting a database of 1,420 points.

For the prediction of the DJIA Index series (with 1 step ahead of prediction hori-
zon), the proposed method automatically chose the lags 1, 2, 4, 5, 7 and 8 as the relevant
lags for the time series representation, de�ned the second ANN model (Equation 9) with
architecture 6-10-1, in which NetMod = 2, NLags = 6 e NHidden = 10, and chose
the Levenberg-Marquard algorithm for ANN training. Table 3 shows the results for all
performance measures.

Table 3. Results for the DJIA Index series.
RW Model MLP Model Proposed Model

MSE 8.3911 · 10−4 8.4089 · 10−4 8.3853 · 10−4

MAPE 9.68% 9.85% 9.59%

NMSE 1.0000 1.0023 1.0072

POCID 46.30% 50.72% 51.44%

ARV 3.5051 · 10−2 3.5126 · 10−2 3.3447 · 10−2

�tness function 3.9509 4.2663 4.4224

According to Table 3, the proposed model prediction obtained superior perfor-
mance (in terms of �tness function) than RW model and MLP model. The obtained
NMSE measure (around 1) indicates that the proposed model has a similar behavior of a
random walk model [Mills 2003] and the POCID measure (around 50%) shows that the
proposed model performs similar than a coin tossing experiment. Prediction for the DJIA
Index series is dislocated one step ahead the original values, characterizing the results
obtained by the NMSE. Figure 1(c) shows the actual DJIA Index values (solid line) and
the predicted values generated by the proposed model (dashed line) for the last 100 points
of the test set.

6.4. Dollar Real Exchange Rate Series
The Dollar Real Exchange Rate series corresponds to daily observations from January 3rd
2000 to December 29th 2005, constituting a database of 1,508 points.

For the prediction of the Dollar Real Exchange Rate series (with 1 step ahead of
prediction horizon), the proposed method automatically chose the lags 1, 2, 9 and 10 as the



relevant lags for the time series representation, de�ned the second ANN model (Equation
9) with architecture 4-1-1, in which NetMod = 2, NLags = 4 e NHidden = 1, and
chose the Levenberg-Marquard algorithm for ANN training. Table 4 shows the results for
all performance measures.

Table 4. Results for the Dollar Real Exchange Rate series.
RW Model MLP Model Proposed Model

MSE 6.1495 · 10−5 6.8091 · 10−5 6.0887 · 10−5

MAPE 1.81% 1.82% 1.75%
NMSE 1.0000 1.1070 0.9918
POCID 56.14% 59.89% 59.97%
ARV 4.6040 · 10−3 5.0979 · 10−3 4.4853 · 10−3

�tness function 14.7112 15.2253 16.0075

According to Table 4, the proposed model prediction obtained superior perfor-
mance (in terms of �tness function) than RW model and MLP model. The obtained
NMSE measure (around 1) indicates that the proposed model has a similar behavior of a
random walk model [Mills 2003] and the POCID measure (around 50%) shows that the
proposed model performs similar than a coin tossing experiment. Prediction for the Dollar
Real Exchange Rate series is dislocated one step ahead the original values, characteriz-
ing the results obtained by the NMSE. Figure 1(d) shows the actual Dollar Real Exchange
Rate values (solid line) and the predicted values generated by the proposed model (dashed
line) for the last 100 points of the test set.

(a) (b)

(c) (d)

Figure 1. Prediction results for the analyzed time series (test set): actual values
(solid line) and predicted values (dashed line).

7. Conclusion
In this paper has presented a hybrid swarm system for time series forecasting, which
consists of an intelligent hybrid model composed of an Arti�cial Neural Network (ANN)



and a Particle Swarm Optimizer (PSO). This method searches for the minimum number
of time lags for a correct characterization of the time series and the best neural network
structure in terms of the number of hidden processing units, the model, the parameters
con�guration, the initial weights and the training algorithm of the ANN.

The experimental results using a set of consistent performance measures with
�ve different metrics, the mean square error (MSE), the mean absolute percentage er-
ror (MAPE), U of Theil, the prediction of change in direction (POCID) and the average
relative variance (ARV). The method was applied to tow naturals phenomena time se-
ries, Sunspot and Star, two real world time series from the �nancial market with all their
dependence on exogenous and uncontrollable variables (Dow Jones Industrial Average
Index and Dollar Real Exchange Rate).

It was observed that the proposed model obtained a result better than random
walk model [Mills 2003] and ANN model for all the analyzed natural phenomena series.
For the analyzed �nancial time series, the proposed model obtained a slightly superior
behavior than random walk and MLP model.

Prediction for all analyzed �nancial series is dislocated one step ahead the original
values with all used models.This observation is also in consonance with the work of Sitte
and Sitte [Sitte and Sitte 2002], which have shown that the predictions of �nancial time
series exhibit a characteristic of one step shift with respect to the original data.

The experimental results have shown that the proposed method is a valid option
for the time series forecasting, therefore automatic adjusting the parameters of the ANN,
�nding the optimum or sub-optimum values for this parameters obtaining good prediction
results with an acceptable computational cost. Other time series are being reaped for the
ef�ciency con�rmation of the proposed method. Future works will consider the phase
prediction adjust procedure, like the method proposed by Ferreira et al. [Ferreira et al.
2006].

Prediction for all analyzed �nancial series is dislocated one step ahead the original
values. This observation is also in consonance with the work of Sitte and Sitte [Sitte
and Sitte 2002], which have shown that the predictions of �nancial time series exhibit
a characteristic of one step shift with respect to the original data. They argued that the
�nancial time series were a random walk model. Thus, in this approximation of the
�nancial time series model is given by

xt = xt−1 + rt (17)
where rt is a gaussian noise term. In this way, the prediction of the time series xt, given
by x̂t, requires a minimum forecast error, or,

E[x̂t − xt] → 0 (18)

Solving the Equation 18, it obtains,
E[x̂t] → E[xt−1] (19)

justifying the prediction of one step shift with respect to the original data for �nancial
times series. Thus, the result expected is given by Equation 19. However, Ferreira et
al. [Ferreira et al. 2006] showed that this behavior, which is like a random walk model for
�nancial time series, can be corrected by a phase prediction adjustment.

References
Araújo, R. A., Sousa, R. P., and Ferreira, T. A. E. (2007). An intelligent hybrid approach

for designing increasing translation invariant morphological operators for time series
forecasting. In ISNN (2), volume 4492 PART II of Lecture Notes in Computer Science,
pages 602�611. Springer-Verlag.



Battiti, R. (1992). One step secant conjugate gradient. Neural Computation, 4:141�166.
Clements, M. P. and Hendry, D. F. (1993). On the limitations of comparing mean square

forecast errors. Journal of Forecasting, 12(8):617�637.
Eberhart, R. C. and Hu, X. (1999). Human tremor analysis using particle swarm optimiza-

tion. In Proceedings of the IEEE Congress on Evolutionary Computation, Washington,
USA.

Eberhart, R. C. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Proceedings of the Int. Symp. Micro Machine and Human Science, Nagoya, Japan.

Engelbrecht, A. P. and Ismail, A. (1999). Training product unit neural networks. In
Stability Control: Theory Appl., volume 2, pages 59�74.

Ferreira, T. A. E., Vasconcelos, G. C., and Adeodato, P. J. L. (2006). A new intelligent
methodology for times series ferecasting. New Mathematics and Natural Computation,
2(3).

Hagan, M. and Menhaj, M. (1994). Training feedforward networks with the marquardt
algorithm. IEEE Transactions on Neural Networks, 5(6):989�993.

Leung, F. H. F., Lam, H. K., Ling, S. H., and Tam, P. K. S. (2003). Tuning of the structure
and parameters of the neural network using an improved genetic algorithm. IEEE
Transactions on Neural Networks, 14(1):79�88.

Mattos, P. S. G., Petry, G. G., and Ferreira, T. A. E. (2005). Combinaç�ao de redes neurais
arti�ciais com algoritmo genético modi�cado para a previs�ao de séries temporais. In
V Encontro Nacional de Intelig�encia Arti�cial (ENIA 2005). SBC.

Mills, T. C. (2003). The Econometric Modelling of Financial Time Series. Cambridge
University Press, Cambridge.

Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6:525�533.

Prechelt, L. (1994). Proben1: A set of neural network benchmark problems and bench-
marking rules. Technical Report 21/94.

Reidmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropaga-
tion learning: The rprop algorithm. In Proceedings of the IEEE Int. Conf. on Neural
Networks (ICNN), pages 586�591, San Francisco.

Shi, Y. and Eberhart, R. C. (1998). A modi�ed particle swarm optimizer. In Proceedings
of the IEEE Congress on Evolutionary Computation, Anchorage, AK.

Shi, Y. and Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In
Proceedings of the IEEE Congress on Evolutionary Computation, Washington, USA.

Sitte, R. and Sitte, J. (2002). Neural networks approach to the random walk dilemma of
�nancial time series. Applied Intelligence, 16(3):163�171.

Takens, F. (1980). Detecting strange attractor in turbulence. In Dold, A. and Eckmann,
B., editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Math-
ematics, pages 366�381, New York. Springer-Verlag.

van den Bergh, F. and Engelbrecht, A. P. (2000). Cooperative learning in neural networks
using particle swarm optimizers. In South African Comput. J., volume 26, pages 84�90.

vandenBergh, F. and Engelbrecht, A. P. (2004). A cooperative approach to particle swarm
optimization. IEEE Trans. Evolutionary Computation, 8(3):225�239.

Zhang, G., Patuwo, B. E., and Hu, M. Y. (1998). Forecasting with arti�cial neural net-
works: The state of the art. International Journal of Forecasting, 14:35�62.


