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Abstract. This paper presents an evolutionary approach for designing Morpho-
logical/Rank/Linear (MRL) �lters for time series forecasting. It consists of an
evolutionary model composed of a MRL �lter and a modi�ed Genetic Algorithm
(GA) with optimal genetic operators to accelerate the search convergence. The
proposed method performs an evolutionary search for the minimum number of
time lags (and their corresponding speci�c positions) to represent the time se-
ries, as well as the parameters of the MRL �lter, de�ned by mixing parameter
(λ), rank (r), linear Finite Impulse Response (FIR) �lter (b) and Morpholog-
ical/Rank (MR) �lter (a) coef�cients. An experimental analysis is conducted
with the proposed method using two real world time series and �ve well-known
performance measurements, demonstrating good performance of MRL �ltering
systems for time series forecasting.

1. Introduction
The popular statistical technique of Box & Jenkins [Box et al. 1994] (ARIMA mod-
els) is the most common choice for the prediction of time series. However, the Box &
Jenkins models are linear and most real world applications can involve nonlinear prob-
lems. This fact may introduce a limitation to the accuracy of the generated predictions
with Box & Jenkins models. In order to overcome this limitation, many nonlinear sta-
tistical approaches have been developed, such as the bilinear models [Rao and Gabr
1984], the threshold autoregressive models [Ozaki 1985], the exponential autoregressive
models [Priestley 1988], the general state dependent models [Rumelhart and McCleland
1987], amongst others. However, these nonlinear statistical models have a high math-
ematical complexity and, in the practical, similar performance to linear statistical mod-
els [Clements et al. 2004].

In order to overcome the limitation of linear and nonlinear statistical models, ap-
proaches based on Arti�cial Neural Networks (ANNs) have been successful applied for
nonlinear modeling of time series [Zhang et al. 1998]. In this context, a relevant work was
presented by Ferreira [Ferreira 2006], where was de�ned the Time-delay Added Evolu-
tionary Forecasting (TAEF) method for time series prediction, which performs an evolu-
tionary search for the minimum necessary number of time lags adequate for representing
the time series, based on the Takens theorem [Takens 1980]. The TAEF method [Ferreira
2006] �nds the most �tted predictor model for representing a time series, and then per-
forms a behavioral statistical test in order to adjust time phase distortions that may appear
in the representation of the time series.

Nonlinear �lters are widely applied in signal processing. An important class
of nonlinear �lter systems is based on the framework of Mathematical Morphology
(MM) [Maragos 1989, Serra 1982]. In the literature, many works have focused on the
design of discrete increasing morphological systems and rank or stack �lters. Salem-
bier [Salembier 1992, P. Salembier 1992] designed Morphological/Rank (MR) �lters via
gradient-based adaptive optimization. Pessoa and Maragos [Pessoa and Maragos 1998]
proposed a new hybrid �lter, referred to as Morphological/Rank/Linear (MRL) �lter,



which consists of a linear combination of an MR �lter and a linear Finite Impulse Re-
sponse (FIR) �lter. In the morphological systems context, another work was presented by
Araújo et al. [Araújo et al. 2006]. It consists of an evolutionary morphological approach
de�nition for �nancial time series forecasting, which provides a mechanism to design an
evolutionary model based on increasing and non-increasing translation invariant morpho-
logical operators.

This paper presents an evolutionary approach for designing MRL �lters for time
series forecasting. It consists of an evolutionary model composed of a MRL �lter [Pessoa
and Maragos 1998] and a modi�ed Genetic Algorithm (GA) [Leung et al. 2003] having
optimal genetic operators to accelerate the search convergence. The proposed method per-
forms an evolutionary search for the minimum number of time lags (and their correspond-
ing speci�c positions) to represent the time series, as well as the parameters of MRL �lter
(mixing parameter (λ), rank (r), linear FIR �lter (b) and MR �lter (a) coef�cients). An
experimental analysis is conducted with the proposed method using a �nancial time series
(National Association of Securities Dealers Automated Quotation (Nasdaq) Index) and a
natural phenomena time series (Brightness of a Variable Star Series). Five well-known
performance measurements are used to assess the performance of the proposed method:
Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), Normalized Mean
Square Error (NMSE), Prediction Of Change In Direction (POCID) and Average Relative
Variance (ARV).

2. Forecasting Problem
A time series is a set of points, generally time equidistant, de�ned by,

Xt = {xt ∈ R | t = 1, 2, . . . , N}, (1)

where t is the temporal index and N is the number of observations. Therefore, Xt is a
sequence of temporal observations orderly sequenced and equally spaced.

The main objective of the forecasting techniques is to identify certain regular pat-
terns present in the data set in order to create a model capable of generating the next
temporal patterns. In this context, a crucial factor for a good forecasting performance
is the correct choice of the time lags. Such relationship structures among historical data
constitute a d-dimensional phase space, where d is the dimension capable of representing
such relationship. Takens [Takens 1980] proved that if d is suf�ciently large, such built
phase space is homeomorphic to the phase space which generated the time series.

The crucial problem in reconstructing the original state space is the correct choice
of the d, or more speci�cally, the correct choice of the time lags. The proposed method
in this paper tries to reconstruct the phase space of a given time series by carrying out a
search for the minimum dimension necessary (i.e. important time lags) to reproduce the
phenomenon that generates the times series and its subsequent values.

3. Modi�ed Genetic Algorithm
The modi�ed Genetic Algorithm (GA) used here is based on the work of Leung et al. [Le-
ung et al. 2003], where specials crossover and mutation operators are applied to accelerate
the search convergence.

The crossover operator [Leung et al. 2003] is used for exchanging informa-
tion from two parents (p1 and p2) obtained in the selection process by a roulette wheel
approach [Leung et al. 2003]. The recombination process to generate the offspring
(C1, C2, C3 and C4) is done by four crossover operators, which are de�ned by the fol-
lowing equations [Leung et al. 2003]:

C1 =
p1 + p2

2
, (2)



C2 = pmax(1− w) + max(p1, p2)w, (3)

C3 = pmin(1− w) + min(p1, p2)w, (4)

C4 =
(pmax + pmin)(1− w) + (p1 + p2)w

2
, (5)

where w ∈ [0, 1] denotes the crossover weight (the closer w is to 1, the greater is the
direct contribution from parents), max(p1, p2) and min(p1, p2) denote the vector whose
elements are the maximum and the minimum, respectively, between the gene values of p1

and p2. The terms pmax and pmin denote the maximum and minimum possible gene values,
respectively. After the offspring generation by crossover operators, the son with the best
evaluation (greater �tness value) will be chosen as the son generated by the crossover
process and denoted Cbest.

After the crossover operator, Cbest is selected to have a mutation process, where
three new sons are generated and de�ned by the following equation [Leung et al. 2003]:

Mj = Cbest
k + γk∆Mk, j = 1, 2, 3 and k = 1, 2, . . . , n, (6)

where γk can only take the values 0 or 1, ∆Mk are randomly generated numbers such that
pmin ≤ Cbest

k + ∆Mk ≤ pmax and n denotes the number of genes in the chromosome.
The �rst mutation son (M1) is obtained according to (6) using only one term γk

set to 1 (k is randomly selected within the range [1, n]) and the remaining terms γk are set
to 0. The second mutation son (M2) is obtained according to (6) using some γk randomly
chosen and set to 1 and the remaining terms γk are set to 0. The third mutation son (M3)
is obtained according to (6) using all γk set to 1.

4. Morphological/Rank/Linear Fundamentals
Next, will be presented some preliminary theoretical concepts and notations of Morpho-
logical/Rank/Linear (MRL) �lter, which are used in the proposed approach.

4.1. Morphological/Rank/Linear Filter Preliminaries
De�nition 1 � Rank Function: the r-th rank function of the vector t = (t1, t2, . . . , tn) ∈
Rn is the r-th element of the vector t sorted in decreasing order (t(1) ≥ t(2) ≥ . . . ≥ t(n)).
It is denoted by [Pessoa and Maragos 1998],

Rr(t) = t(r), r = 1, 2, . . . , n. (7)

For example, given the vector t = (3, 0, 5, 7, 2, 1, 3), its 4-th rank function is
R4(t) = 3.

De�nition 2 � Unit Sample Function: the unit sample function is given by [Pessoa
and Maragos 1998]

q(v) =

{
1, if v = 0,
0, otherwise. (8)

where v ∈ R.
Applying the unit sample function to a vector v = (v1, v2, . . . , vn) ∈ Rn yields a

vector unit sample function (Q(v)), given by [Pessoa and Maragos 1998]

Q(v) = [q(v1), q(v2), . . . , q(vn)]. (9)



De�nition 3 � Rank Indicator Vector : the r-th rank indicator vector c of t is given
by [Pessoa and Maragos 1998]

c(t, r) =
Q ((z ·1) − t)

Q ((z ·1) − t) · 1′ , (10)

where z = Rr(t), 1 = (1, 1, . . . , 1) and the symbol ′ denotes transposition.
For example, given the vector t = (3, 0, 5, 7, 2, 1, 3), its 4-th rank indicator func-

tion is c(t, 4) = 1
2
(1, 0, 0, 0, 0, 0, 1).

De�nition 4 � Smoothed Rank Function: the smoothed r-th rank function is given
by [Pessoa and Maragos 1998]

Rr,σ(t) = cσ(t, r) · t′, (11)

with
cσ(t, r) =

Qσ ((z ·1) − t)

Qσ ((z ·1) − t) · 1′ , (12)

where cσ is an approximation for the rank indicator vector c and Qσ(v) =
[qσ(v1), qσ(v2), . . . , qσ(vn)] is a smoothed impulse function (where qσ(v) is like
sech2(v/σ) or exp

[−1
2
(v/σ)2

]
) and σ ≥ 0 is a scale parameter.

Thus, cσ is an approximation for the rank indicator vector v. Using ideas of fuzzy
set theory, cσ can also be interpreted as a membership function vector [Pessoa and Mara-
gos 1998]. For example, if the vector t = (3, 0, 5, 7, 2, 1, 3), qσ(v) = sech2( v

σ
) and

σ = 0.5 then its smoothed 4-th rank indicator function is

cσ(t, 4) = 1
2
(0.9646, 0, 0.0013, 0, 0.0682, 0.0013, 0.9646),

whereas c(t, 4) = 1
2
(1, 0, 0, 0, 0, 0, 1).

4.2. Morphological/Rank/Linear (MRL) Filter
The MRL �lter [Pessoa and Maragos 1998] is a linear combination between a Morpho-
logical/Rank (MR) �lter and a linear Finite Impulse Response (FIR) �lter.

De�nition 5 � MRL Filter [Pessoa and Maragos 1998]: Let x = (x1, x2, . . . , xn) ∈
Rn represent the input signal inside an n-point moving window and let y be the output
from the �lter. Then, the MRL �lter is de�ned as the shift-invariant system whose local
signal transformation rule x → y is given by [Pessoa and Maragos 1998]

y = λα + (1− λ)β, (13)

with
α = Rr(x + a) = Rr(x1 + a1, x2 + a2, . . . , xn + an), (14)

and
β = x · b′ = x1b1 + x2b2 + . . . + xnbn, (15)

where λ ∈ R, a and b ∈ Rn. The terms a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)
represent the coef�cients of the MR �lter and the coef�cients of the linear FIR �lter,
respectively. The term a is usually referred to structuring element because for r = 1 or
r = n the rank �lter becomes the morphological dilation and erosion by a structuring
function equal to ±a within its support [Pessoa and Maragos 1998]. If 1 < r < n, it uses
a to generalize the standard unweighted rank operations to �lters with weights [Pessoa
and Maragos 1998].



5. The Proposed Approach
The proposed approach consists of an evolutionary model composed of a MRL �lter [Pes-
soa and Maragos 1998] combined with the modi�ed GA [Leung et al. 2003] (Section 3).
It is based on the de�nition of the two main elements necessary for building an accurate
forecasting system according to Ferreira [Ferreira 2006]: (a) minimum number of time
lags adequate for representing the time series, and (b) structure of the model capable of
representing such underlying information. It is important to consider the minimum possi-
ble number of time lags in the correct representation of the series because the model must
to be as parsimonious as possible.

Following this principle, the proposed method, referred to as Morphologi-
cal/Rank/Linear design by GA training (MRL-GA), uses the modi�ed GA [Leung et al.
2003] for training the MRL �lter [Pessoa and Maragos 1998], whose main goal is to
de�ne the following important parameters: (1) the minimum number of time lags and
their corresponding speci�c positions to represent the series (initially, a maximum number
(MaxLags) is de�ned and then the GA can choose any value in the interval [1,MaxLags]
for each individual of the population), and (2) the parameters of MRL �lter (mixing pa-
rameter (λ), rank (r), linear FIR �lter coef�cients and MR �lter coef�cients). The pro-
posed prediction scheme in this paper also uses the phase �x procedure idea from Fer-
reira [Ferreira 2006] where a two step procedure is introduced, which tries to adjust time
phase distortions that may appear in the �nancial time series.

The GA individuals are evaluated by the �tness function de�ned by,

fitness =
POCID

1 + MSE + MAPE + NMSE + ARV
(16)

where MSE, MAPE, NMSE, POCID and ARV will be formally de�ned on Sec-
tion 6.

The termination conditions for the GA are:
1. Minimum value of �tness function: fitness ≥ 40, where this value mean the

accuracy to predict direction around 80% (POCID & 80%) and the sum of the
other errors around one (MSE + MAPE + NMSE + ARV ∼= 1). If a model
(best individual of GA population) reaches this �tness value, then the system tests
new models by 1000 GA iterations ahead. If there is not �tness improvement in
these 1000 GA interactions ahead, then the system stops;

2. The increase in the validation error or generalization loss (Gl) [Prechelt 1994]:
Gl > 5%;

3. The decrease in the training error process training (Pt) [Prechelt 1994]: Pt ≤
10−6.

5.1. Modeling of GA Individuals
Each individual of the GA population is a MRL �lter. The individuals are represented by
chromosomes that have the following genes (MRL �lter parameters):

• a: MR �lter coef�cients (in the range [−1, 1]);
• b: linear FIR �lter coef�cients (in the range [−1, 1]);
• ρ: variable used to determine the rank r, which is given by [Pessoa and Maragos

1998]
r = round

(
n− n− 1

exp(−ρ)

)
, (17)

where round(·) denotes the usual symmetrical rounding operation and n is the
dimension of the input vector;

• λ: mixing parameter (in the range [0, 1]);
• lag: a vector having size MaxLags, where each position has a real-valued codi-

�cation, which is used to determine if a speci�c time lag will be used (lagi ≥ 0)
or not (lagi < 0).



6. Performance Evaluation
Many performance evaluation criteria is found in literature. However, most of the existing
literature on time series prediction frequently employ only one performance criterion for
model evaluation. The most widely used criterion is the Mean Squared Error (MSE),
given by

MSE =
1

N

N∑
j=1

(targetj − outputj)
2, (18)

where N is the number of patterns, targetj is the desired output for pattern j and outputj
is the predicted value for pattern j.

The MSE measure may be used to drive the prediction model in the training pro-
cess, but it cannot be considered alone as a conclusive measure for comparison of differ-
ent prediction models [Clements et al. 2004]. For this reason, other performance criteria
should be considered for allowing a more robust performance evaluation.

How the measure MSE doesn't offer clearly the forecasting model performance,
it's necessary to use a measure that is capable of to identify accurately the model de-
viation. A measure that presents such behavior is the Mean Absolute Percentage Error
(MAPE), given by

MAPE =
100

N

N∑
j=1

∣∣∣∣∣
targetj − outputj

xj

∣∣∣∣∣, (19)

where xj is the time series value at point j.
A naive strategy used to make predictions is de�ne the last time series observation

as the best future prediction value (Xt+1 = Xt). This kind of behavior is generally found
in �nancial time series prediction, and it's known as the random walk model [Mills 2003].
Thus, a way to evaluate the model based on this behavior is using the Normalized Mean
Squared Error (NMSE), which associates the model performance with a random walk
model, and given by

NMSE =

∑
j

(targetj − outputj)
2

∑
j

(outputj − outputj+1)2
, (20)

where, if the NMSE is equal to 1, the predictor has the same performance of a random
walk model. If the NMSE is greater than 1, then the predictor has a performance worse
than a random walk model, and if the NMSE is lesser than 1, the predictor is better than
a random walk model. In the perfect model, the NMSE tends to zero.

Another interesting measure to evaluate the model consists in the accuracy to pre-
dict direction or, more speci�cally, if the future value (prediction target) is going to up
or to down, regarding the last observed time series value. It's known as Prediction Of
Change In Direction (POCID), and given by

POCID =
100

N

N∑
j=1

Dj, (21)

where
Dj =

{
1 if (targetj − targetj−1)(outputj − outputj−1) > 0
0 otherwise (22)



The last measure used associates the model performance with the mean of the time
series. The measure is the Average Relative Variance (ARV), and it is given by

ARV =

N∑
j=1

(outputj − targetj)
2

N∑
j=1

(outputj − target)2

, (23)

where target is the mean of the time series. If the ARV is equal to 1, the predictor has
the same performance of the time series average. If the ARV is greater than 1, then the
predictor has a performance worse than the time series average, and if the ARV is lesser
than 1, the predictor is better than the time series average. In the ideal model, ARV tends
to zero.

7. Experimental Results
The GA parameters used in MRL-GA method are a maximum number of GA genera-
tions corresponding to 104, weight w = 0.9 (used in the crossover operator), mutation
probability equals to 0.1 and maximum number of lags MaxLags = 10. The MR �lter
coef�cients and the linear FIR �lter coef�cients (a and b, respectively) were normalized
in the range [−1, 1]. The MRL �lter parameters λ and ρ were in the range [0, 1] and
[−MaxLags, MaxLags], respectively.

A set of two time series was used as a test bed for evaluation of the proposed
method: a �nancial time series (National Association of Securities Dealers Automated
Quotation (Nasdaq) Index) and a natural phenomena time series (Brightness of a Variable
Star Series). All series investigated were normalized to lie within the range [0, 1] and di-
vided in three sets according to Prechelt [Prechelt 1994]: training set (50% of the points),
validation set (25% of the points) and test set (25% of the points).

Next, will be presented the simulation results involving the MRL-GA model with
and without the phase �x procedure [Ferreira 2006], referred to as MRL-GA model out-
of-phase and MRL-GA model in-phase, respectively. These two procedures (in-phase
and out-of-phase) were used to study the possible performance improvement, in terms of
�tness function, of the phase �x procedure applied to MRL-GA Model.

To build a reference performance level, also will be presented results by random
walk (RW) model [Mills 2003] and by ANN (Arti�cial Neural Network - multilayer per-
ceptron) model. The ANN was trained by Levenberg-Marquardt (ANN-LM) [Hagan and
Menhaj 1994] algorithm with architecture X − 10 − 1, which X denotes the number of
units in the input layer, 10 units in the hidden layer and 1 unit in the output layer (pre-
diction horizon of one step ahead). The term X represents the relevant time lags, and for
each time series we use the same time lags chosen by the proposed model (MRL-GA).
The termination conditions for the ANN-LM [Hagan and Menhaj 1994] algorithm are the
maximum number of epochs (104), the increase in the validation error or generalization
loss (Gl > 5%) and the decrease in the error of the process training (Pt < 10−6). For each
time series, was made ten experiments, where the experiment with the largest validation
�tness function is chosen to represent the prediction model.

7.1. National Association of Securities Dealers Automated Quotation (NASDAQ)
Index Series

The National Association of Securities Dealers Automated Quotation (NASDAQ) Index
series corresponds to daily observations from February 2nd 1971 to June 18th 2004, con-
stituting a database of 8428 points.

For the NASDAQ Index series prediction (with one step ahead of prediction hori-
zon), the proposed method automatically chose the lags 1, 3, 4, 6, 8, 9 and 10 as the



relevant lags (n = 7) and de�ned the parameters ρ = −2.3355 and λ = 0.0897. The
Table 1 shows the results for all performance measures for RW model, ANN-LM model
and MRL-GA model with and without phase �x procedure.

Table 1. Results for the NASDAQ Index series.
RW Model ANN-LM Model MRL-GA Model In-Phase MRL-GA Model Out-Of-Phase

MSE 1.8747 · 10−5 2.0511 · 10−5 2.0628 · 10−5 1.8731 · 10−5

MAPE 0.39% 0.42% 0.41% 0.39%
NMSE 1.0000 1.0941 1.0985 1.0000
POCID 52.70% 53.23% 52.94% 53.65%
ARV 2.9877 · 10−3 3.2689 · 10−3 3.2839 · 10−3 2.9812 · 10−3

�tness 21.9541 21.0646 21.0127 22.4195

According to Table 1, the prediction of MRL-GA model out-of-phase (with the
phase �x procedure) obtained performance slightly better (in terms of �tness function)
than RW model, ANN-LM model and MRL-GA model in-phase (without the phase �x
procedure). The obtained NMSE measure value (1.0000) indicates that the MRL-GA
model out-of-phase is a random walk like model [Mills 2003]. The POCID measure
(53.65%) shows that the MRL-GA model out-of-phase has a similar behavior to a heads
or tails experiment, but was slightly better than RW model (52.70%), ANN-LM model
(53.23%) and MRL-GA model in-phase (52.94%).

The phase �x procedure was applied in intention to correct the distortions of the
forecast phase [Ferreira 2006]. The MRL-GA model out-of-phase had a forecast per-
formance slightly better than the model version without the phase �x procedure, but the
prediction for the NASDAQ Index series is still dislocated one step ahead the original
values, characterizing the results obtained by the NMSE. Figure 1(b) shows the actual
NASDAQ Index values (solid line) and the predicted values generated by the MRL-GA
model out-of-phase (dashed line) for the last 100 points of the test set.
7.2. Brightness of a Variable Star Series
The Brightness of a Variable Star series, or Star series, corresponds to daily observations
in the same place and hour of an oscillating shine star, constituting a database of 600
points.

For the prediction of the Star series (with one step ahead of prediction horizon),
the proposed method automatically chose the lags 1, 2, 3, 8, 9 and 10 as the relevant lags
(n = 6) and de�ned the parameters ρ = 6.7532 and λ = 0.4914. The Table 2 shows the
results for all performance measures for RW model, ANN-LM model, MRL-GA model
in-phase and MRL-GA model out-of-phase.

Table 2. Results for the Star series.
RW Model ANN-LM Model MRL-GA Model In-Phase MRL-GA Model Out-Of-Phase

MSE 3.7191 · 10−3 1.3041 · 10−3 6.3223 · 10−4 3.5584 · 10−4

MAPE 16.14% 7.35% 6.88% 4.83%
NMSE 1.0000 0.3510 0.1679 9.6329 · 10−2

POCID 65.98% 75.51% 76.43% 82.70%
ARV 5.4643 · 10−2 1.9161 · 10−2 9.2891 · 10−3 5.1522 · 10−3

�tness 3.6257 8.6545 9.4851 13.9417

According to Table 2, the prediction of the MRL-GA model out-of-phase ob-
tained better performance (in terms of �tness function) than RW model, ANN-LM model
and MRL-GA model in-phase. The obtained NMSE measure (9.6329 · 10−2) indicates
that the MRL-GA model out-of-phase has a better performance than a random walk like
model [Mills 2003]. The POCID measure (82.70%) shows that the MRL-GA model out-
of-phase has a better performance than a heads or tails experiment, but it was slightly bet-
ter than RW model (65.98%), ANN-LM model (75.51%) and MRL-GA model in-phase
(76.43%). The Figure 1(a) shows the actual Star values (solid line) and the predicted val-
ues generated by the MRL-GA model out-of-phase (dashed line) for the last 100 points
of the test set.



(a) (b)

Figure 1. Prediction results for the analyzed time series (test set): actual values
(solid line) and predicted values (dashed line).

8. Conclusions

An evolutionary approach for designing Morphological/Rank/Linear (MRL) �lters for
time series forecasting was presented in this paper. It consists of an evolutionary model
composed of a MRL �lter and a modi�ed Genetic Algorithm (GA) having optimal genetic
operators to accelerate the search convergence. The proposed method, called Morpho-
logical/Rank/Linear design via Genetic Algorithm training (MRL-GA), searches for the
minimum number of time lags (and their corresponding speci�c positions) to represent
the time series, as well as the parameters of MRL �lter (mixing parameter (λ), rank (r),
linear Finite Impulse Response (FIR) �lter (b) and Morphological/Rank (MR) �lter (a)
coef�cients) to solve the time series forecasting problem.

Five different metrics were used to measure the performance of the proposed
method for time series forecasting. The method was applied to a real world time se-
ries from the �nancial market with all their dependence on exogenous and uncontrollable
variables (Nasdaq Index) and a natural phenomena time series (Brightness of a Variable
Star Series). The experimental results demonstrated slightly better performance of the
proposed MRL-GA model out-of-phase (with the phase �x procedure), when compared
to RW model, ANN-LM model and MRL-GA model in-phase (without the phase �x
procedure). Furthermore, the MRL �ltering structure is quite attractive with its modest
computational complexity for designing the model when compared to the model proposed
in Araújo et al. [Araújo et al. 2006] and other statistical nonlinear models [Rao and Gabr
1984, Ozaki 1985, Priestley 1988, Rumelhart and McCleland 1987].

It was observed that the proposed model obtained a better performance than a
random walk model [Mills 2003] for the analyzed natural phenomena series, whereas it
obtained a similar performance to a random walk model for all the analyzed �nancial time
series, where the predicted values were shifted one step ahead the original values, indicat-
ing a random walk like model [Mills 2003]. This observation is also in agreement with the
work of Sitte and Sitte [Sitte and Sitte 2002] and Araújo et al. [Araújo et al. 2006], which
have shown that the predictions of �nancial time series exhibit a characteristic one step
shift with respect to the original data. However, Ferreira [Ferreira 2006] shown that this
behavior (random walk like model) can be corrected with the phase �x procedure applied
to a evolve Arti�cial Neural Network (ANN). Ferreira [Ferreira 2006] also shown that the
phase �x procedure successful is strongly dependent of the ANN parameters adjustment
and the model used to forecasting.

The phase �x procedure proposed by Ferreira [Ferreira 2006] was not able to
correct the prediction phase when applied to the proposed model, but it was capable to
improve the prediction performance. Why the proposed model has this behavior is a
mystery for us, and studies are being accomplished to try to explain such behavior.
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