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Abstract. In the aftermath of a large-scale disaster, agents’ decisions derive
from self-interested (e.g. survival), common-good (e.g. victims’ rescue) and
teamwork (e.g. fire extinction) motivations. However, decision-theoretic models
find it difficult to incorporate motivations, and mental-state models find it diffi-
cult to deal with uncertainty. We present an hybrid, CvI-JI, approach that com-
bines: i) collective ‘versus’ individual (CvI) decisions, founded on the Markov
decision process (MDP) quantitative evaluation of joint-actions, and ii) joint-
-intentions (JI) formulation of teamwork, founded on the belief-desire-intention
(BDI) architecture of general mental-state based reasoning. Experiments show
the CvI-JI performance’s improvement during a policy learning process.

1. Introduction

The agents that cooperate to mitigate the effects of a large-scale disaster, e.g. an earth-
quake or a terrorist incident, take decisions that follow two large behavioral classes:
the individual (ground) activity and the collective (institutional) coordination of such
activity. Additionally, agents are motivated to form teams and jointly commit to goals
that supersede the individual capabilities. The collective ‘versus’ individual (CvI)
decision model [Trigo et al. 2006], founded on the Markov decision process (MDP)
framework, aims to conciliate the reciprocal influence of those two behavioral classes
(collective and individual). Despite that, the CvI misses the agents’ intentional stance
toward team activity. On the other hand, the joint-intentions (JI) formulation of team-
work [Cohen and Levesque 1991], based on the belief-desire-intention (BDI) mental-
-state architecture, captures the agents’ intentional stance, but misses the MDP domain-
-independent support for sequential decision-making in stochastic environments. Re-
search on single-agent MDP-BDI hybrid approaches formulate the correspondence be-
tween the BDI plan and the MDP policy concepts [Simari and Parsons 2006] and empiri-
cally compares each model’s performance [Schut et al. 2002]. Approaches to multi-agent
MDP-BDI hybrid models often exploit BDI plans to improve MDP tractability, and use
MDP to improve BDI plan performance [Tambe et al. 2005]. In this paper we take a diffe-
rent approach. Instead of exploring the plan-policy relationship, we focus on the relation
between the BDI intention concept and the MDP temporally abstract action concept; we
envisage an intention as an action that executes for time variable periods and, when ter-
minated, yields a reward to the agent. We extend this view to the joint-intentions concept
and integrate the resulting formulation in the 2-strata multilevel hierarchal CvI decision



model. The motivation for the hybrid CvI-JI model is to utilize the JI as an heuristic cons-
traint that reduces the space of admissible joint-actions. The experimental results show
the CvI-JI policy learning improvement in a partially observable environment.

The next section describes the CvI decision model and the section 3 outlines the JI
concepts that are most relevant for our hybrid approach. Section 4 formulates the hybrid
CvI-JI decision model, which is experimentally instantiated and evaluated in section 5.
Finally, section 6 presents our conclusions and future research goals.

2. The collective ‘versus’ individual (CvI) decision model

The CvI decision model considers that the individual choice coexist with the collective
choice and that coordinated behavior happens (is learned) from the prolonged relation (in
time) of the choices exercised at both of those strata (individual and collective). Additio-
nally, coordination is exercised on high level cooperation tasks, represented within an hi-
erarchical task organization. The tasks’ hierarchy is founded on the framework of Options
[Sutton et al. 1999], which extends the MDP theory to include temporally abstract actions
(variable time duration tasks, whose execution resorts to a subset of primitive actions).

2.1. The framework of Options

Formally, an MDP is a 4-tuple M ≡ 〈S,A, Ψ, P, R 〉 model of stochastic sequential
decision problems, where S is a set of states,A is a set of actions, Ψ ⊆ S×A is the set of
admissible state-action pairs, R( s, a ) is the expected reward when action a is executed
at s, and P ( s ′ | s, a ) is the probability of being at state s ′ after executing a at state s.

Given an MDP, an option o ≡ 〈I , π, β 〉, consists of a set of states, I ⊆ S , from
which the option can be initiated, a policy, π, for the choice of actions and a termination
condition, β, which, for each state, gives the probability that the option terminates when
that state is reached. The computation of optimal value functions and optimal policies,
π?, resorts to the relation between options and actions in a semi-Markov decision pro-
cess (SMDP). The relation is that “any MDP with a fixed set of options is a SMDP”
[Sutton et al. 1999]. Thus, all the SMDP learning methods can be applied to the case
where temporally extended options are used in an MDP.

The option is an element of a multilevel hierarchy in which the policy of each
option chooses among other lower level options. Thus, at each time step, the agent’s
decision is entirely among options, some of which persist for a single time step (primitive
action or one-step option), and others are temporarily extended (multi-step option).

2.2. The CvI collective and individual strata

The individual stratum is simply a set of agents, Υ, each agent, j ∈ Υ, having its par-
ticular capabilities described as an hierarchy of options. The CvI model admits agent
heterogeneity (diverse option hierarchies), as long as all hierarchies have the same num-
ber of levels (depth), i.e., a similar temporal abstraction is used to design all hierarchies.

The collective stratum consists of a single agent (e.g. an institutional agent) that
represents the whole set of individual stratum agents. The collective stratum agent cannot
act on its own; its actions must be materialized through the individual stratum agents. The
purpose of the collective stratum is to coordinate the individual stratum. Formally, at the



collective stratum, each action is specified as a collective option, o~o = 〈 I~o, π~o, β~o 〉, where
~o = 〈 o1, . . . , o|Υ| 〉 represents the simultaneous execution of option oj ≡ 〈Ij, πj, βj 〉 by
each agent j ∈ Υ. The set of agents, Υ, defines an option space, ~O ⊆ O1 × . . . × O|Υ|,
where Oj is the set of agent j options and each o~o ∈ ~O is a collective option. The ~O
decomposes into ~Od disjoint subsets, each containing only the collective options available
at the, d, hierarchical level, where 0 < d ≤ D and level-0 is the hierarchy root, at which
there are no options to choose from, and level-D is the hierarchy depth. A level d policy,
πd, is implicitly defined by the SMDPMd with state set S and action set ~Od. TheMd

solution is the optimal way to choose the level d individual policies which, in the long
run, gather the highest collective reward.

The figure 1 illustrates the CvI decision model where the individual stratum (each
agent j task hierarchy) has 3 levels and thus the collective stratum (represented by two,
~o1 and ~o2, collective option instances) contains 2 levels; at each level, the set of diamond
ended arcs, links the collective option to each of its individual policies.
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Figure 1. The CvI decision model and the links between strata (superscript j
refers to agent j; subscripts k and p-k refer to k hierarchical level and k tree path).

A centralized approach defines the Md meta-policies and decides which indivi-
dual policy to follow (i.e., decision-making is centralized in the collective stratum). Our
CvI design follows a decentralized decision-making approach as it lets each agent choose
whether to make a decision by itself or to ask the collective stratum for a decision. Such
decide-who-decides (d-w-d) process is supported, at each hierarchical level d, by the value
functions of the corresponding SMDPMd. The d-w-d represents the importance that an
agent credits to collective and individual motivations, which is materialized as the ratio
between, the maximum expected benefit in choosing a collective and an individual de-
cision. A threshold, κ ∈ [ 0, 1 ], enables to grade the focus from the collective to the
individual stratum. Such regulatory mechanism enables the (human) designer to specify
diverse social attitudes: ranging from self-interested to common-good motivated agents.

The formulation of the 2-stratum, CvI, multilevel hierarchical decision model and
the definition of the inter-strata regulatory mechanism enabled to experimentally show
how to explore the individual policy space in order to decrease the complexity of learning
a coordination policy in a partially observable setting. We refer to [Trigo et al. 2006] for
the comprehensive description of the CvI decision model.



2.3. The design of CvI agents
Given a set of agents, Υ, standing for the individual stratum, and an agent, υ, that imper-
sonates the collective stratum, the design of a CvI instance is a 3-step process:

i. For each j ∈ Υ, specify Oj — the set of options and its hierarchical organization.
ii. For each j ∈ Υ, and from the agent υ perspective, identify the subset of coopera-

tion tasks, Cj ⊆ Oj — the most effective options to achieve coordination skills;
the remaining options, J j = Oj − Cj , represent purely individual tasks.

iii. For each j ∈ Υ, assign κ its regulatory value — where κ = 0 is a common-good
motivated agent, κ = 1 is a self-interested attitude, and κ ∈ ] 0, 1 [ embraces the
whole spectrum between those two extreme decision motivations.

A simple, domain-independent design defines Cj (item ii above) as the set of multi-
-step options; hence J j as the one-step options. Also, the highest hierarchical level(s) are
usually effective to achieve coordination skills as they escape from getting lost in the
confusion of lower level details. Our approach, at its current stage, requires a designer to
specify domain-dependent collective and individual options (i.e., Cj and J j sets).

3. The framework of joint-intentions (JI)
The precise semantics for the intention concept varies across the literature. An inten-
tion is often taken to represent an agent’s internal commitment to perform an action,
where a commitment is specified as a goal that persists over time, and a goal (often
named as desire) is a proposition that the agent wants to get satisfied [Bratman 1990],
[Cohen and Levesque 1990], [Rao and Georgeff 1995], [Wooldridge 2000]. An intention
can also be taken to represent a linear plan that an agent has adopted to reach a state that
the agent is committed to bring about [Georgeff and Ingrand 1989].

The framework of joint-intentions (JI) adopts the semantics of the “intention as a
commitment to perform an action” and extends it to describe the concept of teamwork.
A team is described as a set, of two or more agents, collectively committed to achieve
a certain goal [Cohen and Levesque 1991]. The teamwork agents (those acting within a
team) are expected to first form future-directed joint-intentions to act, keep those joint-
-intentions over time, and then jointly act. Formally, given a set of agents, Υ, a team is
described as a 2-tuple T ≡ 〈α, g 〉, where the team members are represented by α ⊆ Υ,
and the team goal is g. In a team all members, α, are jointly committed to achieve the
goal, g, while mutually believing that they are all acting towards that same goal. The
teamwork terminates as soon as all members mutually believe that there exists at least
one member that considers g as finished (achieved, impossible to achieve or irrelevant).

The CvI (cf. section 2) decision-theoretic model regards the JI approach as a way
to reduce the collective option space exponentially in the number of team members. For
example, given Υ agents, all with the same cooperation tasks, C, there are at most |C||Υ|
admissible options to choose; during 〈α, g 〉 teamwork, that number reduces to |C||Υ|−|α|
and such reduction motivates the formulation of the hybrid CvI-JI decision model.

4. The hybrid CvI-JI decision model
The formulation of the hybrid CvI-JI decision model addresses (in the next sections) two
questions: i) how to specify, at design time, the JI using the CvI components?, and ii) how
to integrate, at execution time, the JI specification in the CvI decision process?



4.1. Specification of JI using the CvI components
The JI describes teamwork in terms of goals which, in general, take multiple time periods
until satisfaction. The CvI specifies decisions in terms of options which are temporally
abstract actions. Therefore, a (team) goal corresponds to a (team) option. Given a goal, g,
described as a proposition, ϕ, we formulate the corresponding option as 〈 I , π, β 〉, where,
I is the set of states such that ¬ ϕ is satisfied, β( s ) = 1 if s ∈ (S − I ) or β( s ) = 0
otherwise, and π represents any policy to satisfy ϕ (i.e., to terminate the option).

The JI only requires agents to “keep the joint-intentions over time, and then jointly
act”; it does not specify (the agent decides) when to terminate executing an ongoing task
and effectively start acting to achieve a team goal. The CvI agents simultaneously execute
their options, consequently, at a decision epoch, there may exist terminated and ongoing
options. Thus, our hybrid CvI-JI option selection function distinguishes between two
teamwork stages: i) the “ongoing task continue” while a team member executes another
task, and ii) the “team option startup” when a team member starts executing the team
option. Given a team member, j, and a team’s option initiation set, I, we define the
ongoing states, I ongo: j ⊂ I, where j is allowed to continue executing an ongoing task.

The JI assumes that once an agent commits to a team goal he will fulfil that com-
mitment. The CvI is a stochastic model so we assume the possibility that an agent drops
a previous commitment before actually starting to act as a team member. Given agent j
we define the commitment probability, p commit: j , that j meets his engagement.

The CvI-JI combines all the above elements (team option, ongoing set and com-
mitment probability) into a single “teamwork design component” (tdc):

tdc ≡ 〈 j, o, I ongo: j, p commit: j 〉, (1)

which describes, for each agent, j ∈ Υ, and team option, o, the set of states, I ongo: j ,
where the agent may continue an ongoing task before committing to o, and the probability,
p commit: j , of effectively committing to o. The design of the tdc structure assumes that:

• a team option is always represented in more than one agent,
• an agent specifies a tdc instance for each team option he may get committed, and
• each I ongo: j set is specified taking only the agent j local view of the environment.

The hybrid CvI-JI model describes, in the tdc instances, the domain-dependent
teamwork knowledge which contributes to reduce the collective option space. Thus, CvI
integrates JI as an heuristic filter (at collective stratum) that reifies the (human) designer
domain knowledge. The next section integrates the heuristic filter in the decision process.

4.2. Integration of JI in the CvI decision process
The integration of the JI in the CvI decision process is designed, at the collective stratum,
by modifying the CvI option selection process, which chooses, at each decision epoch, a
level d collective option, ~od given a set of agents, B, that request for a collective stratum
decision. The algorithm 1 shows the option selection function, CHOOSEOPTION, and the
inclusion of the two subroutines, APPLYFILTER-JI (cf. line 3) and UPDATEFILTER-JI (cf.
line 5), that implement the CvI-JI integration.

The getAdmissibleOptionSet function (cf. evoked in algorithm 1, line 2) is exactly
the same as in CvI; it evaluates the initiation set, I~o, of each collective option, o~o, and



Algorithm 1 Choose option at the level d of the CvI collective stratum.

1 function CHOOSEOPTION( s, ~Od, πd, B ) . B ≡ agents that request a decision
2 ~Od

′ ← getAdmissibleOptionSet( s, ~Od, B ) . s ≡ collectively perceived state
3 ~Od

′′ ← APPLYFILTER-JI( s, ~Od
′, B )

4 ~od ← applyPolicy( s, ~Od
′, ~Od

′′, πd )
5 UPDATEFILTER-JI(~od, B )
6 return ~od

7 end function

Algorithm 2 Apply JI filter to reduce the set of admissible collective options.

1 function APPLYFILTER-JI( s, ~Od
′, B )

2 TDC ′ ← ∅
3 for each tdc ∈ TDC do . TDC ≡ set of active tdc elements
4 if tdc.j ∈ B ∧ s[ j ] /∈ tdc.I ongo: j then . s[ j ] ≡ agentjperceived state
5 if random ≤ tdc.p commit: j then
6 TDC ′ ← TDC ′ ∪ { tdc }
7 end if
8 TDC← TDC− { tdc }
9 end if

10 end for
11 ~Od

′′ ← ∅
12 for each o~o ∈ ~Od

′ do
13 if o~o is compatible with TDC ′ then
14 ~Od

′′ ← ~Od
′′ ∪ { o~o }

15 end if
16 end for
17 return ~Od

′′ . ~Od
′′ = ~Od

′ when TDC ′ = ∅
18 end function

returns the set, ~Od
′, of admissible options (given the perceived state, s, and the set of

agents, B, that requested a level d collective stratum decision). The applyPolicy function
(cf. evoked in algorithm 1, line 4) chooses the next collective option to execute; the po-
licy, πd, is either predefined or follows some explore-and-exploit reinforcement learning
method. We followed the learning approach and implemented a ε-greedy policy, which
picks: i) a random admissible collective option, o~o ∈ ~Od

′, with probability ε, and ii)
otherwise, picks the highest estimated action value collective option, at the current state,
s, already considering the JI commitments (i.e., picks the maxo~o ∈ ~Od

′′ Q ( s, o~o ) ).

The UPDATEFILTER-JI function (cf. evoked in algorithm 1, line 5) implements a
strategy to define, at each decision epoch, the set of active tdc elements (cf. expression 1
and TDC set in algorithm 2, line 3). We implemented a simple strategy where each agent
“is available to commit to a new team option as long as he is not already a team member”;
the TDC set is updated according to that strategy, for all agents, at each decision epoch.

The algorithm 2, APPLYFILTER-JI function, shows the integration of JI commit-
ments throughout the manipulation of the tdc instances (cf. expression 1). The first part



of the function (cf. lines 2 to 10) determines the set tdc instances, TDC ′, that are consis-
tent with the current situation. The second part (cf. lines 11 to 16) restricts the collective
options to those that are compatible (all o~o components match) with the team options of
all tdc ∈ TDC ′; the remaining collective options are discarded.

5. Experiment specification and results
We implemented the CvI-JI decision model and tested it in a multi-agent taxi environ-
ment: “a maze like grid inhabited by taxis (agents), passengers and sites”. The original
single-agent taxi problem was described as follows: “a passenger appears at a site and
wish to be transported to another site; a taxi goes to the origin site of the passenger, pick up
the passenger, go to its destination site and drop down the passenger” [Dietterich 2000].
A first multi-agent extension was described as follows: “there are multiple passengers
and multiple taxis; the taxis may transport several passengers at the same time; a site may
have several passengers, each with its own destination” [Trigo et al. 2006].

We further extend the previous multi-agent taxi problem, in order to enforce team-
work behavior, as follows: “there are some predefined sites where passengers only accept
to be transported all together (as in a family); at those sites a taxi may not pick up more
than one passenger (as if he was carrying a large luggage)”. Those sites are named team-
work sites because taxis must work as a team to transport all passengers at the same time.

The environment is collectively observable as each taxi does not perceive the other
taxis’ locations, but their combined observations determine a sole world state. The goal
of the individual stratum is to learn how to execute tasks (e.g. how to navigate to a site and
when to pick up a passenger). The goal of the collective stratum is to learn to coordinate
those individual tasks as to minimize the resources (time) to satisfy the passengers’ needs.

We defined 3 different CvI-JI configurations, where a configuration is an assign-
ment to all j ∈ Υ of the same p commit: j ∈ { 0, 1

2
, 1 } value. Thus, we have:

• never JI, when p commit: j = 0,
• sometimes JI, when p commit: j = 1

2
, and

• always JI, when p commit: j = 1.
The setup used for all experiments is: 5 × 5 grid, 4 sites Sb = { b1, b2, b3, b4 },

2 taxis St = { t1, t2 }, 3 passengers Spsg = { psg1, psg2, psg3 }, and a single teamwork
site btw ∈ Sb. The primitive actions, available to each taxi, are pick, put, move(m ),
where m ∈ {N, E, S, W } are the cardinal directions, and the wait action (added to the
original taxi problem) to support the agent’s synchronization (e.g. at teamwork sites).

The learning of the policy at the collective stratum occurs simultaneously with
the learning of each agent’s policy at the individual stratum. The results of the experi-
ments (cf. section 5.4) show the hybrid CvI-JI performance improvement of the collective
stratum learning process, when compared with the pure CvI (i.e., never JI) approach.

5.1. JI specification
The JI specification consists in the set of predefined tdc instances. The tdc instance is de-
fined, for each taxi (agent) tj ∈ St as 〈 tj, btw, I ongo: tj , p commit: tj 〉. The I ongo: tj specifies
the following ongoing state set: i) the taxi, tj , already transports a passenger, or ii) there
is a passenger to pick up at tj current location. The p commit: tj is assigned the value 0, 1

2
or

1, respectively for the never JI, sometimes JI or always JI experiment configuration.



5.2. Individual stratum specification
The taxi observation, ω = 〈x, y, psg1, psg2, psg3 〉, represents its own ( x, y )-position
and passenger, psgi = 〈 loci, desti, origi 〉, status where loci ∈ Sb ∪ St ∪ { t1acc, t2acc }
(t1acc means that taxi j accomplished delivery), desti ∈ Sb, and origi ∈ Sb.

The rewards provided to a taxi are: i) 20 for delivering a passenger, ii) −10 for
illegal pick or put, iii) −12 for any illegal move action in a teamwork site, and iv) −1
for any other action, including moving into walls and picking more than one passenger in
a teamwork site.

The task hierarchy is composed of a root option and a navigate(b ) option for
each b ∈ Sb. Therefore, each agent holds an option hierarchy with 3 levels, where root
is the level-zero option, navigate(b ), pick, put and wait are the level-one options
and move(m ) are the level-two one-step options (defined for each navigate(b )). We
refer to [Trigo et al. 2006] for the full specification of the option hierarchy.

5.3. Collective stratum specification
The collective stratum holds the combined observations s = 〈 t1, t2, psg1, psg2, psg3 〉
of all agents, where tj is the ( x, y )-position of agent j. Our approach to the reward is to
consider that agents equitably contribute to the current world state. Thus, the collective re-
ward is defined as the sum of rewards provided to each agent; our purpose is to maximize
the long run collective reward. The level-one collective options specification considers:

• C = {navigate(b ) for all b ∈ Sb } ∪ {wait } ∪ { indOp }, and
• J = {pick, put },

where indOp is a special option that represents J at the collective stratum.

Within this experimental toy world, an individual agent perceives 52,428,800
states, and the collective stratum contains 1,310,720,000 states. Each individual decision
considers 6 options, while for the collective stratum there are 36 collective options.

The decision-making of the collective stratum resorts, at each state, to the expected
future value of each admissible collective option, whereas such evaluation is only acquired
(learned) after the evidence (reward) gathered via the materialization (execution) of each
decision. Hence, the experiments capture some of the complexity of the decision-making
process that aims to achieve coordinated behavior in a disaster response environment.

5.4. Experimental results
The purpose of our experiments is to measure the influence of the JI integration in the CvI
model. The performance of the learning process is used as the evaluation criterium and it
is measured as the cumulative reward, gathered at the collective stratum, during an whole
experiment. Each experiment executes for 700 episodes. An episode always starts with
2 passengers in the teamwork site and the third passenger in another site. Each episode
terminates as soon as all passengers reach their destination. Policy learning uses a tempo-
ral difference approach (SMDP Q-learning [Bradtke and Duff 1995], [Sutton et al. 1999])
with the ε-greedy strategy previously described (cf. section 4.2). Each experiment starts
with ε = 0.15 and, after the first 100 episodes, ε decays 0.004 every each 50 episodes.

We ran 3 experiments, one for each CvI-JI configuration. The figure 2 shows that
the never JI configuration exhibits the worst performance; it is about 6.5% worse than



always JI and about 12% worse than sometimes JI; such difference remains almost uni-
form throughout the whole experiment. The sometimes JI reveals an unexpected behavior
while, around episode 300, it starts to outperforms always JI.
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Figure 2. The influence of JI in the performance of the learning process.

An insight on these results is that the JI teamwork specific knowledge is exploited
by the collective stratum, without compromising the exploration (search for novelty) that
is required by the learning process. The unexpected result is that the capability of not ful-
filling a previous teamwork commitment (cf. sometimes JI) enables to find improvements
over the fully reliable commitment attitude (cf. always JI).

6. Conclusions and future work
In this paper, we have identified a series of relations between the 2-strata decision-
-theoretic CvI approach and the joint-intentions (JI) mental-state based reasoning. We
have extended CvI by exploring the algorithmic aspects of the CvI-JI integration. Such in-
tegration represents our novel contribution to a multi-agent hybrid decision model within
a reinforcement learning framework. The initial experimental results, of the CvI-JI mo-
del, sustain the hypothesis that the JI heuristic reduction of the action space improves the
process of learning a policy to coordinate multiple agents. An interesting conclusion is
that, taking into account our preliminary results, the stochastic commitment concept sug-
gests investigating the hypothesis that not fulfilling a commitment (at a specific state) is
an opportunity to find an alternative that, in the long run, is globally better than teamwork.

This work represents the ongoing steps in a line of research that aims to develop
agents that participate in the decision-making process that occurs in the response to a
large-scale disaster. Future work will apply the CvI-JI in a a simulated disaster res-
ponse environment [Kitano and Tadokoro 2001] and will explore teamwork (re)formation
strategies [Trigo and Coelho 2005] at the collective stratum.
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