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Constraint Logic Programming

What is CLP?

the use of a rich and powerful language to model optimization
problems (not only...)

modelling based on variables, domains and constraints
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CLP

Motivation:

1. to offer a declarative way of modelling constraint satisfaction
problems (CSP)

2. to solve 2 limitations in Prolog:

Each term in Prolog needs to be explicitly evaluated and is not
interpreted (evaluated):

X + 1 is a term that is not evaluated in Prolog. It is only a
syntactic representation.
a variable can assume one single value.

Uniform computation, but not that powerful: depth-first search,
“generate-and-test”.

3. to integrate Artificial Intelligence (AI) and Operations Research
(OR)
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CLP

CLP can use Artificial Intelligence (AI) techniques to improve the
search: propagation, data-driven computation, “forward checking”
and “lookahead”.

Applications: planning, scheduling, resource allocation, computer
graphics, digital circuit design, fault diagnosis etc.

Clients: Michelin and Dassault, French railway SNCF, Swissair, SAS
and Cathay Pacific, HK International terminals, Eriksson, British
Telecom etc.
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CLP

CLP joins 2 research areas:

Introduction of richer and powerful data structures to Logic
Programming (e.g.: replace unification by efficient manipulation of
constraints and domains).

Consistency techniques:
“generate-and-test” x “constrain-and-generate”
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CLP

Systems:

Prolog III, Colmerauer

CHIP, Dincbas and Van Hentenryck (ECRC)

OPL, Van Hentenryck

Xpress

CLP(R), Jaffar, Michaylov, Stuckey and Yap (Monash)

ECLiPSe, Wallace (IC Parc)

Oz, Smolka (DFKI)

clp(FD), Diaz and Codognet (INRIA, France)

The CLP(X) scheme:

“constraint solver”: replaces simple unification.

2 popular domains: aritmethic and boolean.
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Arithmetic domain: linear constraints

Prolog can not solve x-3 = y+5.

CLP(R): first language to introduce arithmetic constraints.

Linear arithmetic expressions composed by: numbers, variables and
operators (negation, addition, subtraction, multiplication and division).

Example: t1 R t2, with R = { >, ≥, =, ≤, <, =}

Popular decision procedures:

Gauss elimination.

Simplex (most popular):

average good behavior
popular
incremental
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Arithmetic Domain: Linear Constraints

Example:

A meal consists of starter, main course and dessert

database with various kinds of food and their caloric values

Problem: produce a menu with light meals (caloric value < 10Kcal)
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Arithmetic Domain: Linear Constraints

light_meal(A,M,D) :- main_
ourse(M,I) :-

I > 0, J > 0, K > 0, meat(M,I).

I + J + K =< 10, main_
ourse(M,I) :-

starter(A,I), fish(M,I).

main_
ourse(M,J), starter(salad,1).

dessert(D,K). starter(soup,6).

meat(steak,5).

meat(pork,7).

fish(sole,2).

fish(tuna,4).

dessert(fruit,2).

dessert(i
e
ream,6).
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Arithmetic Domain: Linear Constraints

Intermediate results = compute states.

2 components: constraint store and continuation of objectives.

Query: ⋄ light_meal(A,M,D).

I + J + K =< 10, I > 0, J > 0, K > 0 ⋄ starter(A,I),

main_
ourse(M,J), dessert(D,K).

A = salad, I = 1, 1 + J + K =< 10, 1>0, J>0, K>0 ⋄

main_
ourse(M,J), dessert(D,K).

A = salad, I = 1, M=M1, J=I1, 1 + J + K =< 10, 1>0, J>0, K>0

⋄ meat(M1,I1), dessert(D,K).

A = salad, I = 1, M=steak, J=5, M1=steak, I1 = 5, 1 + 5 + K

=< 10, 1>0, 5>0, K>0 ⋄ dessert(D,K).

A = salad, I = 1, M=steak, J=5, M1=steak, I1 = 5, D=fruit, K

= 2, 1 + 5 + 2 =< 10, 1>0, 5>0, 2>0 ⋄.
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Arithmetic Domain: Linear Constraints

Inconsistent derivation :

A = pasta, I = 6, M=steak, J=5, M1=steak, I1 = 5, 6 + 5 + K

=< 10, 5>0, 6>0, K > 0 ⋄ dessert(D,K).
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Arithmetic Domain: non-linear Constraints

Example: multiply 2 complex numbers: (R1 + I*I1) * (R2 + I*I2).

zmul(R1,I1,R2,I2,R3,I3) :-

R3 = R1 * R2 + I1 * I2,

I3 = R1 * I2 + R2 * I1.

Query: ⋄ zmul(1,2,3,4,R3,I3)

Equations become linear.

Solution: R3 = -5, I3 = 10 (definite solution)

Query: ⋄ zmul(1,2,R2,I2,R3,I3)

Solution:

I2 = 0.2*I3 - 0.4*R3

R2 = 0.4*I3 + 0.2*R3

yes (undefined solution)

CRACS-INESC-Porto LA & DCC/FCUP Inês Dutra LAI-OIL, June 2010 13



Arithmetic Domain: non-linear Constraints

Same example: multiply 2 complex numbers:

(R1 + I*I1) * (R2 + I*I2)

Query: ⋄ zmul(R1,2,R2,4,-5,10), R2 < 3.

CLP(R): (do not solve non-linear equations)

R1 = -0.5*R2 + 2.5

3 = R1*R2

R2 < 3

Maybe

applications of non-linear equations: computational geometry and
financial applications (various algorithms used).
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Boolean domain

Main Application: digital circuit design (hardware verification) and
theorem proof.

Boolean terms: truth values (F - False or T - True), variables, logical
operators, one single constraint: equality.

various uniication algorithms for boolean constraints.

Solution: provides a decision procedure for propositional calculus
(NP-complete).
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Boolean domain

Example: full adder (operators # (xor), * (and), + (or)

add(I1,I2,I3,O1,O2) :-

X1 = I1 # I2,

A1 = I1 * I2,

O1 = X1 # I3,

A2 = I3 * X1,

O2 = A1 + A2.

Query: ⋄ add(a,b,
,O1,O2)

Solution: O1 = a+b+
, O2 = (a ∧ b) + (a ∧ 
) # (b ∧ 
)
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Consistency techniques

Eliminate inconsistent ’labellings’ by constraint propagation
information about the values of variables.

exemplos: arc-consistency, forward checking, generalized
propagation.

Example: task scheduling.

T2 before(T1,T2).

/ before(T1,T3).

/ before(T2,T6).

T1 before(T3,T5).

\ T6 before(T4,T5).

\ / before(T5,T6).

T3 --- T5 notequal(T2,T3).

/

T4
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Consistency Techniques

Example: T1 ∈ {1, 2, 3, 4, 5}, T2 ∈ {1, 2, 3, 4, 5}.

before(T1,T2) –> apply consistency:

T1 ∈ {1, 2, 3, 4}

T2 ∈ {2, 3, 4, 5}

Value 5 removed from T1, because there is no value in T2 that can
satisfy (T1=5) < T2.

Value 1 removed from T2, for the same reason.
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Arc Consistency

T1 ∈ {1, 2}, T2 ∈ {2, 3, 4}, T3 ∈ {2, 3}, T4 ∈ {1, 2, 3}, T5 ∈ {3, 4},
T6 ∈ {4, 5}.

Value 2 from T1 is chosen (T1 is “labelled” with value 2).

Using propagation: T2 ∈ {3, 4} and T3 ∈ {3}

T2 ∈ {4} from notequal(T2,T3).

Finally: T1 ∈ {2},T2 ∈ {4}, T3 ∈ {3}, T4 ∈ {1, 2, 3}, T5 ∈ {4},
T6 ∈ {5}
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Infinite Domains

Utilization of maximum and minimum values to solve constraints in
the linear domain.

E.g.: x,y,z with domains [1..10] with constraint 2x + 3y + 2 < z

Removing inconsistents values:

10 is the largest value for z, then: 2x + 3y < 8

1 is the smallest possible value for y, then: 2x < 5

x can only assume values {1,2}

3y < 6, y < 2, y ∈ {1}

z > 7, z ∈ {8, 9, 10}
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Basic programming techniques

Define problem variables and their domains.

Establish the constraints between variables.

Search for solution.

?- [X,Y,Z℄::1..10,

2 * X + 3 * Y + 2 #< Z,

indomain(X), indomain(Y), indomain(Z).
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Algorithms and other examples

Forward Checking: Example

n = 8

(1) V1 = 1 ==> V2 = {3,4,5,6,7,8}

V3 = {2,4,5,6,7,8}

V4 = {2,3,5,6,7,8}

V5 = {2,3,4,6,7,8}

V6 = {2,3,4,5,7,8}

V7 = {2,3,4,5,6,8}

V8 = {2,3,4,5,6,7}

(2) V2 = 3 ==> V3 = {5,6,7,8}

V4 = {2,6,7,8}

V5 = {2,4,7,8}

V6 = {2,4,5,8}
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V7 = {2,4,5,6}

V8 = {2,4,5,6,7}

+---+---+---+---+---+---+---+

| X | | | | | | |

+---+---+---+---+---+---+---+

| | | | | | | |

n-rainhas +---+---+---+---+---+---+---+

n=8 | | X | | | | | |

+---+---+---+---+---+---+---+

| | | | | | | |

afterV1=1 +---+---+---+---+---+---+---+

V2=3 | | | | | | | |

+---+---+---+---+---+---+---+

| | | | | | | |

+---+---+---+---+---+---+---+

| | | | | | | |

+---+---+---+---+---+---+---+

| | | | | | | |

+---+---+---+---+---+---+---+
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Algorithms

infinite domains: linear programming, simplex, revised simplex,
convex hull, Gauss elimination.

finite domains: forward checking, lookahead, arc-consistency.

For finite domains, 2 problems:

choice of variable:

most-
onstrained: smallest domain

most 
onstraining: mostly constrains domains of other variables

choice of a value for a variable:

�rst-fail principle.

least 
onstraining: value that constrains less sets of values of
other variables
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Map Coloring

Map Coloring: 3 
olors +------------+

blue |B |

green +---------+ |

red |A | |

| | |

+--------+--+ | |

|C +------+------+ |

| | | |

+-+----+----+ | |

| | +---+-+

| |E | |

| +------------------+ +---------+

| | |

| | |

| | |

|F |D |

+---------------------------+---------+
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Heuristics

most-constrained variable: allows to solve the n-queens problem with
n equals 100

pure forward checking: only solves for n = 30

least-constraining: solves for n = 1000
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