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ABSTRACT
Permission managers in mobile devices allow users to control per-
missions requests, by granting or denying application’s access to
data and sensors. However, existing managers are ineffective at
both protecting and warning users of the privacy risks of their
permissions’ decisions. Recent research proposes privacy protec-
tion mechanisms through user profiles to automate privacy deci-
sions, taking personal privacy preferences into consideration.While
promising, these proposals usually resort to a centralized server
towards training the automation model, thus requiring users to
trust this central entity. In this paper we propose a methodology to
build privacy profiles and train neural networks for prediction of
privacy decisions, while guaranteeing user privacy, even against
a centralized server. Specifically, we resort to privacy-preserving
clustering techniques towards building the privacy profiles, that
is, the server computes the centroids (profiles) without access to
the underlying data. Then, using federated learning, the model to
predict permission decisions is learnt in a distributed fashion while
all data remains locally in the users’ devices. Experiments following
our methodology show the feasibility of building a personalized and
automated permission manager guaranteeing user privacy, while
also reaching a performance comparable to the centralized state of
the art, with an F1-score of 0.9.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols;Domain-
specific security and privacy architectures.
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1 INTRODUCTION
Privacy is recognized by the United Nations’ Declaration of Human
Rights of 1948 [23] as a fundamental human right. Alan Westin’s
noted in his 1967 book Privacy and Freedom “a deep concern over
the preservation of privacy under the new pressures from surveil-
lance technology”. More than 50 years have passed, and with the
emergence of smartphones, that concern is now more present then
ever.

Smartphones are mobile devices that gather almost the same
capabilities as personal computers. Besides the traditional voice
calls and text messages, they contain multimedia functionalities
like music, image, video or gaming. They incorporate a variety of
sensors like magnetometer, gyroscope, accelerometer or proxim-
ity sensors and support communication protocols such as Wi-Fi,
Bluetooth or satellite navigation, which allows the collection of a
variety of data [4]. Current modern smartphones are able to collect
vast amounts of information like location, photos, messages, call
log, contacts or emails. On top of this, it is possible to extract high
level information from this data, like home address, work address
or close friends. Due to the widespread adoption of these devices,
and the ease of developing applications for smartphones, the bar-
rier to collect personal information from the masses is now much
lower. This led to privacy concerns, specially after events where the
data collected was used for malicious purposes, like the Cambridge
Analytica scandal [8].

All this data collection is done by the apps installed on users
smartphones. Users can reduce the amount of data shared with
the applications by allowing or denying specific permissions (e.g.
location of camera) for each application. To allow for user control
over these permissions, smartphones implement two permission
systems: Ask-On-Install (AOI) and Ask-On-First-Use (AOFU), the
first asks the user to define the permissions when the application is
installed and the latter when it is first used. In the AOFU strategy,
the user can always change the permissions configuration on the
phone settings later on, a practice that is mostly unused [2].

There are problems with both AOI and AOFU strategies. With
AOI, either the user allows all requested permissions at the in-
stallation prompt or has to refuse the installation of the applica-
tion. Regrettably, people do not pay attention or fail to understand
the prompts [5]. Furthermore, these static permissions do not ac-
count for the user context, such as the user location, if the applica-
tion asking the permission is being used or not, or the time of the
day [5, 6, 10, 25].

In the AOFU system, every time an application asks for a per-
mission for the first time, the user has to choose to allow or deny
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it. This allows for selective permission control, thus granting fine-
grained permission control [2]. Additionally, this decision will be
based on that specific context, as the prompt is contextualized by
the runtime need for the resource, which makes it better than the
AOI system [2, 21]. However, after being allowed a permission once,
the app will have this permission automatically granted for all sub-
sequent uses, even without the user noticing. Therefore, AOFU
does not account for the context when automatically granting per-
missions.

Taking into consideration what was said above, there is still a
gap in the research on what influences users’ decisions in terms
of app permissions. The current model (AOFU) does not represent
how the users think about privacy. According to the data collected
by our campaign, each user has on average about 35 permission
requests per hour, which makes manual answering unfeasible. So,
there is a need to create tools to automate these decisions, that are
capable to represent the user intentions as a function of the context
of the user and of the context of the device.

Current research proposals reduce the burden originating from
permission prompts by automating the user decisions [12, 13, 17].
However, some of these mechanisms are trained locally, which
requires intensive user input, thus leading to user fatigue, while
others rely on a centralized approach, where all the users’ privacy
preferences data must be sent to a central server.

In this paper we propose a system capable of learning the users’
privacy preferences according to the context with privacy guaran-
tees, i.e. the users’ privacy decisions and contextual information is
not disclosed, even to server training the model. Towards this end,
the system generates privacy-profiles in a secure way, using privacy
preserving distributed hierarchical clustering and efficient privacy
preserving distributed 𝑘-means for non-IID data. These profiles
allow for the personalization of the predictive model, while reduc-
ing the amount of input required from the user [11]. Finally, using
these profiles, the system trains a model in a secure way, using fed-
erated learning, to predict the users’ responses to the permissions
requests. We evaluate the feasibility of this system and compare
its performance to the non-private centralized approach, using a
real world dataset. Our results demonstrate that the proposed sys-
tem is able to achieve a performance comparable to a centralized
non-private approach, that is on par with the state-of-the-art for
privacy decisions prediction.

The rest of the paper is organized as follows. Section 2 provides
a brief overview of the related work done in privacy preferences
automation. In Section 3 we describe the dataset that we used to
evaluate our system and the process to generate privacy profiles.
Section 4 presents our strategy to predict users privacy preferences
using federated learning. In Section 5we present the results from the
validation and testing of our strategies. Section 6 presents potential
future work, and finally, Section 7 draws the concluding remarks.

2 RELATEDWORK
In order to enhance permission managers, researchers proposed
the use of automation systems that either predict or recommend
permission settings, while taking into consideration personal pref-
erences. In order to reduce the amount of input required from a user,
these preferences are typically captured through privacy profiles.

However, several user profiling techniques can be used to generate
these profiles.

Agarwal and Hall [1] developed ProtectMyPrivacy, a system
for iOS devices that recommends privacy decisions to users based
on crowdsourcing. All users send their privacy decisions to a cen-
tralized server, then the “experts”, about 1% of the most active
users, contribute to the recommendation system. This approach
does not protect user privacy and the system only provides uni-
versal recommendations, i.e. only one profile exists and the same
recommendation is sent to every user. This approach does not take
into account each users’ individual characteristics or the context,
instead it assumes that a consensus will emerge from the crowd.
Rashidi, Fung, and Vu [19] also developed a crowdsourcing system
named RecDroid. Despite having a more advanced system for rec-
ommending privacy decisions than ProtectMyPrivacy, RecDroid
suffers from the exact same problems. Users’ privacy decisions are
sent to the server, exposing their data to anyone who has access to
the server, in a lawful or unlawful way, and only one profile exists
for every user.

Zhao, Ye, and Henderson [27] proposed collaborative filtering
strategies to recommend privacy settings for location permissions.
However, the data collection was done using surveys, where spe-
cific scenarios where presented to the participants and they had to
select a privacy setting. It is hard to understand if this simulation is
representative of real life decisions as aspirational responses often
diverge from real behavior [16].

Xie, Knijnenburg, and Jin [26] also proposed a location-privacy
recommender system based on collaborative filtering. The data,
collected by 40 volunteers in University of St. Andrews, is only
related to the location status on the Facebook1 app.

Ismail et al. [9] conducted a user study with 26 participants to
create a collaborative-filtering recommender system for Instagram2

privacy settings. They also used K-nearest neighbours to create
profiles with similar users, from which the collaborative-filtering
will recommend the permission setting.

Lin et al. [11] used Amazon Mechanical Turk to collect privacy
preferences with regard to over 800 apps from over 700 participants.
The data collected corresponded to the privacy decision for each
(permission, purpose) tuple. They applied hierarchical clustering
over their dataset and identified four distinct clusters. With the
results obtained, they concluded that the profiles were capable of
predicting many of a user’s mobile app privacy preferences. Liu et
al. [13] collected privacy preferences from the LBE Privacy Guard3
application. The collected data from users mainly based in mainland
China, corresponds to over 239000 users and 12119 apps, resulting
in a total of 28630179 decisions. A problem with their dataset is
that this data was collected from users who already had rooted
phones, so their dataset is very biased since all participants are all
tech savvy. They used 𝑘-Means, with each user represented by one
vector with every (app, permission, decision) tuple combination, to
generated six privacy profiles. With the resulting profiles they were
capable of improving the users’ permission preferences predictions.

Ravichandran et al. [20] generated profiles for location-sharing
applications, where users have to choose if they are willing to let
1www.facebook.com (2021, August 17)
2www.instagram.com (2021, August 17)
3http://www.lbesec.com (2021, August 17)
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others see their locations under specific conditions. The data used
in the project was collected in 2008 from 30 users over a period of
one week. In order to generate the profiles, they represented each
user by training a decision tree to extract policies. With each user
represented as a vector of policies, K-means was then used to cluster
those policies in profiles. The authors concluded that the resulting
profiles were capable of improving the predicting accuracy of the
users’ choices, in comparison to the model without the profiles.

Sanchez et al. developed a privacy-settings recommendation
system for fitness devices [22]. Using Amazon Mechanical Turk,
they recruited 310 participants to answer a survey. They collected
data related to demographics, phone permissions, the type of data
collected by the sensors and the entity to which the data is going
to be shared with. They proceeded to apply the K-Modes algorithm,
similar to the 𝑘-Means but more suitable to nominal variables,
where instead of using the mean to compute the centroid, the mode
is used. With the resulting 6 profiles, where each user can belong
to more than one profile, they conclude that the profiles helped the
recommendation system to make better decisions.

Liu et al. [12] collected permission settings from 84 Android users
around the world. Representing user data as a vector of decisions
for every combination of the (app category, permission, purpose)
tuple, they applied hierarchical clustering to obtain 7 privacy pro-
files. These profiles were then used as input in a Support Vector
Machine (SVM) classifier to predict user preferences to apps’ future
permission requests. Using profiles as input in the SVM classifier
improved the F1-score of the model from 74.24% to 90.02%.

From the reviewed literature we conclude that the strategies
for generating privacy profiles can be divided in two categories:
hierarchical clustering and 𝑘-means, where the user is represented
by a single point or multiple points. However, all proposed method-
ologies rely on a centralized server to create the profiles using
the privacy preferences of the users. This paradigm can compro-
mise user privacy, specially in methodologies that use contextual
features [17], such as the location of the user.

In this paper, our goal is to generate these profiles while preserv-
ing user privacy even against the centralized server. Therefore, in
the next sections we introduce methods to generate privacy pro-
files in a secure way (section 3), and then in section 4, we present a
strategy to privately predict the users’ privacy preferences using
federated learning with the generated profiles as features.

3 SECURE GENERATION OF PRIVACY
PROFILES

The creation of privacy profiles has traditionally resorted to the use
of a centralized server that receives personal privacy decisions and
the surrounding contextual data, such as the requesting application
or even the user location. In this section we use a real world dataset,
which we describe and analyze in section 3.1, to demonstrate and
compare the generation of privacy profiles using secure and non-
secure algorithms in section 3.2. Section 4 then presents an approach
to train a model with these profiles towards predicting privacy
preferences in a privacy-preserving way.

3.1 Data Characterization Overview
In this work we used the dataset collected in the NGI Trust project
COP-MODE4 through COP-MODE’s Naive Permission Manager5
that we developed to intercept permission requests and prompt the
user for the following data: answer to the request (allow or deny),
the semantic location and if it was expecting that request to appear.
At the time of the prompt, the app also collects contextual data
regarding the phone state and the user context, which includes
information such as background and foreground running apps,
network status, geographic coordinates, semantic location, and
devices in neighborhood. This research project was approved by
the ethics committees of the Faculty of Sciences of the University
of Porto, Portugal, and of the University of Cambridge, U.K. A
complete description and analysis of the data collected can be found
in Mendes et al. [15] and in the COP-MODE project’s webpage4.

The data was collected through several campaigns occurring
between end of July 2020 and end of March 2021 in Portugal. The
dataset comprises 93 users and 2180302 permissions, from which
65261 were manually answered by the users, with an average of
701.73 answered requests per user. From the 65261 permissions,
66% were accepted and 33% denied.

Since some campaigns were done during the COVID-19 con-
finement, more than 80% of the permissions were asked when the
users were at home, 6.8% at work, 6.3% while travelling and the
remaining at “other locations”. At work and while travelling, users
tend to allow much more permissions, unlike at “other locations”,
where the users deny almost as many permissions as they grant. At
home, users tend to grant permissions twice as much as they deny.

Currently, the Android operating system contains 12 permission
groups: CALL_LOG, SMS, CALENDAR, CAMERA, CONTACTS, LOCATION,
MICROPHONE, PHONE, SENSORS, ACTIVITY_RECOGNITION, NEARBY_
DEVICES and STORAGE. These permission groups comprise a set of
permissions, for example, the SMS group permission encompasses
the permissions READ_SMS and SEND_SMS. Because the Android
default permission manager only requests permissions at the group
level, we focus our analysis on permission groups and refer to these
simply as permissions. There are two main permissions groups,
LOCATION and CONTACTS, accounting for 50% of the requests. PHONE
and STORAGE permissions account for 37% of the requests.

Figure 3 gives us an overall view of the users tendencies to
allow and deny specific app categories and permissions. The app
categories were extracted from the Google Play Store6, from which
MUSIC_AND_AUDIO, ENTERTAINMENT, SPORTS, SHOPPING, and GAME
were merged together in the ENTERTAINMENT category. For each
combination of app category and permission, it is represented the
average decision of all users by the color of the cell, where dark
green corresponds to all those requests being accepted (average of
1), and the dark red represents all permission denied (average of -1).
For example, almost all requests for CALENDAR from ENTERTAINMENT
apps were accepted by the users, and almost all requests for PHONE
from PHOTOGRAPHY apps were denied.

From Figure 3 we can observe that the most denied permissions
are MICROPHONE and PHONE and the most denied app categories

4https://cop-mode.dei.uc.pt/dataset (2021, October 14)
5https://cop-mode.dei.uc.pt/cm-npm (2021, October 14)
6https://play.google.com/store (2021, August 17)

https://cop-mode.dei.uc.pt/dataset
https://cop-mode.dei.uc.pt/cm-npm
https://play.google.com/store


App category: EVENTS EVENTS . . . AUTO_AND_VEHICLES AUTO_AND_VEHICLES
Requested permission: CALENDAR CAMERA . . . PHONE CONTACTS

Grant result:

0.9 0 . . . 0 0
0.2 0.1 . . . 0.35 0.4

.

.

.

0.6 0.2 . . . 0.15 0.2
Table 1: Vector representation of privacy preferences per pair of app category, requested permission, where each row represents
one user. Each value represents the normalized grant result for each pair in the interval between 0, to 1, where 0 corresponds to
denying all requests and 1 allowing all.

are TOOLS, FINANCE, VIDEO_PLAYERS, NEWS_AND_MAGAZINES. We
also conclude that the most accepted permissions are STORAGE,
CALENDAR and CAMERA and the most accepted app categories are
ART_AND_DESIGN, MEDICAL and AUTO_AND_VEHICLES. Furthermore,
both LOCATION and CONTACTS permissions havemany yellow/orange
squares. This indicates that users are not in agreement with each
other and/or there are more variables that makes the same user
accept and deny the same permission in different contexts, like its
current location for example.

3.2 Privacy Profiles
As discussed in section 2 there are many possible methods to gen-
erate profiles. In this section, we design strategies to generate pri-
vacy profiles in a privacy-preserving manner with the COP-MODE
project data, resorting to hierarchical clustering (section 3.2.1) and
𝑘-Means (section 3.2.3).

3.2.1 Hierarchical Clustering. One of the possibility towards the
generation of user profiles is using the hierarchical clustering algo-
rithm. In order to apply this strategy to our dataset, for each user
answered permission we group the data by userID, category and
permission, with the average of the grantResult. So, for each
user, we have the average grantResult for every combination
of category and permission. However, most users do not have
grantResults for all these possible combinations. So, these data
points are filled by a multivariate imputer, where the grantResult
is modeled as a polynomial function of all the remaining features.
We chose this imputation strategy for beingmore sophisticated than
univariate imputation strategies. We used the IterativeImputer
class from the Scikit-Learn package [18].

After the imputation, all the category, permission tuples are
flattened in the same row as illustrated in table 1, i.e. a user is a row
with one column for every category, permission combination,
where its value is the average grantResult. With the resulting
matrix, we can build a dendrogram (figure 5) and if we cut the
dendogram horizontally at distance equal to 4.3 with observe three
clusters of users: orange; green and red; purple, brown, blue and
rose (figure 4).

For demonstration purposes, we created 𝑘 = 3 clusters, which we
illustrate in the form of the average grantResult of the users in the
cluster for each category, permission combination. Figures 4a, 4b
and 4c presents these profiles. We can observe that users in profile
1 (figure 4a) tend to deny most of the permissions on most of the
categories, in profile 2 (figure 4b), the opposite happens as users ac-
cept almost always all permissions related to all categories, with the

exception of (CAMERA, PHOTOGRAPHY), (MICROPHONE, FINANCE) and
(PHONE, NEWS_AND_MAGAZINES). Finally, in profile 3 (figure 4c), we
observe less consistent behaviour, with many yellow/orange rect-
angles, meaning the users allow and deny that permission/category
combinations more or less the same number of times.

3.2.2 Privacy Preserving Distributed Hierarchical Clustering. To
generate privacy profiles using hierarchical clustering with privacy
guarantees, we can use the privacy preserving distributed hierarchi-
cal clustering algorithm [7]. This algorithm allows the construction
of any agglomerative hierarchical clustering algorithm over hori-
zontally partitioned data. The strategy is based on the secure scalar
product, an algorithm proposed by Vaidya and Clifton [24], that
allows the computation of the scalar product by using linear com-
binations of random numbers to make vector elements, and then
apply some computations to eliminate the effect of the random
numbers from the result. Using the following equation to obtain
the distance between point 𝑋 and point 𝑌 : (𝑋 ·𝑋 +𝑌 ·𝑌 − 2𝑋 ·𝑌 )

1
2 ,

we can obtain the euclidean distance between two points (needed
for clustering) in a secure way, without sharing either point 𝑋 or 𝑌 .

In this context, each user only has access to their own local
dataset. So, the process of flattening and filling of missing data
referred in section 3.2.1 needs to be applied independently to each
local dataset. This can cause problems in the imputation step if our
imputation algorithm needs access to all the users’ data. So, our
imputation strategy must rely solely on the local data or global
statistics that can be acquired using the secure aggregation strategy.
Therefore, we perform the imputation with the IterativeImputer
class from the Scikit-Learn Python package [18]. Each user local
data thus consist of a single row/vector that is then used to generate
the profiles using the privacy preserving distributed hierarchical
clustering algorithm.

3.2.3 𝑘-Means. One strategy capable of generating/assigning mul-
tiple profiles for each user is 𝑘-Means [22]. To apply this algo-
rithm to our data, we group the data by userID, category and
permission, with the average of the grantResult, for each user,
similarly to the process taken for the hierarchical clustering in
section 3.2.1. However, this time, each user is represented by multi-
ple rows of category, permission and grantResult as illustrated
in table 2. Unlike the strategy in section 3.2.1, we do not need to
flatten the user data in one row, so we also do not need to impute
the missing combinations of category and permission. This is a
clear advantage of this method, since it removes the added bias
from the imputation. We can feed this data directly to the 𝑘-Means



algorithm and generate the privacy profiles, where each user will
have data points in one or more profiles.

Since users can have data points in multiple profiles, the profile
representation is less intuitive than in the hierarchical clustering
approach. In order to represent the users and keep as much informa-
tion as possible, we decided to associate a percentage of each profile
to every user. For example, if a user has 10 data points in profile 1,
30 in profile 2 and 60 in profile 3 on a total of 3 profiles, this user
will be represented as [0.1, 0.3, 0.6], instead of being represented as
[0, 0, 1], for instance. This representation is needed in order to use
the profile’s information to predict the grantResult in section 4.

UserID Permission Category Avg. Grant Result
1 FINANCE CALENDAR 0.90
2 FINANCE CALENDAR 0.20
1 FINANCE CAMERA 0.00
2 FINANCE CAMERA 0.10

.

.

.

1 SOCIAL CONTACTS 0.00
2 SOCIAL CONTACTS 0.40

Table 2: Matrix representation of privacy preferences, where
one user is represented by one or more rows. Each value rep-
resents the normalized grant result in the interval between 0,
to 1, where 0 corresponds to denying all requests and 1 allow-
ing all requests for the given user, permission and category
in the row.

3.2.4 Efficient Privacy Preserving Distributed 𝑘-Means. To gener-
ate privacy profiles with privacy guarantees, using the k-Means
algorithm, we can use the efficient privacy preserving distributed
𝑘-Means algorithm [3] as it is efficient and robust to non-IID data.
The base idea of this approach consists in each client computing
the 𝑘-Means algorithm locally, with a variable number of clusters.
The server will use the resultant centroids to apply the K-Means
algorithm again, discovering the global centroids. To maintain the
client’s privacy, homomorphic encryption and secure aggregation
is used in the process of learning the global centroids, such that
the server only sees encrypted data, therefore preserving the pri-
vacy of the clients. In the end, each user will have the association
between every local data point and the respective profile. With
this information, the user can extract the profile representation as
described in section 3.2.3. Since only the local centroids are sent to
the server and used to find the global centroids, this algorithm is
efficient and reduces transmission costs, thus being suitable in a
real world scenario.

4 FEDERATED LEARNING FOR GRANT
PREDICTION

In this section we describe how to use federated learning [14] to
predict the users’ answers to a permission request, while preserv-
ing user privacy. Federate learning provides us that possibility by
training a neural network model locally, on each smartphone, using
only local data, and then sharing only the neural network weights
with a central server on each iteration. The central server averages

the weights and returns the result to the clients, so they can use
these new weights to continue the training process.

To use the data we collected from the users as input in the
machine learning model, we scale the data using MinMaxScaler,
which scales the data points to a range between 0 and 1. We also
applied one-hot encoding to the dataset, so each categorical variable
is represented by a vector of 0s and 1s. The following features are
used as input of the neural network to predict the grantResult:

• app_category – the category of the app as retrieved from
the Google Play Store7;

• checkedPermissionGroup – the permission group of the
requested permission – categorical variable;

• checkedPermission – the requested permission – categori-
cal variable;

• isTopAppRequestingApp – whether the requesting app is
the app being shown to the user – Binary variable;

• screenIsInteractive – whether the screen is on and the
phone unlocked (interactive mode) – Binary variable;

• method – the function used to request the permission – cat-
egorical variable;

• hour – hour of the day – categorical variable;
• weekday – the day of the week – categorical variable;
• isForeground – whether the requesting app is in the fore-
ground – binary variable;

• networkStatus – the type of network connection (discon-
nected, mobile network or wi-fi) – categorical variable;

• profile – representation of the privacy profile – categorical
variable.

These are the non-unique features collected by the permission man-
ager, i.e. the features that have repeating values, unlike ID like fea-
tures. The selectedSemanticLoc and wasRequestExpectedwere
removed, since they require user interaction. The timestamp was
transformed into hour and weekday, since the timestamp by itself
is unique.

The profile feature is represented as a one-hot encoding vector,
in the profiles generated by the hierarchical clustering algorithms
of the previous sections 3.2.1 and 3.2.2. For example, a user in profile
3 of a total of 4 profiles would be represented as the user 1 in table
3. In case the profiles are generated by the 𝑘-Means algorithm, the
profiles are represented as percentage-wise, where we still have
a column for each profile, but instead of 0s and 1s we have the
percentage of data points per profile (user 2 in table 3).

User Profile 1 Profile 2 Profile 3 Profile 4
user 1 0 0 1 0
user 2 0.1 0 0.7 0.2

Table 3: Possible representations for the profile feature.

Figure 6 represents the entire process in a diagram. The first
step of this strategy is to generate the privacy profiles using one of
the methods described in section 3.2. The output of the clustering
algorithm, that is, the profiles are then added to the local dataset, i.e.
for each row in the dataset, we add the respective profile ID. Then,
7https://support.google.com/googleplay/android-developer/answer/9859673 (2021, Au-
gust 17)
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Figure 1: Mean F1-score 5-fold cross validation results for the prediction of the grant result with different clustering strategies
for generation of privacy profiles: centralized and distributed versions for both hierarchical clustering (hc) and k-means
clustering.

one-hot encoding is applied to the dataset, and a division of 66%
for training and 33% for testing is applied. In order to reduce the
bias of the model we oversample each local training dataset after
dividing it, obtaining 50% training points with granted permissions,
and 50% with denied permissions. This way, the trained model will
be less biased, yet the test set will have a realistic percentage of
granted permissions, since it is not oversampled.

Now, the centralized server creates a Neural Network and shares
the weights with all the clients. Next, each client initiates a Neural
Network with the received weights. Each client will iteratively train
the network and send the local weights to the server, the server
will average all the local weights and send back the results. Each
client will set the received weights on their local Neural Network.
This process is executed until convergence, when the average of
all local weights is equal to the one in the previous iteration or
when a maximum number of iterations is reached. With the test
set, each user tests the model performance and sends the results to
the server.

In order to not overload the validation phase with too many
hyper-parameters, we designed a simple test where we created
Neural Networks with a hidden layer of sizes 50, 100, 150, 200,
250, 300, and 500 and tested in the fixed scenario, where we used
hierarchical clustering with 3 clusters. The results showed that a
hidden layer of size 100 achieved the best results, although the
changes in performance observed with other configurations were
not significant. Therefore, the results presented in the following
sections were achieved with a neural network with 1 hidden layer
with 100 neurons and a single neuron output layer.

5 EVALUATION
In this section we assess the feasibility and performance of building
profiles using the privacy-preserving strategies described in section
3.2. Since there is no ground truth for the generated user privacy
profiles (see, for example, figure 4), this makes it harder to evaluate
their usefulness in automating privacy decisions. To address this
issue, in order to evaluate the utility of the generated profiles, we
resort to the grant prediction results, that is, the performance of the
neural network using privacy profiles after training with federating
learning as aforementioned.

Using the strategies described before, we can use the grant pre-
diction evaluation metrics to compare the usefulness of the different

profiles generated. If the neural network is capable of achieving
a better score using a specific set of profiles, we consider them to
be more useful than another set of profiles, that achieves a lower
score.

We use three metrics to evaluate the model’s performance: F1-
Score, Accuracy, and Precision-Recall AUC (Area Under the Curve).
The F1-Score is the harmonic mean of the precision and recall, and
we use it because it takes both false positives and false negatives
into account, and this is also the metric used for comparison with
previous works. Given the uneven class distribution in our dataset,
the F1-Score is not always possible to calculate, e.g.when the dataset
only contains one class. Therefore, we additionally consider the
accuracy to give us an idea of how the model is behaving in these
cases. Finally, the Precision-Recall AUC (PR-AUC) summarizes the
Precision-Recall curve, and can be used to understand the trade-off
in performance for different threshold values when interpreting
probabilistic predictions. For the evaluation of the performance, we
divided the dataset in 80% for the validation and 20% for testing, as
described in section 5.1 and section 5.2, respectively.

5.1 Validation
To find the best set of profiles in our dataset we performed a grid
search on the following parameters:

• Clustering Algorithm.
• Number of Clusters.

The clustering algorithms consist of the centralized (hc cen-
tralized) and the privacy preserving distributed (distributed hc)
hierarchical clustering from sections 3.2.1 and 3.2.2, respectively,
and the centralized (centralized 𝑘-means) and efficient privacy
preserving distributed 𝑘-means (distributed 𝑘-means) from sec-
tions 3.2.3 and 3.2.4, respectively. The centralized algorithms that
we used were just to understand if the distributed clustering algo-
rithms were undermining the strategy’s performance. As such, if
we want to apply this to a real scenario we need to only conside
the performance of the distributed clustering algorithms. The im-
putation method used was the multivariate imputer, that estimates
each feature from all the others. But applied in different ways, one
globally, using all the users data together (not possible in a private
distributed manner) and applied locally, each user applies the im-
putation locally to their dataset. For every combination we applied



Federated Learning
Accuracy F1-Score PR-AUC

Best 0.88 (𝑘 = 9) 0.91 (𝑘 = 9) 0.98 (𝑘 = 10)
Distributed 𝑘-Means Distributed 𝑘-Means Distributed HC

Worst 0.82 (𝑘 = 4) 0.87 (𝑘 = 3) 0.93 (𝑘 = 3)
Distributed HC Distributed HC Distributed HC

Table 4: Best and worst results for federated learning to predict the grant result with the distributed hierarchical and k-means
clustering approaches for generating privacy profiles.

a 5-fold cross validation, using 80% of the dataset, leaving 20% for
testing.

Figure 1 presents the F1-Score for each of the clustering strategies
as a function of the number of profiles. From this plot, we can see
that the lowest value, for the distributed clustering strategies, is
0.87 with distributed hierarchical clustering using 3 profiles, and
the highest one is 0.91 with distributed 𝑘-means with 9 profiles.
It is also observable that the 𝑘-means algorithm, both centralized
and distributed, outperform most of the strategies. Finally, this plot
evidences the similarity in performance between the centralized
and distributed approaches.

Table 4 presents the best and worst obtained performances for
the distributed techniques and the three metrics: accuracy, F1-score
and the precision-recall AUC. From the displayed results we can
conclude that the lowest accuracy is 0.82 with distributed hier-
archical clustering with 4 profiles, and the highest is 0.88 with
distributed 𝑘-means with 9 profiles. In fact, the distributed hierar-
chical clustering sees the lowest results in the three metrics. Finally,
the precision-recall AUC scores present a more optimistic view,
with the lowest score being 0.93 for distributed hierarchical clus-
tering using 3 profiles, and the highest being 0.98 for distributed
hierarchical clustering using 10 profiles.

Overall, the best secure model is the distributed 𝑘-means using
9 profiles (c.f. table 4), with an F1-score of 0.88. This demonstrates
that our strategy can be used in a fully distributed scenario, where
both the profiles’ generation and evaluation are done in a private
distributed manner.

5.2 Testing
In order to test the best models found in the validation phase, each
user will train the models using the data from validation, 80% of
their dataset, and test it with the remaining 20%. The F1-score,
accuracy and precision-recall AUC metrics for each user is pre-
sented in figure 2 as a scatter plot as a function of the percentage
of granted permission fitted through a linear regression as to iden-
tify any bias in the model, that is, to identify potential skewness
originating from users that always allow or always deny requests.
Despite a lower performance for users that deny most requests
(i.e. lower percentage of granted permissions), this plot evidences
overall good performances. In fact, the global F1-score was 0.90, the
global accuracy was 0.88 and the global precision-recall AUC was
0.97. These results are positive and comparable to the centralized
results obtained by Liu, Lin and Sadeh [12], where the prediction of
the grant result with a linear-kernel support vector machine using
hierarchical clustering to generate the privacy profiles achieved
a cross-validated F1-Score of 0.9002. In our federated/distributed

Figure 2: Scores as a function of the percentage of granted
permissions for each user (each user is one point) in the fed-
erated learning. For each metric we also provide the Person’s
correlation between the two variables (Corr).

approach, we are able to achieve a performance comparable to
the centralized approach with an F1-score of 0.90 (0.744 without
profiles), with the privacy advantage that our mechanisms allow
for the creation of user profiles and the training of neural network
prediction models to be done locally in a privacy preserving manner
with minimal reliance on a central server.

6 FUTUREWORK
In the future, to improve the robustness and applicability of our
strategy, data from broader demographics should be collected. This
data would allow us to analyse more diverse responses to different
app categories and permissions, thus testing the robustness of our
strategy. It would also be interesting to perform a noise analysis
on the dataset, as well as a more extensive test on the adequate
number of privacy profiles, in order to find the saturation point.

We also need to build a framework capable of monitoring the
model’s performance in a secure way, together with the ability to
update the profiles with the new data in a secure way as well. Such
framework would improve the adaptability of the model to real
world scenarios where variability of choices may occur, and thus
incorporate changes in privacy preferences throughout time.

The final strategy we presented to predict the users’ grant deci-
sions is complex, including two learning phases: one for privacy
profile generation, another for using the profiles and context vari-
ables to predict the users’ answers. For future work, a deep learning



approach together with federated learning could be capable of re-
placing the two step process by a single one.

7 CONCLUSION
In this paper we present methods for generating privacy profiles
and using these to predict user’s answers to permission requests
in mobile devices. The prediction and generation of privacy pro-
files is performed with privacy guarantees, not requiring access
to user data, unlike the state of the art in the area. Towards this
end we resort to privacy preserving clustering techniques to gener-
ate the profiles, while maintain the client’s privacy, even against
the server computing the profiles. By combining the process to
generate the profiles privately with federated learning techniques,
we were able to demonstrate the usefulness of the privacy profiles
in predicting users’ grant decisions in a secure fashion, i.e. with-
out sharing user data. Our strategy was evaluated with a dataset
of 93 participants obtained from a field-study, thus showing that
the proposed techniques can be applied in real-world scenarios to
generate privacy profiles and predict users’ permission requests
while preserving user privacy. Moreover, our secure and distributed
strategy achieved an F1-score of 90%, matching the centralized
state-of-the-art performance for prediction of permission requests.
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A DATA CHARACTERIZATION
In this appendix we present figure 3 that represents the average grant result answered from each user according to the app category and
permission.

Figure 3: Average grant result decision for app category and permission.



B PRIVACY PROFILES VISUALISATION
In this appendix we present figure 4, containing three example profiles, resulting from hierarchical clustering.

(a) Profile 1 - the privacy conscious user. (b) Profile 2 - permissive user.

(c) Profile 3 - the middle ground user.

Figure 4: Privacy profiles. (a) Profile of the privacy conscious. (b) Profile of the permissive users. (c) Profile of the "middle-
ground" users.

Figure 5: Resulting dendogram.



C FEDERATED LEARNING TRAINING DIAGRAM
In this appendix we present figure 6, where a thorough description of the federated learning training algorithm.

Figure 6: Federated learning training diagram.
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