
A Security Gateway for Power Distribution Systems in
Open Networks

Eduardo Andradea,∗, Jorge Granjala, João P. Vilelaa,b, Carlos Arantesc

aCISUC, Dep. of Informatics Engineering, University of Coimbra, Portugal
bCRACS/INESCTEC, Dep. of Computer Science, Faculty of Sciences, University of Porto,

Portugal
cProtection, Automation and Control Division, Efacec, Porto, Portugal

Abstract

Power Distribution Systems usually rely on closed and fixed communication net-

works due to the strict requirements they must comply with. With the appear-

ance of new communication technologies that can contribute to the assurance

of those requirements (for example, 5G), open networks can be used for such

systems, decreasing the overall cost of maintaining and upgrading the commu-

nication network. Although, shifting from closed communication environments

to networks integrated with the Internet using 5G communication environments

can expose these systems to severe threats, since they were developed to operate

under closed networks not addressing security by default. This paper analyses

the security requirements for Power Distribution Systems operating on open

networks, identifying the gap between such systems and the existing security

mechanisms. From this analysis, we present a solution based on low cost off-the-

shelf hardware, composed by a security library and a bridging device, intended

to act as a security gateway for Intelligent Electronic Devices (IEDs) in Power

Distribution Systems. We also evaluate the functionality of our security gate-

way, and analyse its impact on the stringent performance requirements of such

systems.

∗Corresponding author
Email addresses: eandrade@student.dei.uc.pt (Eduardo Andrade),

jgranjal@dei.uc.pt (Jorge Granjal), jvilela@fc.up.pt (João P. Vilela),
carlos.arantes@efacec.com (Carlos Arantes)

Preprint submitted to Journal of Computer & Security September 29, 2021



Keywords: Critical Systems, R-GOOSE Protocol, Power Distribution

Systems, Security, IEC 61850

1. Introduction

Power Distribution Systems are responsible to manage the distribution of

electrical power over the power grid. These systems are composed by a large

number of components, namely Intelligent Electronic Devices (IEDs), substa-

tions and reclosers [1]. While it aims to manage the power distribution, the5

system must be reliable and resilient to anomalous situations, such as unex-

pected temporary or permanent electrical faults. Unexpected temporary faults

can be caused, for example, by a lightning that hits the power line causing an

electric arc. Permanent electrical faults can be caused, for example, by a fall of

a tree on the power line, breaking the cables.10

Nowadays these systems rely on well tested, fixed, closed and cable-based

networks [2]. The usage of these networks are explained by the strict perfor-

mance requirements that these systems must comply with, while at the same

time they need to protect the communications from unknown threats (natural

or intentional). These systems deal with critical communications, meaning that15

they must ensure the reliability and resilience of such communication system,

and at the same time operate under ultra-low latency requirements. However,

these type of networks present limitations when it is necessary to upgrade or add

new components to the systems. As an example, deploying a new component

on the network may imply the deployment of new network lines, increasing the20

overall cost of the operation. This makes it very tempting to shift from wired

communications to wireless.

Fortunately, there are emerging new communication technologies that may

be applied in critical systems. An example of such technology is 5G. The 5G

is already being deployed, with the goal of replacing the 4th Generation Long-25

Term Evolution (4G/LTE). The technological developments provided by 5G will

improve the overall mobile communications, in terms of bandwidth, latency and

2



scalability. This improvements will be able to ensure ultra-low latency and large

bandwidth, supporting the performance requirements of such applications and

allowing the migration of critical applications to open communications environ-30

ments. In the particular scenario of Power Distribution Systems, such migration

could be particularly interesting given the high number of devices connected to

the network, as well as the constant expansion of such network.

1.1. Paper Motivation

This paper addresses the security issues that arise by shifting Power Dis-35

tribution Systems from closed networks to open networks. 5G communication

technologies are becoming available to ensure ultra-low latency communications,

therefore favoring the move from closed to open networks and reducing the

overall cost of managing such systems. Therefore, this creates the necessity

of analysing what are the issues of moving from closed to open networks and40

how to address them. There are already standards and protocols that provide

guidelines on and target these problems, although as we will demonstrate in this

work, the proposed solutions may not be able to operate on the old and legacy

devices that are placed on these systems, and at the same time comply with the

performance requirements. Thus, our motivation is to provide a complete solu-45

tion that allow to move all devices (new, powerful, legacy and low capability)

from closed to open networks.

1.2. Paper Contributions

This paper contributes with the design, implementation and validation of a

low cost security gateway to ensure the security requirements while complying50

with the performance requirements of Power Distribution Systems. This was

supported by a security analysis done on shifting such systems from closed

networks to open networks.

More precisely, we present the design and implementation of two central

components of the security gateway: a security library and a bridging device.55

3



This security library implements a set of security mechanisms that can be in-

tegrated directly in IEDs in standalone mode, or through a bridging device to

provide security to networks powered by legacy or less capable devices. The

security mechanisms implemented follow the guidelines present in several stan-

dards such as IEC 61850 [5] and IEC 62351 [6], for data communications within60

Power Distribution Systems.

We also present the evaluation performed on each component to validate its

usability in these systems, evaluating the functionality of the security mecha-

nisms and the performance penalties that our solution will add to the system.

1.3. Paper Organization65

This paper is organized as follows. Section 2 presents the background knowl-

edge of Power Distributions Systems and protocols employed. Section 3 presents

a a literature review on works that focus the security of Power Distribution Sys-

tems, namely in the communication protocols used. Section 4 presents an anal-

ysis of security and performance requirements for Power Distribution Systems.70

Section 5 presents the proposed solution, containing the design and implemen-

tation of each component, while Section 6 evaluates the developed components

from a performance and security perspective. Finally, Section 7 presents the

conclusions and discusses future work.

2. Background Knowledge75

Power Distribution Systems are composed by several components, namely

IEDs, substations and reclosers [1]. All of these components are traditionally

connected over dedicated networks, either inside the same substation (connect-

ing local IEDs) or interconnecting the substation’s networks [2].

Managing this kind of systems is very complex, due to the large number80

of nodes and tendency to keep growing in number of nodes connected to the

network. Some techniques used are based on self-healing [18], where the grid

has the ability of identifying where the failure occurred and deviate the energy

4



flow to a redundant line, covering the previous node. An actual challenge is

related to the way this self-healing capability is achieved, as some techniques,85

more precisely the distributed self-healing, needs that various endpoint nodes

have the ability to communicate with each other, which is impossible with the

technologies used on the field today [19].

These networks usually support standardized network protocol stack archi-

tectures, composed by protocols such as Ethernet, IP, TCP/UDP and applica-90

tion layer protocols. At the upper level, the protocols are designed to ensure

the high availability, resilience and reliability that these systems require. Some

examples of such protocols are GOOSE [5], R-GOOSE [20] and DNP3 [26], all

used to transmit messages on power distribution systems. The support of such

well-established industry solutions to communications in critical environments95

provide research challenges related with, among others, security, as we address

in this article.

The devices used in these systems are mainly IEDs [36]. These are computer-

based controllers of power system equipments, and they operate by collecting

data from sensors and issuing commands to other system components, as well100

as raising events, such as signalling a failure. These components, are of major

importance as they allow the grid to be managed and to be supervised.

In this work, we focused on analysing power distribution systems using the

protocol R-GOOSE, mainly focusing on shifting from closed and dedicated to

open networks, analysing the new threats to these systems and proposing solu-105

tions that make such shifting a viable solution. R-GOOSE was chosen because

it is representative of a class of critical applications (in particular, power dis-

tribution systems) which pose challenges in terms of security, considering the

goal of adopting open communications environments [23]. This protocol will be

detailed in the next subsection. Following R-GOOSE description, we present110

an analysis of the most important standards that regulate these systems, more

precisely in terms of cyber security to specify the security and performance

requirements that our solution must comply with.

5



2.1. R-GOOSE

An interesting step to the management of power distribution systems is to115

move from closed and proprietary communication environment to open and

wireless networks, allowing an easier integration and deployment of new devices

on the network [2] [3]. With this in mind, shifting to IP-based instead of Ether-

net based protocols (as GOOSE) is becoming prevalent in the area, motivating

several research efforts [2] [3]. For that, the GOOSE protocol was adapted to120

run over IP-based networks, and consequently Routable-GOOSE (R-GOOSE)

Protocol was designed.

R-GOOSE, that is defined on IEC 61850, is an extension of the GOOSE

protocol. GOOSE provides fast and reliable mechanisms to maintain intercom-

munication of substations, by means of multicast or broadcast over Ethernet125

[4]. As an extension of GOOSE, R-GOOSE provides the same main functions

but over IP-based networks.

The main objective of both GOOSE and R-GOOSE is to deliver event data

to other nodes on a fast and reliable way. In essence, R-GOOSE messages are the

payload of a GOOSE message ”wrapped” inside a UDP packet, where GOOSE130

payloads are data sets of grouped data, as for example in a (status,value) for-

mat. These messages are event driven, meaning the content or data inside each

message are related to or have the objective to generate an event.

As illustrated in Figure 1, R-GOOSE messages can be analysed from the

transport and application profile perspectives. From the transport profile per-135

spective, R-GOOSE messages are UDP datagrams, encapsulated inside IP pack-

ets. For the application profile, R-GOOSE is composed by several header fields.

Among such fields, the most relevant for the security analysis are the Secu-

rity Information fields, and the Signature fields. The Security Information

fields contains data relative to the key used by the security algorithms, namely140

the TimeOfCurrentKey, TimeToNextKey, Security Algorithms and KeyID. The

TimeOfCurrentKey is a 4-bytes long field representing the time in seconds since

the ”epoch”. The field TimeToNextKey is 2-byte long field containing the num-

ber of minutes until a new key is used. The first byte of the Security Algorithms

6



Figure 1: R-GOOSE PDU [8].

field contains the encryption algorithm used, while the second byte contains145

the algorithm used to generate the MAC. Finally, the KeyID field contains the

information that identifies the key used, and is set by the Key Management

System. Other block of relevant fields are the Signature fields. These appear at

the end of the R-GOOSE payload and contain the authentication tag for that

packet.150

2.2. Standards

There are several standards related to the system’s design as well as for

protocol stacks to be implemented, as for example IEC 61850, that describes

a protocol stack to be used for communications on power distribution systems,

7



with R-GOOSE being one of them. Related to security, there exists one major155

standard, IEC 62351, that specifies several mechanisms that should be added

on top of other standards, as for example IEC 61850, and protocols, such as R-

GOOSE. On the next subsections we focus on IEC 61850 and IEC 62351. From

the first standard we are going to focus on the performance requirements that

these systems must comply with, more precisely in terms of latency. Regarding160

IEC 62351, we will only focus on parts that are related with the protocols that

we used in this work, such as R-GOOSE.

2.2.1. IEC 61850

The analysis of the performance requirements of this system plays an impor-

tant role on this work, as adding extra security mechanisms will certainly add165

delay to the communications, being necessary to assess the time window that ex-

ists. These requirements are established on the fifth part of IEC 61850 standard,

addressing specially the performance requirements for R-GOOSE messages.

The standard specifies maximum message transfer time, given the type of

message and the application. The transfer time is for the complete transmission170

of a message, including the time that devices take to handle it at both ends,

meaning it starts being measured when the sender puts some data on the trans-

mission stack, until the moment the receiver retrieves it from its transmission

stack.

Given this, the transfer time includes the processing time in both physical175

devices (ta and tc) and the transmission time over the transmission system (tb),

as illustrated in Figure 2.

There is not a common transfer time requirement for transmitting all mes-

sages, as different applications and functions inside the system might have dif-

ferent requirements. Messages are divided in types, where they are grouped by180

similar performance needs. Some message types are also divided in performance

classes, as, depending on the context of the event, it may require different tim-

ings. On Table 1 are described the transfer time requirements for each message

type and performance class.

8



Communi-
cation
processor

f1 f2

Physical device PD1 Physical device PD2

Transfer time t = ta + tb + tc

ta tb tc

Communi-
cation
processor

IEC 1918/03

Figure 2: Computation of total transfer time for a message between physical devices (IEC

61850) [5].

Table 1: Table of Maximum Transfer time for each Message Type and Performance Class [5].

Type P Class Max. Transfer time Application

1A
P1 10ms Fast M. - Trip

P2/3 3ms

1B
P1 100ms Fast M. - Others

P2/3 20ms

2 - 100ms Medium S. M.

3 - 500ms Low S. M.

4
P1 10ms Raw Data M.

P2/3 3ms

5 - ≥1000ms File Transfer

6 - - Time Sync.

7 - - Control Commands

We should note that from the standard IEC 61850, the message types that185

are addressed by R-GOOSE are Type 1A and 1B. In the next subsection we will

provide an overview of the relevant parts for this work of IEC 62351 standard,

focusing on the security recommendations for GOOSE and R-GOOSE (despite

the fact we used R-GOOSE in this work, we will also present the relevant part

9



from GOOSE due to its similarities).190

2.2.2. IEC 62351

This standard was developed to address specifically security issues on sys-

tems and protocols used on power distribution environments. The standard

addresses security related to the data exchanged among several components of

the system, trying to achieve security properties such as confidentiality, integrity,195

non-repudiation and availability. A relevant aspect of the standard is that it

provides specific technical details on the security mechanisms recommended.

Inside the scope of this standard is R-GOOSE and IEC 61850. In this case,

there are usually strict requirements related to the performance of the system,

which makes it difficult to implement good security mechanisms.200

The IEC 62351 recommendations for GOOSE are included on part 6. This

section presents the recommendations for Layer 2 and peer-to-peer communica-

tions. There are two main requirements defined as mandatory: data integrity

and data authenticity, while data confidentiality is left as optional. This choice

is due to the existence of low capability devices that, when applying confidential-205

ity mechanisms, could compromise the strict latency requirements. To achieve

data integrity and authenticity it is recommended to use digital signatures and

hash functions with GOOSE messages. The main proposed scheme is to use

digital signatures based on RSA.

For R-GOOSE, on older versions of IEC 62351, it was also recommended to210

add an RSA-based signature to the PDU of the message, ensuring data integrity

to those frames. In addition, the PDU could also be encrypted, however in

any case the performance requirements should never be compromised. More

recently, IEC 62351-6:2020 draft [21] includes the possibility of using hash-

based authentication, as HMAC (Hash Message Authentication Code), GMAC215

(Galois Message Authentication Code), using several hashing algorithms, and

AES-GCM (Advanced Encryption Standard - Galois/Counter Mode).

10



3. Related Work

In this section we will present a literature review on GOOSE and R-GOOSE,

focusing on works that analysed its security and the recommended security220

mechanisms for each protocol. Firstly we will present works that analyse at-

tacks on GOOSE, followed by works that analysed the recommend security

mechanisms, mainly in terms of performance. Then, we will present works that

focused on R-GOOSE. Finally, we will present works that proposed solutions

to performance related problems with security mechanisms in GOOSE and R-225

GOOSE.

To support the need for authentication, integrity and confidentiality for

GOOSE and R-GOOSE, there are several works showing attacks that can com-

promise the system that could be prevented if security mechanisms were in

place. Kush et al. [33] looked at how GOOSE receivers (subscribers) processed230

the messages, identifying a severe vulnerability related with the usage of the

StNum field. The vulnerability consisted on the message validation. The au-

thors modified the StNum field to exploit such vulnerability, and were able to

create three types of flooding attacks. During this attacks, they were also able

to invalidate true-valid messages. In complement Hoyos et al. [34], proved that235

was also possible to perform spoofing attacks exploiting the StNum properties.

Regarding the recommendations from the standards there are there several

important works that we should note. Oberweier et al., in [9], point out some

restrictions on the standard. In this work, they analysed the standard recom-

mendations on GOOSE, namely the RSA-based authentication. The authors240

state that this authentication scheme is not suitable, in terms of performance,

for applications with ultra-low latency requirements, as is the case of power

distribution systems. Ishchenko et al., in [32], did a similar analysis on RSA-

based schemes and they confirmed that RSA-based digital signatures were not

a feasible solution for GOOSE (and R-GOOSE) messages, as its computation245

would take some milliseconds.

Farooq et al. in [10], analysed the algorithms and schemes recommended

11



by IEC 62351-6 to understand if it is a feasible solution to ensure authenticity

and integrity on GOOSE messages. In particular, the authors analysed the per-

formance of RSASSA-PSS, RSA e RSASSA-PKCS1-v1 5 based schemes, with250

key lengths of 1024 and 2048 bits. Using a low capability device, the authors

realized that RSASSA-PKCS1-v1 was the best performing algorithm. However,

securing a GOOSE message would still take 0.9 ms with 1024 bits and 3.56 ms

with 2048 bits, concluding that this is not a feasible solution. The same con-

clusion was also demonstrated in [11]. In [9] and [10], the authors propose the255

usage of HMAC, both in hardware or software implementations, given that its

computational overhead is significantly smaller and it complies with the time

restrictions.

Following the work done on [10], Farooq et al. evaluated the performance

of MAC based algorithms for GOOSE messages on [27]. In this work, the260

authors developed a library containing a set of cryptographic algorithms to en-

sure authentication and integrity on GOOSE messages, namely HMAC-SHA256

(truncated to 80, 128, 256 bits), AES-GMAC-64 e AES-GMAC-128. The per-

formance of such algorithms was analysed using an Intel®Celeron(R) processor

with 4 GB RAM, being a relatively old and slow system. From this work, the265

authors concluded that MAC based algorithms are suitable for ultra-low latency

requirements as in GOOSE.

Later, Farooq et al. on [28], focused on the lack of encryption for GOOSE

messages. They proposed three models for usage of encryption with authenti-

cation: Encrypt-then-MAC (EtM), Encrypt-and-MAC (E&M) and MAC-then-270

Encrypt (MtE). They use HMAC-SHA256 to support authentication and AES-

128 for symmetric encryption. From their work they concluded it was possible to

use authentication and encryption for GOOSE messages using such algorithms.

Continuing the same work, Farooq et al. analysed how digital signatures

based on RSA and ECDSA (Elliptic Curves) could be used to protect GOOSE275

messages against replay and masquerade attacks on [29]. After analysing several

attack scenarios, they analysed their solution using RSA based algorithms with

several key lengths (1024, 2048, 3072 bits) and ECDSA with different curves,

12



measuring the time to sign and validate messages. The data collected showed

that DS based methods are not the best performing, and even the ECDSA based280

algorithms can compromise the performance requirements.

On [30], Farooq et al. developed a testbed for R-GOOSE and R-SV, applied

the previously developed mechanisms to R-GOOSE and analysed its perfor-

mance on a low performance (legacy) computer. They concluded that it was

possible to apply such mechanisms to R-GOOSE messages with low capability285

devices. In terms of R-GOOSE performance analysis, our work complements

the previous by analysing the performance of such algorithms in real IED de-

vices with industrial specifications, as described in Section 6.1. Therefore, we

validated our proposal towards its implementation in real application scenarios.

Also, we considered and included, in our library, a set of complementary authen-290

tication mechanisms, namely those specifically designed to run on low-capability

devices such as BLAKE2b.

Finally, Rodŕıguez et al. in [31] proposed a Security Gateway for GOOSE

communications. This was an hardware-based implementation, using an FPGA

from Xilinx Zynq-7020 family. Our work differs from this one in terms of the295

implementation and target protocol. As mentioned, this work was targeting

GOOSE protocol, and even if similar, GOOSE and R-GOOSE operate in dif-

ferent protocol layers. Moreover, the inside and formatting of each protocol

packet is different, requiring different implementations. Given this, our work

and [31] can be applied in different scenarios. As mentioned by Apostolov in [37],300

a GOOSE based solution was originally designed to transmit messages inside

substations, while R-GOOSE based solutions target communications between

substations, although, it can also be used for inside substation communications.

Also, in this work the authors developed an hardware-based solution, while our

solution is software-based. As we will demonstrate later in this document, our305

solution can be applied directly on real IEDs, or can be used separately as a

Security Gateway for low capability IEDs.

As these works demonstrated, currently operating R-GOOSE implementa-

tions do not include security by default, as such features could compromise the

13



strict performance requirements, specifically on old and legacy devices. This310

challenge motivates our proposal, whereby we develop a Security Library that

implements all recommended security mechanisms for R-GOOSE, and a Secu-

rity Gateway to allow the usage of such security mechanisms with legacy and

low-capability devices.

4. Security and Performance Requirements Analysis315

In this section, we will present and analyse the security and performance re-

quirements that Power Distribution Systems, focusing on communications based

on R-GOOSE, must or should comply with. We supported this analysis on the

related work already discussed, as well as on the relevant standards and recom-

mendations, such as IEC 61850 and IEC 62351.320

As the Power Distribution Systems are critical systems, where a fault could

create huge damage, either at the infrastructure itself, as well as endanger-

ing human lives, it is extremely important to ensure that the system has high

availability. This leads us to the first requirement of System Availability. Fur-

thermore, from the analysis done on IEC 62351, we recognise that message325

authentication and message integrity is also a must. Naturally, as we may face

unauthorized access we must ensure that only valid messages, that were sent

by authorized devices will be accepted, as well as only messages that were not

tampered are accepted. This reasoning is supported by several works presented

previously, as for example in [33] and [34]. In the same standard, we can see that330

confidentiality should also be considered, specially in R-GOOSE that operates

over open networks, although, this should not compromise the timeliness and

low latency/response time of the system. As shown in [35], capturing IEC 61850

traffic will give the attacker the knowledge to be able to craft valid packets with

malicious content. Given this, we can also set Message Integrity, Authentication335

and Confidentiality as requirements.

From the standard IEC 61850 we can specify the exact values that this

system has to comply with in terms of latency. In this standard it is specified

14



that R-GOOSE will deal with the messages of Type 1A and 1B. The values,

as shown on the Table 1, are between 3ms and 100ms, meaning that ultra-low340

latency is required on the communications. This requirement is of particular

importance for testing and validation of our solution, as performance can not

be decreased to a latency higher than 3ms at the expense of applying security.

On Table 2 we summarize the requirements with a brief description.

Table 2: Power Distribution System requirements and their description. Requirements based

on references [5] [6]

Requirement Description

System

Availability

The system must be available any time it is required,

even if a given communication line is down

Message

authenticity

Must be possible to identify and confirm who is the

message sender

Message

integrity

Must be possible to verify if the message received did

not suffered any change since it was sent (either by

natural or unnatural causes)

Message

confidentiality

Must be impossible to an unauthorized user

understand the contents of the message, the messages

should be encrypted

Message

timeliness/very

low latency

The messages should be delivered in the minimum

time possible, never exceeding the maximum Transfer

Time of 3ms/10ms (depending on the scenario)

5. Proposed Solution and Implementation345

Our goal is to develop a product to provide security mechanisms capable of

ensuring security requirements for critical applications like Power Distribution

Systems. From Section 4, we established the need for security mechanisms to

ensure Message Integrity, Message Authentication and Message Confidentiality.

15



It is also crucial that these security mechanisms do not compromise the strict350

performance requirements of these systems.

Taking these facts into account, the first component we propose is a Security

Gateway that will implement a set of security mechanisms (including the algo-

rithms recommended by IEC 62351). As we learn from several related works

(and from the experimental analysis presented later using real IEDs), some of355

the currently being used IEDs may not be able to apply the such security mech-

anisms and therefore there is the need to find a solution for such devices. With

this in mind, we propose a component that is Security Gateway. This security

gateway is a bridging device based on COTS hardware that will apply the se-

curity mechanisms present on our Security Library. Summarizing, we propose360

a security framework composed by two main components: a Security Library

and a Bridging Device, as we proceed to discuss.

5.1. Security Library

Security Library [12] is a library written in C and using OpenSSL 1.1.1

Library, providing a collection of functions ready-to-use by other applications,365

to ensure security properties such as integrity, authentication and confidentiality

to packets. We can divide the library in two parts: cryptographic algorithms

and protocol related functions. The first part contains a set of cryptographic

functions, as for example HMAC-SHA256 or AES256-GCM. We used OpenSSL

to get well-tested implementations of these algorithms. In the second part of the370

library we implemented the functions responsible to deal with specific aspects

of each protocol as, for example, encrypting the packet payload and changing

all the other mutable fields of the protocol, using the cryptographic functions

included in the first part.

We developed this library to provide three security properties: Message In-375

tegrity, Message Authentication and Message Confidentiality. We selected the

algorithms that were recommended by the standard IEC 62351, that provides

guidelines for security on R-GOOSE. In this standard is recommended the usage

of Hash Message Authentication Code (HMAC) or Galois Message Authentica-

16



tion Code (GMAC) based authentication. We also selected two other variations380

of HMAC-based authentication that were not included in IEC 62351, HMAC-

BLAKE2b and HMAC-BLAKE2s, with the motivation that these are two algo-

rithms designed to operate in low capability devices. For encryption, we used

the algorithms recommended in the same standard, namely AES based encryp-

tion with key sizes of 256 and 128 bits. In more detail, for the cryptographic385

functions our library includes the following features presented on Table 3.

Table 3: Security algorithms for authentication, encryption and decryption included on the

security library.

HMAC Generation functions

HMAC-SHA256-80

HMAC-SHA256-128

HMAC-SHA256-256

HMAC-BLAKE2b-80

HMAC-BLAKE2s-80

GMAC Generation functions

GMAC-AES256-64

GMAC-AES256-128

GMAC-AES128-64

GMAC-AES128-128

AES-GCM encryption and decryption functions
AES128-GCM

AES256-GCM

These functions are responsible for performing the cryptographic operations

on a given data, producing an HMAC or a GMAC as output, or encrypting and

decrypting data.

As for the protocol integration functions, in this case, R-GOOSE, we devel-390

oped the following features:

• R-GOOSE Authentication

1. Insert and Validate HMAC

2. Insert and Validate GMAC

17



• R-GOOSE Encryption395

1. Encrypt R-GOOSE Payload

2. Decrypt R-GOOSE Payload

These functions resort to the cryptographic functions previously mentioned

to provide the security properties to a given protocol (in this case R-GOOSE),

dealing with the protocol specific aspects, as for example the mutable fields.400

Another important goal of the security library is to provide support security for

R-GOOSE communications using both legacy IED devices and newer platform

(namely RaspberryPi devices), as we will address later in this article.

5.2. Bridging Device

The Bridging Device is the framework component placed between the sys-405

tem component we want to ”protect”, and the network it is connected to. The

device captures the packets sent from the protected device, analyse them and,

if necessary, applies the security methods to ensure the set of security require-

ments. With this goal the bridging device resorts to the Security Library already

described to apply the security mechanisms. In terms of hardware, our bridging410

device is a Raspberry Pi 4B, running the Raspbian Linux variant and equipped

with an USB-to-Ethernet adapter, to provide an extra Ethernet port. More

precisely, the technical specifications of the Raspberry Pi are presented in the

Table 4. The goal with this type of device is to demonstrate that it is possible

to use off-the-shelf hardware to improve the security on systems composed by415

specialized equipments such as IEDs, that are not usually capable of performing

such tasks.

This component will allow legacy and lower capacity devices to be protected

with the necessary security mechanisms, thus enabling protection for devices

that are not capable of performing such tasks. The approach taken was to420

create a Linux Bridge handled by the kernel. That bridge captures packets on

the incoming interface, moves such packets from the kernel space to a user space

application. This application modifies the packets and re-sends them again to

18



Table 4: Raspberry Pi 4B model Technical Specifications.

CPU Quad core Cortex-A72 (ARM x64) 1.5GHz

RAM 4GB

Ethernet Gigabit Ethernet

External Ethernet USB2.0 to Fast Ethernet

Operating System Raspbian GNU/Linux 10 (Buster)

the kernel, that in turn bridges the secured packet to the outgoing interface.

Packets are moved to user space because our security library (Section 5.1) uses425

the OpenSSL library, which cannot be used in kernel space.

The Linux bridge handled by the kernel was achieved using the brctl-utils

[24] tool that connects two physical Ethernet interfaces creating a new logical

interface to the bridge, being available to use on the Raspbian OS.

After setting up the bridge, it is necessary to move the packets from kernel430

space to user space. We achieved that using IPTables alongside with another

Netfilter module. On IPTables, we used its feature that allows a custom packet

filtering, performed in userspace, using NFQUEUE. Using this, a user-space

application can set a verdict on a given packet and even modify or craft a new

packet, and then re-inject it into the IPTables chain.435

Finally, the user space application will be listening for packets moved by

IPTables to the NFQUEUE. Netfilter provides a library to manage such queues,

being handled the same way as sockets. When a packet is received, we call a

callback function to process each packet. This function can be customized and

designed to fit any protocol. In our case, we created a set of configurations to440

process each R-GOOSE packet, depending on the interface the packet arrived

and a set of pre-configurations as, for example, the authentication and encryp-

tion algorithm to be applied on unsecured packets. When a valid R-GOOSE

packet is identified and it is necessary to apply a security mechanism (when a

unsecured packet arrives), the developed security library is used and the packet445

is modified or validated/invalidated.

19



IPTables

User Space Program

Raspberry Pi

ACCEPT

Interface1 Interface2

Packet Flow

Verdict Flow

NFQUEUE 0

Unsecured
R-GOOSE
Packet

Secure
R-GOOSE
Packet

Security Library

Library Interactions

Figure 3: Bridge Diagram - Interaction between IPTables, Netfilter NFQUEUEs and user

space program.

Figure 3 illustrates our bridging solution, showing in detail the interactions

between IPTables, NFQUEUE, our user space program and the developed se-

curity library. The blue arrows represent the path that an arriving packet will

transverse, the green arrow represents the verdict issued by our program to IPT-450

ables, while the orange arrow represents the interactions between the user space

program and the security library. Figure 3 illustrates a situation in which the

packet is accepted, although we can also reject the packet, leading IPTables to

drop it. This figure represents the architecture of our solution for the use case

where the security library is used inside our bridging device, mainly to ensure455

security properties on communications between legacy devices. However, our

security library could be use in a standalone mode, and be directly integrated

in real IEDs (as we will evaluate in Section 6.3), being a solution capable of

ensuring security properties for both legacy or last generation IEDs.

6. Evaluation460

To validate our solution and implementation, we need to evaluate in terms of

functionality and performance, comparing the obtained results with the require-

20



ments explained in Section 4. In brief, our solution must ensure the security

properties of authentication, integrity and encryption, and at the same time

meet the latency requirements expressed in the Table 1, more precisely the 3ms465

of Transfer Time.

6.1. Evaluation Strategy

With this in mind, our evaluation strategy was divided in two parts, the

first one to evaluate the functional requirements and the second to evaluate the

performance of each component. We focused our experiments in two compo-470

nents: the security library itself and the Raspberry Pi Bridge. The purpose

of evaluating the Security Library by itself was to analyse its impact when in-

corporated in an IED or other dedicated device. To perform such evaluation

we considered two scenarios: first we ran our library only on the Raspberry

Pi (specifications on Table 4) to evaluate its performance when running on our475

own device (lab testbed), secondly we evaluated the performance of the crypto-

graphic algorithms using real IEDs and real R-GOOSE traffics as input.

For the first scenario (lab testbed), we have set up a prototype experiment to

simulate the communications between a node of a Power Distribution System

and any other node on the network. This experiment is composed by two480

PCs (specifications on Table 5) representing endpoint nodes of the network and

our Raspberry Pi. All of the components are connected by Ethernet cables.

One of the nodes will act as a R-GOOSE publisher, while the second will act

as a R-GOOSE subscriber, representing two power distribution system nodes.

Although as it has fewer nodes it will allow us to analyse the impact that our485

device will have on the machine-to-machine communications.

The Functional Evaluation phase was only performed on our lab testbed

using the Raspberry Pi and we performed the following experiments:

1. Cryptographic Functions - Provide a given input based on standard-

ized test vectors from RFCs (RFC 4231 [14], RFC 7693 [15] and NIST490

SP 800-38D [16]), to the cryptographic function and analyse the output,

comparing with the expected. All of the developed functions were tested.

21



Table 5: PC A and PC B Technical Specifications.

Component PC A PC B

CPU Intel E6400 @ 2.13GHz i7-6500U @ 2.50GHz

RAM 4GB 16GB

Ethernet Gigabit Ethernet Gigabit Ethernet

Operating System Ubuntu 16.04 (Xenial) Windows 10

2. Protocol Related Functions - Provide an unsecured R-GOOSE packet

and analyse the output. On the output, we analysed if the structure

and the mutable fields were properly updated, having in consideration the495

protocol specifications. All of the developed functions were tested using

only one cryptographic function. The unsecured R-GOOSE packets were

generated by a modified version of libIEC61850 [17].

As mentioned before, for the performance, we evaluated our solution in two

scenarios: on our lab testbed composed by COTS components, and on real IEDs500

using real R-GOOSE traffic. For the performance evaluation phase using our

lab testbed we performed the following experiments:

1. Cryptographic Functions - Set a timer before the function execution,

provide an input to the cryptographic function and set a timer at the

end of its execution, measuring the difference between them. All of the505

developed functions were tested. Due to the fact that the threat where

our function is executing can be interrupted, it is necessary to run each

experiment multiple times, to get statistically valid results.

2. Protocol Related Functions - Set a timer before the function execution,

provide an unsecured R-GOOSE packet to the function and set a timer at510

the end of its execution, measuring the difference between them. All of the

developed functions were tested, using all of the cryptographic functions

developed.

3. Raspberry Pi Bridging Device - To properly evaluate the bridging

22



device performance, we evaluated the following metrics:515

(a) Communications Bandwidth in Mbits/sec

(b) Traffic Latency in milliseconds

4. Security Gateway - Generate R-GOOSE packets on the experimental

scenario and analyse the latency of communications using the Security

Gateway520

• R-GOOSE packets Latency - Only tested the best and worst per-

forming cryptographic functions, using the values measured from the

protocol related functions in point 2 above. The R-GOOSE traffic

was generated with libIEC61850 library. Each packet was filled with

random data and sent at the highest R-GOOSE rate.525

When evaluating the performance of the Security Library, we repeated each

experiment 500 000 times, in order to present statistically valid results. From

that dataset we calculated the average latency, the standard deviation, maxi-

mum and minimum value, and the 95% confidence interval. Also, we considered

three input sizes to cover several operation scenarios. Those data sizes were ob-530

tained by analysing several R-GOOSE messages. For the Security Library test-

ing, when evaluating the cryptographic algorithms, we used different input sizes

for authentication and encryption because in a R-GOOSE packet the amount

of data that is authenticated is not the same that is encrypted. The input sizes

used are detailed in Table 6, being 196, 256 and 572 bytes for authentication535

related experiments, and 51, 204 and 408 for encryption/decryption related ex-

periments. To perform authentication and encryption/decryption of R-GOOSE

packets, it is used the GOOSE PDU and a set of fixed size fields. To obtain

this input sizes, we calculated the total size in bytes of fixed fields that are used

on the authentication and for encryption/decryption of an R-GOOSE packet.540

Analysing several R-GOOSE packets generated by the libIEC61850, integrated

with several changes performed by Diogo S. et al. in [22], we obtained the size

of the GOOSE PDU, when a packet (GOOSE PDU) is composed by 1, 12 or

72 GOOSE objects/entities (integers). We used three different GOOSE PDU

23



compositions to evaluate the performance of our solution while incrementing the545

size of the data that is being transmitted. We have evaluated all the security

functions implemented and that are part of the security library.

Table 6: Input sizes used for authentication and encryption/decryption related experiments.

Security Mechanism Input size (bytes) GOOSE Objects

Authentication

196 1

256 12

572 72

Encryption / Decryption

51 1

204 12

408 72

When evaluating the Raspberry Pi Bridging Device, we used iPerf3 [25] to

measure the bandwidth of the communications with and without the usage of

the bridging device. For the latency analysis, we used the Ping tool and we550

analysed the latency measured using ICMP packets sent at the highest rate

used by R-GOOSE, that is 4ms between each packet according to IEC 61850.

If our device is capable of handling the traffic at its highest rate, we can assume

that it will be able to handle lower rates.

As mentioned before, we also evaluated the library performance on a scenario555

with a complete product running a real world PDS solution, composed by real

IEDs. Our library and in particular the cryptographic functions, run directly

inside real IEDs competing for the same computacional resources. There were

collected 20 measurements for the latency for each cryptographic function, and

three different IED platforms were used. Table 7 illustrates the specifications560

of the IED platforms used. Finally, we will present a comparison between the

latency results for our library, with the results presented in related works.

On the following subsections, we will present the results for the experimental

evaluation. Subsection 6.2 presents the results from the evaluation performed

on the lab testbed, using COTS hardware components, namely the Raspberry565

24



Table 7: IED platforms specifications.

Platform Processor Frequency (MHz)

Platform 1 ARM926EJ-S core 667 MHz

Platform 2 PowerPC e300 core 456 MHz

Platform 3 ARMv7-A core 800MHz

Pi. Subsection 6.3 presents the results from the evaluation performed using real

IED devices.

6.2. Evaluation Results from lab testbed

For the functional evaluation of the Security Library, all of the tests passed

successfully, both the cryptographic functions analysed using the standardized570

vectors, as well as the protocol related functions analysed by comparing with

the R-GOOSE standard and protocol specification.

In the Table 8 we present the statistic analysis performed on the crypto-

graphic algorithms of the Security Library. From the table, we can see that

all of the calculated averages of the cryptographic algorithms latency meet the575

requirements set for our experiments. We can see that the results are as ex-

pected, where GMAC generation is faster than HMAC, but authentication has

a better performance than encryption. Figure 4 illustrates the evolution of each

authentication related function when increasing the input size. In this figure,

we can clearly see that GMAC variants had a better performance than HMAC.580

Also, HMAC-BLAKE2b had the worst performance, with an higher latency

value than any other algorithm. Figure 5 illustrates the evolution of each en-

cryption/decryption related function when increasing the input size. From this

plot, we can clearly see the decrease of the performance in encryption when the

input size increases.585

As for the Raspberry Pi Bridging Device evaluation, we measured and anal-

ysed two metrics to evaluate the performance of the bridging device: bandwidth

and latency of communications. As for the bandwidth test, we first measure it

25



Table 8: Security functions performance analysis, in milliseconds, using medium size data

input.

Algorithm Avg. Max. Min. C.I. 95%

HMAC-SHA256-80 0.007 0.102 0.007 ± 0.0000009

HMAC-BLAKE2b-80 0.012 0.157 0.012 ± 0.0000014

GMAC-AES256-128 0.004 1.103 0.004 ± 0.0000056

GMAC-AES256-64 0.005 0.218 0.005 ± 0.0000019

AES256-GCM-Encrypt 0.032 1.402 0.011 ± 0.0000310

AES256-GCM-Decrypt 0.031 0.352 0.011 ± 0.0000287

without the bridging device and we collected 1800 measurements for statistical

validity. Then, we repeated the experiment but using the bridging device. The590

results are presented in Table 9.

Table 9: Total data transferred and Bandwidth measurements with and without the bridging

device in place.

Without
Average Bandwidth 94.60 Mbits/sec

Confidence Interval 95% ± 0.05 Mbits/sec

With
Average Bandwidth 94.34 Mbits/sec

Confidence Interval 95% ± 0.15 Mbits/sec

We can see that bandwidth decreased from 94.60 Mbits/sec, when Raspberry

Pi is not in place, to 94.34 Mbits/sec when it is in place. We can conclude that

our bridging device does not significantly decrease the bandwidth of the network

used.595

To measure the latency that our bridging device introduces on the commu-

nications we used the well known Ping tool. We used the setup as it is shown

in Figure 6 and we executed the Ping command from PC B. The Ping tool

measures the RTT of an ICMP packet in a given network. In terms of la-

tency, our final goal is to analyse if our Security Gateway can apply the security600

26



0.3

196 256 400 500 572
0.0035

0.005

0.007

0.01

0.0125

0.015

0.0175

Input data size (bytes)

L
at

en
cy

(m
il

li
se

co
n

d
s)

HMAC-SHA256-80 HMAC-BLAKE2b-80
GMAC-AES256-128 GMAC-AES256-64

Figure 4: Progression of latency with input size in HMAC and GMAC functions to authenti-

cate data.

mechanisms developed without compromising the 3ms of latency per R-GOOSE

packet. This 3ms is the Transfer Time, as illustrated in the Figure 2. There we

can see that it is an OTT (One Time Trip) and does not include the latency

introduced by the endpoint applications (R-GOOSE Applications).

Given that and the fact that Ping measures the RTT, we can define our605

objective for this test as achieving an RTT less than 6ms. If we assume that

both trip times on Ping calculation are very similar (as they use the same

network and packet size are very similar), we can assume that Transfer Time

will be less than half of the RTT calculated using Ping, because Transfer Time

does not include the processing time on each application.610

From the Ping experiment we can confirm that our bridging device complies

with the requirements for communications, more precisely, with the 3ms for

Transfer Time. The average for RTT of ICMP packets was of 2.437ms. During

the experiment we measured the latency of 4 000 000 packets, giving a confidence

interval 95% of 0.0441ms. From there we can estimate an OTT of 1.2185ms.615

27



0.3

0 51 100 204 300 408 500
0.018
0.02

0.025

0.03

0.035

0.04

Input data size (bytes)

L
a
te

n
cy

(m
il

li
se

co
n

d
s)

AES256-Encrypt AES128-Encrypt
AES256-Decrypt AES128-Decrypt

Figure 5: Progression of latency with input size in AES-based functions to encrypt and decrypt

data.

Figure 6: Diagram of Ping testing and relation with Transfer Time.

In a second experiment, we needed to evaluate how the bridge would perform

using R-GOOSE packets. The trivial way to achieve this would be to timestamp

the messages in each end of the communication and compare both values. In

order to be able to precisely measure such latency in this way, the clocks at

both ends should be properly synchronized. Although, using only COTS hard-620

28



ware (as a Raspberry Pi), it can be difficult to achieve high precision in clock

synchronization due to the very low magnitude of the values being measured.

To overcome this issue, we measured instead the time from the issuer (PC

B in Figure 6) to the receiver (PC A) and back (from PC A to PC B), therefore

eliminating clock synchronization issues. Since we are considering a simple,625

fixed and stable network scenario, we then assume that the one-way latency

(from PC B to PC A) will be sensibly 1/2 of this round-trip latency, being these

the results we later present.

Based on this reasoning, PC A was running an UDP server that receives

the R-GOOSE packet and re-sends it to PC B, that is running an R-GOOSE630

application, calculating the two-way latency (RTT) of the communication. From

this RTT we estimate the one-way latency of the communication allowing us to

analyse the cost of Transfer Time, represented in Figure 6.

In these tests, we only used the best and worst performing algorithms from

the performance evaluation done on our Security Library. These tests were fo-635

cused on analysing the latency on R-GOOSE communications passing through

the Security Gateway. As mentioned before, to measure latency, we developed

an application that was acting as an UDP/R-GOOSE Server. This applica-

tion was placed in PC A and was receiving R-GOOSE packets sent from PC

B. On PC B, packets were generated and sent using our modified version of640

libIEC61850 [17].

As we did in the analysis of Ping results for bridging device, in these tests

we are also measuring the RTT and not the Transfer Time. Although, as we

showed on Figure 6, we can estimate the OTT (that is always bigger than

Transfer Time of Figure 2) and evaluate if the test was successful or not. From645

the Table 10 we can see that all of the RTT values are between 3.046 ms and

3.207 ms, from where we can estimate an OTT between 1.523 ms and 1.6035

ms. With this OTT values, we can state that our Security Gateway complies

with the R-GOOSE requirement of a Transfer Time minor than 3ms, as per the

requirements previously discussed.650

29



Table 10: Bridge device latency (RTT) measurements in milliseconds.

Name Avg CI 95% Max Min

AddHMAC-SHA256-128 3.165 0.033 8.126 1.829

AddHMAC-BLAKE2b-80 3.122 0.033 7.687 2.315

AddGMAC-AES128-128 3.100 0.036 12.148 2.266

AddGMAC-AES256-128 3.121 0.035 7.011 2.231

ValidateHMAC-SHA256-80 3.155 0.045 10.75 2.289

ValidateHMAC-BLAKE2b-80 3.073 0.045 11.234 2.273

ValidateGMAC-AES128-128 3.184 0.043 11.205 2.28

ValidateGMAC-AES256-64 3.051 0.044 10.067 2.237

Encrypt-AES128 3.069 0.037 8,688 2.238

Encrypt-AES256 3.207 0.038 12.689 2.41

Decrypt-AES128 3.129 0.047 11.661 2.162

Decrypt-AES256 3.046 0.034 12.989 2.243

6.3. Evaluation Results from real IEDs testbed

In this subsection we will present the results and analysis performed to

evaluate the latency of cryptographic algorithms from our security library, when

running on real IED devices (see Table 7) with real R-GOOSE traffic.

On Tables 11, 12 and 13, we present the latency results for the the crypto-655

graphic functions respectively using the IED platforms 1, 2 and 3 as specified

in Table 7.

These results support the evaluation we did on the lab testbed. We can see

that in platforms 2 and 3 (that are the most capable IEDs) all of the algorithms

except HMAC-BLAKE2b had an acceptable performance, what supports the660

results we obtained from the experiments performed on our testbed. Comparing

both experiment approaches, we can see that the latency values are higher in

real devices, as it was expected given the fact that our Raspberry Pi is more

capable than the real IEDs used on these experiments. From this analysis,

30



Table 11: Latency results for the IED Platform 1 of Table 7 (in milliseconds).

Cryptographic algorithm Avg CI 95% Max Min

GMAC-AES128-64 0.242 0.024 0.435 0.223

GMAC-AES128-128 0.241 0.019 0.398 0.227

GMAC-AES256-64 0.226 0.015 0.328 0.214

GMAC-AES256-128 0.228 0.028 0.453 0.206

HMAC-SHA256-80 0.276 0.289 0.439 0.235

HMAC-SHA256-128 0.245 0.172 0.345 0.226

HMAC-SHA256-256 0.272 0.053 0.641 0.221

HMAC-BLAKE2b-80 2.228 0.037 2.476 2.11

HMAC-BLAKE2s-80 0.363 0.035 0.614 0.321

AES256-GCM-Encrypt 0.401 0.046 0.678 0.341

AES128-GCM-Encrypt 0.374 0.039 0.641 0.326

AES256-GCM-Decrypt 0.385 0.040 0.674 0.344

AES128-GCM-Decrypt 0.363 0.044 0.793 0.332

we can state that for platforms 2 and 3 the cryptographic algorithms can be665

directly applied on IEDs. When using platforms less capable such as platform

1, the computational cost to perform such cryptographic operations is higher,

meaning that an external device, as our proposed bridging device, should be

used to comply with the latency restrictions.

On Table 14 we present all of our results and also results obtained in related670

work [30]. From this table, we can assess the impact of different security mech-

anisms on several platforms. Among our real IED platforms, we can conclude

that there are some platforms where security mechanisms can be directly ap-

plied (IED Plat. 2 and 3), while IED Plat. 1 is not capable of supporting such

mechanisms.675

Our results obtained using RPi 4B are similar to the results obtained in [30],

except for the encryption algorithms. However, for both authentication and

31



Table 12: Latency results for the IED Platform 2 of Table 7 (in milliseconds).

Cryptographic algorithm Avg CI 95% Max Min

GMAC-AES128-64 0.059 0.015 0.196 0.048

GMAC-AES128-128 0.060 0.022 0.229 0.038

GMAC-AES256-64 0.062 0.016 0.187 0.04

GMAC-AES256-128 0.058 0.013 0.149 0.045

HMAC-SHA256-80 0.083 0.016 0.197 0.065

HMAC-SHA256-128 0.059 0.009 0.142 0.052

HMAC-SHA256-256 0.062 0.010 0.156 0.052

HMAC-BLAKE2b-80 1.123 0.015 1.196 1.084

HMAC-BLAKE2s-80 0.087 0.011 0.187 0.077

AES256-GCM-Encrypt 0.130 0.024 0.259 0.096

AES128-GCM-Encrypt 0.094 0.012 0.186 0.078

AES256-GCM-Decrypt 0.106 0.019 0.262 0.086

AES128-GCM-Decrypt 0.090 0.016 0.214 0.074

encryption, we found it difficult to provide a detailed and objective comparison,

due to the lack of technical details (input size, number of repetitions) at the

experimental level of work [30]. Finally, from this table we can see that even680

low capability devices as RPi 4B or Intel Celeron(R) 4GB do not represent the

most constrained devices present in real world PDS, being important to assess

the real impact of security mechanisms on real devices, as our IED platforms.

7. Conclusions and Future Work

We propose a Security Gateway for Power Distribution Systems (PDS), com-685

posed of a Security Library and a Bridging Device. The Security Library fea-

tures the implementation of several cryptographic mechanisms as recommended

in corresponding standards for data communications in PDS, namely for au-

thentication, integrity and confidentiality. The Security Library can be used

32



Table 13: Latency results for the IED Platform 3 of Table 7 (in milliseconds).

Cryptographic algorithm Avg CI 95% Max Min

GMAC-AES128-64 0.024 0.006 0.076 0.017

GMAC-AES128-128 0.023 0.007 0.094 0.018

GMAC-AES256-64 0.024 0.008 0.086 0.017

GMAC-AES256-128 0.021 0.005 0.054 0.015

HMAC-SHA256-80 0.041 0.005 0.081 0.035

HMAC-SHA256-128 0.034 0.005 0.065 0.027

HMAC-SHA256-256 0.034 0.007 0.097 0.028

HMAC-BLAKE2b-80 0.158 0.030 0.387 0.130

HMAC-BLAKE2s-80 0.044 0.007 0.087 0.037

AES256-GCM-Encrypt 0.053 0.011 0.146 0.043

AES128-GCM-Encrypt 0.045 0.012 0.152 0.036

AES256-GCM-Decrypt 0.051 0.013 0.153 0.037

AES128-GCM-Decrypt 0.043 0.011 0.136 0.034

standalone by the PDS devices, or through a Bridging Device that was devel-690

oped to enable security features for low-capability/legacy PDS devices. Our

results show that it is feasible to use such cryptographic algorithms in PDS,

as they provide the required security features while complying with the strict

performance restrictions in this environment. Moreover, using our Bridging De-

vice, we demonstrated that is possible to use COTS equipment to secure legacy695

and less capable PDS devices, also complying with the stringent performance

requirements.

As future work, we plan to validate this solution in a larger experimental

scenario, using real devices and analysing the impact that our solution has on

other system components. Another interesting challenge would be to include700

in the framework a set of functions to translate from GOOSE packets to R-

GOOSE packets, allowing the application of our solution in full legacy systems

33



Table 14: Comparison with related works

Work Device Algorithm Avg. Latency (ms)

[30] Intel Celeron(R) 4GB HMAC-SHA256 0.008

This RPi 4B HMAC-SHA256-80 0.005

This IED Plat. 1 HMAC-SHA256-80 0.276

This IED Plat. 2 HMAC-SHA256-80 0.083

This IED Plat. 3 HMAC-SHA256-80 0.041

[30] Intel Celeron(R) 4GB AES-GMAC-64 0.0045

This RPi 4B GMAC-AES256-64 0.005

This IED Plat. 1 GMAC-AES256-64 0.226

This IED Plat. 2 GMAC-AES256-64 0.062

This IED Plat. 3 GMAC-AES256-64 0.024

[30] Intel Celeron(R) 4GB AES-GMAC-128 0.005

This RPi 4B GMAC-AES256-128 0.004

This IED Plat. 1 GMAC-AES256-128 0.228

This IED Plat. 2 GMAC-AES256-128 0.058

This IED Plat. 3 GMAC-AES256-128 0.021

[30] Intel Celeron(R) 4GB AES-GCM-256-Enc 0.286

This RPi 4B AES-GCM-256-Enc 0.032

This IED Plat. 1 AES-GCM-256-Enc 0.401

This IED Plat. 2 AES-GCM-256-Enc 0.130

This IED Plat. 3 AES-GCM-256-Enc 0.053

[30] Intel Celeron(R) 4GB AES-GCM-256-Dec 0.221

This RPi 4B AES-GCM-256-Dec 0.031

This IED Plat. 1 AES-GCM-256-Dec 0.385

This IED Plat. 2 AES-GCM-256-Dec 0.106

This IED Plat. 3 AES-GCM-256-Dec 0.051

34



that do not support R-GOOSE. Furthermore, it is extremely important to take

in consideration the way that security keys that will be used by our library

are exchanged and managed. This is another topic for a future work, where705

IEC already recommends the usage of Group Domain of Interpretation protocol

(GDOI) as key exchange protocol. Finally, as part of our proposal is using an

external device to apply the security mechanisms, it is extremely important to

ensure the security of the device itself, in this case Raspberry Pi. Given this, it

would be important to research on how secure is such device and assess what710

measures should be taken to protect the device.

Acknowledgements

This work is supported by the European Regional Development Fund(FEDER),

through the Regional Operational Programme of Lisbon(PORLISBOA 2020)

and the Competitiveness and Internationalisation Operational Programme (COM-715

PETE 2020) of the Portugal 2020 framework[Project 5G with Nr.024539 (POCI-

01-0247-FEDER-024539)].

35



References

[1] M. Daoud and X. Fernando, ”On the Communication Requirements for the

Smart Grid”, Energy and Power Engineering, 3, Jan. 2011.720

[2] Ye Yan, Yi Qian, H. Sharif, and D. Tipper, ”A survey on cyber security

for smart grid communications”, Communications Surveys and Tutorials,

IEEE, 14:998–1010, Jan. 2012.

[3] A. Hadbah, A. Kalam, and A. Zayegh. ”Powerful IEDs, ethernet networks

and their effects on IEC 61850-based electric power utilities security”, In725

2017 Australasian Universities PowerEngineering Conference (AUPEC),

pages 1–5, Nov. 2017.

[4] A. Apostolov, ”R-GOOSE: what it is and its application in distribution au-

tomation”, CIRED - Open Access Proceedings Journal, 2017(1):1438–1441,

2017.730

[5] International Electrotechnical Commission, ”Power Utility Automation”,

Standard IEC 61850.

[6] International Electrotechnical Commission, ”Power systems management

and associated information exchange - data and communications security”,

Standard IEC 62351, 2018.735

[7] O. Khaled, A. Maŕın, F. Almenares, P. Arias, and D. Dı́az, ”Analysis of

secure TCP/IP profile in 61850 based substation automation system for

smart grids”, In International Journal of Distributed Sensor Networks, p.

5793183, 2016.

[8] S. R. Firouzi, L. Vanfretti, Al. Ruiz-Alvarez, H. Hooshyar, and F. Mah-740

mood, ”Interpreting and implementing IEC 61850-90-5 Routed-Sampled

Value and Routed-GOOSE protocols for IEEE C37.118.2 compliant wide-

area synchrophasor data transfer”, Electric Power Systems Research,

144:255–267, Mar. 2017

36



[9] S. Obermeier, R. Schlegel, and J. Schneider, ”Assessing the Security of745

IEC 62351”, Proceedings of the 3rd International Symposium for ICS and

SCADA Cyber Security Research 2015, pages 11–19, Jan. 2015.

[10] S. M. Farooq, S. M. Suhail Hussain, and T. S. Ustun, ”Performance Eval-

uation and Analysis of IEC 62351-6 Probabilistic Signature Scheme for

Securing GOOSE Messages”, IEEE Access, Mar. 2019.750

[11] S. Fuloria and R. Anderson, ”The Protection of Substation Communica-

tions”, In SCADA Security Scientic Symposium, 2010.

[12] Eduardo Andrade, ”R-GOOSE-SecLib”, https://github.com/slipz/R-

GOOSE SecLib. (13/12/2020)

[13] Eduardo Andrade, ”RPi-Gateway”, https://github.com/slipz/RPi-755

Gateway. (13/12/2020)

[14] M. Nystrom, ”Identifers and Test Vectors for HMAC-SHA-224, HMAC-

SHA-256, HMAC-SHA-384, and HMAC-SHA-512”, RFC 4231, RFC Edi-

tor, Dec. 2005.

[15] J. Aumasson and M. O. Saarinen, ”The BLAKE2 Cryptographic Hash and760

Message Authentication Code (MAC)”, RFC 7693, RFC Editor, Nov. 2015.

[16] National Institute Of Standards and Technology, ”NIST Special Publi-

cation 800-38D Computer Security - Recommendation for Block Cipher

Modes of Operation: Galois/Counter Mode (GCM) and GMAC”, NIST,

Gaithersburg, MD 20899-8930, 2007.765

[17] MZ Automation, ”Oficial repository for libIEC61850, the open-

source library for the IEC61850 protocols”, github.com/mz-

automation/libiec61850. (13/12/2020)

[18] M. A. Elgenedy, A. M. Massoud and S. Ahmed, ”Smart grid self-healing:

Functions, Applications, and Developments”, 2015 First Workshop on770

Smart Grid and Renewable Energy (SGRE), Mar. 2015, Doha, Qatar.

37



[19] A. Aleixo, J. Cabaça, P. M. Neves, R. Dias Jorge, R. Dias Paulo and

A. Rodrigues, ”Smart Grid protection and automation enabled by IEC

61850 communications over 5G Networks”, 25th International Conference

on Electricity Distribution, Jun. 2019, Madrid, Spain.775

[20] International Electrotechnical Commission, ”Communication networks and

systems for power utility automation – part 90-5: use of IEC 61850 to

transmit synchrophasor information according to IEEE C37.118”, Standard

IEC TR 61850 90-5, 2012.

[21] International Electrotechnical Commission, ”Power systems management780

and associated information exchange - Data and communications security

- Part 6: Security for IEC 61850”, Draft for Standard IEC 62351-6, 2020.

[22] D. M. Saraiva, D. Corujo and R. L. Aguiar, ”IEC 61850 Data Transfer Eval-

uation over Public Networks”, 22nd International Symposium on Wireless

Personal Multimedia Communications (WPMC), Nov. 2019, Lisbon, Por-785

tugal.

[23] R. Khan, K. Mclaughlin, D. Laverty and S. Sezer, ”Design and Implemen-

tation of Security Gateway for Synchrophasor Based Real-Time Control

and Monitoring in Smart Grid”, IEEE Access, 2017(5):11626-11644, 2017

[24] Free Software Foundation (2001), ”Man Page of brctl”, Avail-790

able at https://manpages.debian.org/testing/bridge-utils/brctl.8.en.html

(17/11/2020)

[25] DAST and NLANR, ”iPerf3”, Available at https://iperf.fr (19/11/2020)

[26] K. Curtis, ”A DNP3 Protocol Primer (Revi-

sion A)”, DNP3 Users Group, Calgary, Canada795

(https://www.dnp.org/Portals/0/AboutUs/DNP3%20Primer%20Rev%20A.pdf)

(last visited: 27/11/2020)

38



[27] S. M. S. Hussain, S. M. Farooq and T. S. Ustun, ”Analysis and imple-

mentation of message authentication code (MAC) algorithms for GOOSE

message security”, IEEE Access, vol. 7, pp. 80980-80984, 2019800

[28] S. M. S. Hussain, S. M. Farooq and T. S. Ustun, ”A method for achieving

confidentiality and integrity in IEC 61850 GOOSE messages”, IEEE Trans.

Power Del., vol. 35, no. 5, pp. 2565-2567, 2020

[29] T. S. Ustun, S. M. Farooq and S. M. S. Hussain, ”A Novel Approach for

Mitigation of Replay and Masquerade Attacks in Smartgrids Using IEC805

61850 Standard”, IEEE Access, vol. 7, pp. 156044-156053, 2019

[30] T. S. Ustun, S. M. Farooq and S. M. S. Hussain, ”Implementing Secure

Routable GOOSE and SV Messages Based on IEC 61850-90-5”, IEEE Ac-

cess, vol. 8, pp. 26162-26171, 2020

[31] M. Rodŕıguez, J. Lázaro, U. Bidarte, J. Jiménez and A. Astarloa, ”A Fixed-810

Latency Architecture to Secure GOOSE and Sampled Value Messages in

Substation Systems”, IEEE Access, vol. 9, pp. 51646-51658, 2021

[32] D. Ishchenko and R. Nuqui, “Secure communication of intelligent electronic

devices in digital substations”, 2018 IEEE/PES Transmission and Distri-

bution Conference and Exposition (T&D). IEEE, Apr. 2018.815

[33] N. Kush, M. Branagan, E. Foo, and E. Ahmed, ”Poisoned GOOSE : ex-

ploiting the GOOSE protocol”, Conferences in Research and Practice in

Information Technology Series, 149, 01 2014.

[34] J. Hoyos, M. Dehus, and T. X. Brown, ”Exploiting the GOOSE protocol: A

practical attack on cyber-infrastructure”, 2012 IEEE Globecom Workshops,820

pages 1508–1513, Dec 2012.

[35] J. G. Wright and S. D. Wolthusen, “Stealthy injection attacks against

IEC61850’s GOOSE messaging service”, 2018 IEEE PES Innovative Smart

Grid Technologies Conference Europe (ISGT-Europe). IEEE, Oct. 2018.

39



[36] R. P. Gupta, “Substation automation using iec 61850 standard”, Fifteenth825

National Power Systems Conference (NPSC), IIT Bombay, Dec. 2008.

[37] A. Apostolov, ”R-GOOSE: what it is and its application in distribution au-

tomation”, CIRED - Open Access Proceedings Journal, 2017(1):1438–1441,

2017.

40


	Introduction
	Paper Motivation
	Paper Contributions
	Paper Organization

	Background Knowledge
	R-GOOSE
	Standards
	IEC 61850
	IEC 62351


	Related Work
	Security and Performance Requirements Analysis
	Proposed Solution and Implementation
	Security Library
	Bridging Device

	Evaluation
	Evaluation Strategy
	Evaluation Results from lab testbed
	Evaluation Results from real IEDs testbed

	Conclusions and Future Work

