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Abstract. The multitude of applications and security configurations of
mobile devices requires automated approaches for effective user privacy
protection. Current permission managers, the core mechanism for pri-
vacy protection in smartphones, have shown to be ineffective by failing
to account for privacy’s contextual dependency and personal preferences
within context. In this paper we focus on the relation between privacy
decisions (e.g. grant or deny a permission request) and their surrounding
context, through an analysis of a real world dataset obtained in cam-
paigns with 93 users. We leverage such findings and the collected data to
develop methods for automated, personalized and context-aware privacy
protection, so as to predict users’ preferences with respect to permission
requests. Our analysis reveals that while contextual features have some
relevance in privacy decisions, the increase in prediction performance of
using such features is minimal, since two features alone are capable of
capturing a relevant effect of context changes, namely the category of
the requesting application and the requested permission. Our methods
for prediction of privacy preferences achieved an F1 score of 0.88, while
reducing the number of privacy violations by 28% when compared to the
standard Android permission manager.
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1 Introduction

In the current age of information, the rich and pervasive data collection sparks
new applications (apps) that foster advances in our society. In this context,
smart and mobile devices are of paramount importance due to their inherent
sensory capacity. However, this data exchange often weights on the privacy of
each individual, whose practiced trade-off is not often perceived or understood.

To empower users with control over their privacy, smartphones have im-
plemented permission managers (PMs) that control, with user oversight, which
resources, such as sensors and data, can be accessed by each application. Un-
der the runtime permission system, the current mechanism employed in both
Android and iOS, apps must require user permission the first time they require
access to a sensitive resource. When presented with the prompt request, the user
may either deny or allow the request for this single time, which will enforce the
app to request the next time it needs the same access, or allow indefinitely, an
option that can then be changed in the settings of the phone.

The runtime permission system has been positively received by users, who re-
port being more in control over their privacy [3,5]. Its biggest drawback however,
lies on the amount of permissions that are allowed without user intervention or
even awareness. Specifically, after allowing a permission, the app can generally
access the resource at any time and for any purpose even when the user is un-
aware that the app is running. In this case, the user may deny the permission
by going to the phone settings, a practice that is seldomly used [3].

Automatically allowing permissions stems from the necessity to increase us-
ability as apps make hundreds of permission checks per day [2,13]. Asking on ev-
ery use would be the best theoretical privacy choice, but constant warnings lead
users to fatigue and habituation [7], a state where individuals become desensi-
tized and therefore promptly dismiss notices. Undesirably, current PMs automate
permission requests without regard for the context, thus violating contextual in-
tegrity, that is, incurring in data collection practices that defy the norms and
expectations at the given surrounding context [14]. Therefore, the current trade-
off between privacy and usability bestowed by the Android PM is insufficient,
and in fact, it results in a violation of privacy in 15% of times [13]

In a previous work we have collected and analyzed the expectation of users
regarding permission decisions within their surrounding context [13]. Our re-
sults showed that the grant result, that is whether the user allows or denies a
permission, sees the strongest correlation with user expectation [13]. Moreover,
both user expectation and grant result varied with changes in the context. In
this paper we analyze this dynamic by measuring the importance of the context
in privacy decisions using the same dataset. We then leverage such relation to
develop an automated, personalized and context-aware permission model. This
paper makes the following contributions:

– We empirically uncover an intrinsic relation between the pair category of
the requesting app – requested permission, and user context. This relation
advents from the fact that different apps are used under different contexts,
therefore conditioning the permission requests that are prompted to the user.
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– We develop a personalized automated PM for prediction of privacy decisions
by taking into consideration the expectation, user and phone context, thus
achieving a ROC AUC of 0.96 and an F1 score of 0.92. Without user expec-
tation, which is the strongest correlated feature with privacy decisions but
requires user input which we seek to minimize [13], we achieve a ROC AUC
of 0.9 and an F1 score of 0.88.

– Finally, our automated solution is able to reduce the number of privacy
violations by 60% when compared to a standard Android handset. Without
using the expectation as input feature for the prediction, these violations
can still be reduced by 28%.

The remainder of this paper is structured as follows. Section 2 contextualizes
the problem by providing related work. Section 3 presents the dataset used in this
work and an exploratory data analysis to uncover the relation between privacy
decisions and surrounding context. In Section 4 we leverage such relation to train
personalized and context-aware models to predict privacy decisions. Section 5
presents some limitations and future work and Section 6 concludes this work.

2 Related Work

With runtime permissions, apps must request permission the first time they
require access to a sensitive resource, thus allowing a fine-grained control over
each particular permission for any app [5]. By prompting at runtime, permission
requests are contextualized by the need of the app at the time of the prompt,
therefore helping users to make an informed decision [3, 5].

The major problem with the current runtime permission model lies not in the
permission prompts, but in the resource accesses that are made without the user
knowledge [2, 22, 23]. After being granted once, apps generally have access to a
resource until the user denies it through phone settings, which they typically do
not [3] or, in newer Android versions (from Android 11) until it is automatically
reverted to the denied state after a few months of not using the app.

The automated management of privacy decisions is made necessary by the
number of sensitive resource accesses that apps make – hundreds per day [13]. In
fact, users feel their personal space violated when confronted with apps’ intrusive
practices [2,19]. Regrettably, the automated approach taken in Android runtime
PMs incurs in the violation of privacy in over 15% of times [13], meaning it still
fails to effectively protect users [5, 18].

The design of automated approaches must consider privacy’s characteristics,
namely, varying individual preferences within each surrounding context [1], i.e.
be personalized and context-aware. In this regard, complex contextual mod-
elling techniques have been proposed for policy-based PMs. However, these re-
quire expertise to setup that the average user does not have [7,8,18] Therefore,
approaches that streamline context modelling to the simple use of contextual
features in the prediction have the advantage to facilitate the automation and
therefore improve usability. This type of features can describe the state of the
phone [24,25] and the state of the user [15].
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To capture personalized privacy preferences, one can naively build a predic-
tion model for each user by training with their responses to permission requests.
However, this requires a considerable amount of user input [15]. A better ap-
proach is to have a classifier boostrapped with data from multiple people and
then personalize it iteratively as the user answers a few more requests [24]. Nev-
ertheless, if one starts considering more features for the prediction model, the
number of permission requests required from the user, i.e. input, exponentially
grows.

A different approach towards personalized privacy is to build and assign
privacy profiles, that is, a set of predefined rules that are defined according
to user preferences [9, 12]. This line of work showed that while people’s privacy
preferences are diverse, a small number of privacy profiles can effectively capture
the vast majority of users’ preferences [12]. Furthermore, these profiles can be
assigned through a small number of questions, therefore reducing the amount of
required input from users [11].

Our work builds up on previous approaches towards automated privacy en-
forcement by considering the personalization that is granted by privacy profiles
and contextual features to develop an automated, personalized and context-
aware PM. However, we differentiate ourselves by considering and evaluating the
impact of contextual features and user expectation. By doing so, we depart from
the traditional privacy profiles that are built with only the category of requesting
app and the requested permission [12], to incorporate context-awareness in the
personalization. Towards this goal we analyze a dataset of permission decisions
from 93 real users collected in-situ with a particular focus on the relation between
privacy decisions and their surrounding context. We then leverage these relations
in the development of methods to automatically predict privacy decisions. Fi-
nally, we compare the best achieved performance with the default Android PM
with respect to the amount of privacy violations, that is, the number of requests
that were automatically allowed, but that would have been denied if the user
had the opportunity to do so.

3 Permission Decisions in Context

To improve the effectiveness of PMs in protecting user privacy, automation is
paramount, which must account for personal preferences within each surrounding
context [1]. In this work we first analyze privacy’s contextual dependence by
evaluating which features are actually relevant towards privacy decisions. We
then leverage such relations to build automated, personalized and context-aware
models that predict privacy decisions. Towards both goals, we used the COP-
MODE dataset [13] whose description we provide in Section 3.1. Section 3.2
provides an exploratory data analysis and respective comparison with existing
works. Section 4 then describes the development of the predictive models.

3.1 The Dataset
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The COP-MODE dataset [13] is a collection of over 65000 permission decisions
and the surrounding context collected under real world conditions. This data was
obtained in a set of campaigns spawning from July 2020 up to May 2021 with a
total of 93 volunteers. Each campaign consisted of a period of at least one week,
where participants would carry a phone, pre-installed with a PM that prompts
for user input at every permission check. This PM would collect the input and
contextual features at the time of the prompt. While the dataset contains more
data [13], we focus on the following fields that are of relevance to this work:

– Requesting Application: name, app category from the Play Store and visi-
bility at the time of the request. An app is in the foreground if it either has
an activity visible to the user or a service with a foreground notification.

– Permission: name and group of the requested permission and user response.
– Phone state: plug and call states, and network connection type.
– User context: current time, semantic location and whether the user is in an

event or not, as returned by their calendar. The semantic location was col-
lected from user input, whose possibilities were “home”, “work”, “travelling”
or “other”.

– Expectation: the participant has to answer the question (translated from
Portuguese) “For what you were doing with the phone, is this request ex-
pected?” with: yes, no or do not know.

We should note that the dataset is biased towards young adults with technical
expertise [13]. Therefore, the phone usage and privacy preferences might differ
from a more diverse population. However, the methodology towards building
predictive models and the achieved performances from Section 4 should apply
and endure in general.

3.2 Exploratory Analysis

The dataset contains 2180302 permission requests collected from the 93 par-
ticipants at an average of 836.85 requests per day and per participant with a
standard deviation (std) of 19.15, or 34.87 (std = 0.8) per hour. These numbers
prove that an ask-on-every-time approach, the ideal privacy choice, is infeasible
in practice. Of the total requests, 65261 (2.99%) were answered by participants,
corresponding to an average of 25 (std = 0.42) answers per day, per participant.

From the 65261 answered requests, participants granted 43263 (66%), while
denying the remaining 21998 (33%). To have a holistic view on which permis-
sions are allowed, Figure 6 presents the average grant rate, i.e. the percentage
of allowed permissions, per category (y axis) and per permission (x axis), where
dark green corresponds to all permissions allowed and dark red to all permissions
denied. From the plot we can observe that the majority of categories have grant
rates in the interval of [45, 75]%. However some categories present grant rates of
over 80% or closer to 0%, but the number of requests from these type of apps
is rather small. The exceptions to this observation with a considerable number
of requests are the WEATHER category, where 93% of the 370 requests were
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Fig. 1: Grant rate for each permission and whether the requesting app was fore-
ground (visible) or background. The “N” is the number of requests per permis-
sion and “FR” the foreground ratio, that is, the percentage of requests that came
from apps that were visible to the user at the time of the request.

granted, and GAME (730) and VIDEO PLAYERS (2413) where almost 80% of
requests were denied. It is possible that these latter categories see most of their
requests denied because the permissions are not necessary for their primary func-
tionality, which typically leads users towards denying [5]. For instance, some of
the requested permissions from apps in the GAME category, such as PHONE,
MICROPHONE and CONTACTS are not intuitive with respect to the func-
tionality of this type of apps. As for the grant rate per permission group, the
rate is near the interval of [45, 85]%. CAMERA, STORAGE and CALENDAR
permissions are granted over 80% of the time, which might indicate that when
apps request these permissions, there are contextual cues or a clear necessity
that lead users to allow.

To assess the importance of each feature in the grant rate we measured the
information gain of each feature, whose values we leave in Table 2 of Appendix B.
The strongest gain advents from user expectation (wasRequestExpected), as an-
alyzed in a previous paper [13]. However, this particular feature requires user
input, which we seek to minimize. Unfortunately, we were not able to estimate
user expectations with enough accuracy to be then able to use such feature in
the prediction of privacy decisions. Thus, we focus on other features towards
developing the personalized and context-aware PM. After the expectation, the
most important features according to the information gain are some permissions
and app categories, the visibility of the requesting app (isRequestingAppVisi-
ble), the location of the user (selectedSemanticLoc) and the network status. The
following subsections analyze the grant result with respect to each of these latter
three contextual features.

Visibility of the Requesting Application Previous work [23] has iden-
tified the visibility of the requesting app as one of the most important con-
textual feature guiding permission decisions. Follow up work from the same au-
thors [20,24] focused on this feature towards predicting the grant result. However,
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contrary to their conclusions, their feature analysis revealed that the visibility
of the app was the feature with the lowest information gain, as can be seen in
Appendices A and B of [24]. In our dataset the information gain is almost 8 times
higher (c.f. Table 2). However, from the 65261 answered requests, users allowed
68% of requests coming from visible apps and 62% of requests from background
apps. This discrepancy is lower than anticipated, which signals that the visibility
of the requesting app as a single feature has a low impact in the grant result.

While the overall grant rate between foreground and background requests
varies little, this rate can strongly depend on the pairs visibility-category of the
requesting app and visibility-requested permission. Due to space constraints we
omit the grant rate per visibility and per category, and present only the grant rate
for each permission and each visibility of the requesting app in Figure 1. From
this plot we observe that CONTACTS, CALL LOG and LOCATION requests
are allowed equally regardless of the visibility, while STORAGE, SMS, MICRO-
PHONE, CAMERA and CALENDAR are more often allowed when requested
from the foreground than from the background. Finally, the PHONE permis-
sion is the only permission that is more often allowed from the background. We
have have no justification for this latter result as a limitation of the dataset is
not collecting the reasoning for some privacy choices [13]. Nevertheless, we can
conclude that while the visibility of the requesting app alone has low impact
on the privacy decision, which contrasts with previous findings [23], the combi-
nation with other features such as the permission and category might improve
prediction performance. We further examine this correlation in Section 4.

User Location and Network Status According to Table 2, the mutual in-
formation gain between the grant result and the user location is high. Looking at
the grant rate, users allowed 65% of requests while at home, 85% while travelling,
74% while at work and 57% in other locations. This variance is relevant, specially
for when the user is travelling, where they accept almost 9 out of 10 requests.
There are two main reasons for the observed variances in the grant rate for each
location: privacy preferences vary with the user location [1]; and the app usage
also varies with each location, as analyzed next. Other factors can contribute
to the discrepancies, such as lack of time to thoughtfully answer prompts when
travelling or working, potentially leading users to allow everything. However,
these are situational and would require more data to empirically evaluate.

As shown in Figure 6, different app categories have varied grant rates. There-
fore, if different apps are used in different locations, it is expected that the grant
rate also varies implicitly. Figure 2a presents the relative app usage in percentage
given by the apps in the foreground, per semantic location. The relative usage is
made per location, such that a fair comparison between locations is achieved, as
the dataset is strongly skewed towards the home location. From the plot we can
observe that COMMUNICATION, SOCIAL and TOOLS are the most used apps
regardless of the location. Additionally, we can clearly see that there are some
trends in the type of app usage and the location of the user. Specifically, SO-
CIAL and VIDEO PLAYERS apps seem to be predominantly more used at home
than in other locations. TRAVEL AND LOCAL, PHOTOGRAPHY, PERSON-
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Fig. 2: Relative app usage as measured by the relative number of requests in
where app from each category were in the foreground. Values inferior to 0.1%
were removed from the plot to simplify visualization.

ALIZATION and MUSIC AND AUDIO are more used when travelling, which is
expected except for the PERSONALIZATION category, while TOOLS are less
used when travelling when compared to the other locations, which is also intu-
itive. Finally, both MAPS AND NAVIGATION and LIFESTYLE see a stronger
usage when travelling. However, the use of this type of apps was strongly im-
pacted by the COVID19 mobility restrictions, thus presenting a small overall
usage. To conclude, the correlation between the location and the grant result
can be explained not only because of personal preferences in each location but
also due to the types of apps that are used in each context, which, as we have
seen in Figure 6, can have diverging grant rates.

Similar conclusions can be made for the network status. From the answered
permission requests, 1856 (2%) were captured while the phone was disconnected,
20591 (20%) while connected to a metered network and 80084 (78%) while con-
nected to a non metered network. These numbers indicate that most people
are continuously connected to the Internet, although some impact of COVID19
travel restricts can influence this result. The user allows 77% of permission when
using a metered network, 64% when using a non-metered network and only 47%
when offline. Again, this correlation with the grant result is relevant, as also
highlighted by the information gain from Table 2. However, and similarly to
user location, the network status is an indication of the context of the user,
which in turn influences the apps that are used.

Figure 2b presents the relative app usage per category given by apps in
the foreground for each of the network status. We can observe that TOOLS and
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Count Location Count (%) Grant Rate (%)
Location Network Status

Home DISCONNECTED 923 1.69 41.93
METERED 6600 12.11 74.71
NOT METERED 46997 86.20 63.61

Other DISCONNECTED 129 5.81 51.16
METERED 1273 57.34 59.15
NOT METERED 818 36.85 55.87

Travelling DISCONNECTED 128 3.12 68.75
METERED 3423 83.39 85.83
NOT METERED 554 13.50 83.57

Work DISCONNECTED 126 2.85 59.52
METERED 2433 55.10 81.38
NOT METERED 1857 42.05 66.34

Table 1: Number, relative count and grant rate of permission requests per seman-
tic location and network status. The grant rate is the percentage of permissions
allowed for each pair of location–network status.

PRODUCTIVITY apps are mostly used while offline, while COMMUNICATION
and SOCIAL are mostly used online, which is expected. PHOTOGRAPHY,
PERSONALIZATION, MUSIC AND AUDIO and MAPS AND NAVIGATION
are mostly used in a metered connection, which as we have seen from Figure 2a,
are typically used when travelling. From these observations we conclude that user
context, which is partially described by their location and the network status,
influences the app usage and therefore the apps that request permissions at
these times. In other words, the category of the requested app and the required
permission encapsulate contextual information that, while potentially insufficient
to describe user context, give clues about the state of the user.

It should be noted that either location, network status or even both are
insufficient to effectively describe the variance in the grant rate. For instance,
within a single location, the grant rate varies for each network status and vice-
versa. Table 1 presents these values for each pair of location-network status.
The first observable result from this table is that the location of the user and
the network status are strongly correlated. Looking at the “Location Count
(%)”: when the user is at home, unmetered connections are used over 86% of
times; when travelling, metered connections are used 83% of times. At work and
other locations, the connection status is more balanced between metered and
unmetered connections. However, these latter ratios might vary greatly with each
individual. Finally, while some previously mentioned trends endure, the grant
rate strongly varies for each pair of location-network status. For instance, the
highest and lowest grant rate in any location is when the user is using metered
connections and disconnected, respectively. However, under metered networks
for instance, if the user is travelling, over 86% of requests are allowed, but if the
user is at a location other than the specified three, the grant rate lowers to 59%.
These observations allow us to conclude that while location and network status
are related, both give contextual cues, even if in the form of the apps that are
used in such contexts.
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Comparison of the Analysis with Previous Work Earlier studies eval-
uated the degree of user comfort regarding apps’ intrusive data collecting prac-
tices [2, 4, 19], which included confronting users with the frequency of access to
sensitive resources, relating to the number of permission requests in our work.
Many of these results however, were conducted under the older install-time PM.

The runtime PM brought fine-grained permissions and in-context prompts,
therefore being positively received by users, who reported being more in control
of their privacy [3, 5]. However, these studies only evaluated the permission de-
cisions made at the permission prompts. Regrettably, after being granted once,
apps generally have access to a resource until the user denies it through phone
settings. The context and the purpose of these automatically granted permissions
can greatly vary from the ones at which they were first requested.

Closely related is the work of Wijesekera et al. [23, 24] that evaluates the
importance of both contextual and behavioral features on permission decisions.
While they use a subset of the current Android permissions, some of the findings
coincide and others contrast. Particularly, the percentage of denied permissions
and the number of privacy violations are similar, while in opposition, the visibil-
ity of the requesting app had low impact in privacy decisions with our dataset.
However, contrary to our data collection, their data relates to reported behav-
ior collected after the data practice, which might not align with real behavior.
In turn, our data collection tool was also a PM that actually denied apps per-
missions, and thus incurred in the corresponding usability loss. Furthermore,
in addition to analyzing contextual features under the information gain or their
contribution to the performance of the classifier [15,23,24], we expand such anal-
ysis by exploring the intrinsic relation between different contextual features. As
a result, we uncover a relation between the permission prompts that are issued
to the user and their context.

4 Predicting Privacy Decisions

The previous section evidenced how privacy decisions vary with changes in the
context, and how features and their correlation can discriminate the grant re-
sult. In this section, we leverage these relations towards developing and auto-
mated, personalized and context-aware PM that predicts these decisions. For
fair comparison, we follow a similar methodology to previous works. Specifically,
we consider machine learning approaches to automate privacy decisions, while
combining privacy profiles [11], context-awareness [15,25] and user expectation.

To train the classifier for grant result prediction we perform one-hot encoding
of the categorical features, such as the requesting app category, and normalize
all collected data. We then start by analyzing the performance of a global pre-
dictor in Section 4.1 which uses the input features to output the decision to allow
or deny a request, while treating each user equally, i.e. without personalization.
This evaluation is performed by first selecting the best predictor (model) and
respective parameters through a cross-validated grid-search, followed by an eval-
uation of the best feature set to use in the prediction. We resort to the F1 score
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metric to compare the performance with previous works and to the Area Under
the Receiving Operation Curve (ROC AUC) as performance indicator, as the
F1 score presented some misleading results as detailed in the referred section.
The global predictor is then used as baseline comparison to the personalized
predictors in Section 4.2 where we resort to the use of the privacy profiles as
an additional feature in the prediction, for personalization. However, one can
consider different feature sets for the creation of profiles and for predicting of
the grant result with the profiles. Therefore, to evaluate the combination that
leads to the best performance, Section 4.2 presents the results for all considered
combinations of feature sets for the creation of the profiles and all considered
feature sets for the prediction. All considered feature sets were based on their
importance in the grant result as measured by the information gain from Ta-
ble 2 and from the analysis in the previous section. Finally, Section 4.2 further
presents the privacy violations incurred by the best predictors, while contrasting
them with the violation rate achieved by the Android PM with our dataset.

4.1 Global Prediction

Since there is no a priori best classifier to predict privacy decisions, we experi-
mented using a grid-search with models from the literature. Specifically, Support
Vector Machines (SVM) with linear [11,15,25] and Radial Basis Function (RBF)
kernels, decision trees [15], bagging, ada boosting, random forest and a neural
network. Although the results for each model were similar, we picked the best
performance: ada boost with approximate ROC AUC of 0.827 and F1 score of
0.808. These results were achieved using 100 decision trees with a max depth
of 1 as base classifiers and with a learning rate of 0.5, which we use for the
remainder of the experiments. We also focus on the ROC AUC, as the F1 score
was misleading. Specifically, using the mode prediction model resulted in an F1
score of 0.8 (close to the best performance) but in a ROC AUC of 0.5, which is
the same value as a random classifier would achieve.

A 5-fold cross-validated feature forward selection by the ROC AUC selects
the expectation as the most important feature, followed by some permissions and
categories. The visibility of the requesting app is selected as the seventh most
important feature. However, the visibility is highly correlated with the expecta-
tion, as previously discussed, and thus, this cumulative forward approach fails
to account for individual feature importance. To better evaluate the importance
of features, we have considered some feature set variants based on the analy-
sis provided in Section 3.2 and cross-validated the performance of the classifier
with each variant. Figure 3 presents the obtained performances, in where it is
clear that the expectation is the most relevant feature. In fact, just using the
expectation results in an F1 score and ROC AUC of over 0.8. Adding the cate-
gory and permission to the expectation, leads to the best ROC AUC (≈ 0.831),
even slightly better than when using all features. Contextual features such as
the [V]isibility, [L]ocation and [N]etwork status added very little or nothing to
the category and permission (CP), as can be seen from the similarity of scores
between using CP or any combination of V, L and N with CP. These results
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Fig. 3: 5-fold cross-validated performance of the ada boost classifier on the dif-
ferent considered dataset variants. Each variant is a combination of the follow-
ing features, which are identified by their first letter: [E]xpectation, [C]ategory
and [V]isibility of the requesting app, [P]ermission requested, [L]ocation, and
[N]etwork status. “All” corresponds to using all features available in the dataset
and “All - E” is all features except the expectation.

indicate a general lack of importance of the considered contextual features in
the performance of the classifier. However, we believe that at least in part, this
is due to the fact that the category of the requesting app and requested permis-
sion already encode part of the context as discussed in Section 3.2. Therefore,
the additional information gain added by the contextual features is either not
sufficient, or the classifier fails to account for it. Regardless, a ROC AUC of over
0.8 is already a good performance for a classifier that treats all users equally,
that is, it fails to account for privacy’s personal preferences. The next section
enhances this approach by providing context-aware personalization.

4.2 Personalized Prediction

Traditionally, privacy profiles are build by applying hierarchical clustering to
users [10, 11], where each user is represented as a tensor where each cell is the
tendency to allow or deny requests for a particular pair of category-permission
(CP). However, our dataset contains additional features that capture the similar-
ity between user behavior in a more fine-grained way. Specifically, instead of just
using the pairs of CP, we can additionally consider the [E]xpectation or other
contextual features such as the user [L]ocation, the [V]isibility of the requesting
app and the [N]etwork status to form context-aware privacy profiles. Towards
this end we consider the following feature variants for clustering: CP, CPV, CPE,
CPL, CPN, CPVLN and CPEVLN. Furthermore, regardless of how the profiles
are formed, we can use any combination of features in the prediction alongside
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Fig. 4: 5-fold cross-validated performance with privacy profiles built with dif-
ferent feature sets, or no privacy profiles (“NoProfiles”), followed by prediction
with several other feature sets. The number of profiles was varied from 1 to 9 and
only the best result is displayed for each combination of inputs. Each feature set
is identified by the combination of the following features identified by their first
capitalized letter: [C]ategory, [P]ermission, [E]xpectation, [V]isibility, [L]ocation,
and [N]etwork status. “All” and “All - E” corresponds respectively to using all
features and all features except user expectation.

the profiles. Therefore, we performed all combinations of clustering with the fea-
ture variants displayed above, with the same feature variants in the predictions
plus “All” features and all features except the expectation (“All-E”). For each
combination of profiling and prediction, the number of profiles was varied from
1 to 9 and only the best results are displayed.

Figure 4 presents the obtained results, where the first observation is that
any profiling with any prediction approach outperforms not using profiles, thus
confirming previous findings that personalization improves performance [11,24].
Secondly, the best overall results are achieved by profiling only with CP. This
is partially due to the fact that using more features in the profiling increases
the amount of missing data that needs to be inputed, therefore potentially bi-
asing the data. Nevertheless, profiling with CPE followed by prediction with
all features achieves a ROC AUC of 0.956 or prediction with CPE achieves a
ROC AUC of 0.957, where this latter is the best performance. Similar results are
achieved by profiling with CP and predicting only with CPE, a ROC AUC of
0.955, approximately. The advantage of this second best result is that less data is
required, specially for assigning the privacy profiles, a step that requires asking
questions to the user and therefore, should be minimized [11]. Finally, without
the expectation, the best performance is achieved by clustering and predicting
with CP, a ROC AUC of approximately 0.9.

The previous results are comparable to the state of the art [11], whose re-
ported F1 score was 0.900 with profiles built with the tuples <category, per-
mission, purpose>. Our best F1 score is approximately 0.924, achieved through
profiling and predicting with CPE, that is, with the expectation instead of the
purpose. Without the expectation, our best F1 score is approximately 0.88, with
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profiles using only the pair category-permission and predicting with the category,
permission, visibility, semantic location and network status (CPVLN). However,
because the datasets are different, we cannot say that taking into considera-
tion the expectation results in a better performance than using the purpose. A
natural departure from this work is to combine both features.

An interesting, yet unexpected result that is also observable from Figure 4 is
the rather low impact of the contextual features in the prediction. Specifically, if
the expectation is not considered, using just the category and permission often
results in the best performance.This is partially explained by the correlation
between the context of the user and the pair category-permission, as discussed
in Section 3.2. However, we were expecting a stronger influence, particularly the
visibility of the requesting app, which has been found to have a strong influence
in privacy decisions [23]. The reason for the low impact of the visibility of the
requesting app is that users allow 68.24% of visible requests and 61.87% of
background requests, as aforementioned. This difference might be irrelevant to
the classifier. A potential reason for the low impact of the location is the fact that
83.54% of requests were with users at home, owed to COVID19 travel restrictions
that were in place at the time of the campaigns [13]. Due to this skewness, the
importance of the location might be mis-measured. Therefore, we repeated the
previous methodology while subsampling the home requests to equal the number
of work requests. The results with the subsampled data, whose plots we omit due
to space constraints, showed that without profiling, the location feature slightly
increased the performance, but with profiling the results were similar to the
ones obtained in Figure 4. It is possible that these contextual features, specially
the visibility, have a varying importance depending on the user as some users
allow/deny everything regardless of any feature, while others are more selective.
However, profiling with these features either failed to capture these personal
preferences or the increase in the missing data deteriorated the results, due to
the increasing amount of missing data. Towards validating the potential bias
introduced by the inputted data, we build privacy profiles using the K-means
clustering algorithm [16,17] instead of hierarchical clustering. The performances
were worse in all cases, and thus, we omit such results.

Finally, we can compare the number of privacy violations that these ap-
proaches incur. Privacy violations are defined as permission requests that the
user explicitly denied, but would otherwise be granted. As previously mentioned,
for the collected dataset, the Android default PM would have violated the pri-
vacy in 15.25% of requests and would have incurred a median of 64 prompts to
the user in a period of approximately a week. A personalized and automated
prediction following the methodology above would require only a few questions
to assign the profile [11] and it would result in 6.18% of privacy violations, a
59.5% reduction on Android PM, as displayed in Figure 5b, where the green bars
present the violation ratio for the best personalized predictors and the dashed
red line is the Android system violation ratio. Without the expectation, the low-
est privacy violation ratio achieved is 11% when predicting with CP, which is
still a reduction of 27.9% when compared to the standard Android PM. Looking
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(b) Profiles using CP.

Fig. 5: 5-fold cross-validated privacy violation ratio of the best performant predic-
tors for the global predictors 5a and the personalized predictors 5b. Each feature
set is identified by the combination of the following features identified by their
first capitalized letter: [C]ategory, [P]ermission, [E]xpectation and [V]isibility,
The ratio of privacy violations that the Android PM would have incurred is
presented as the red dashed horizontal line.

at Figure 5a, it is noteworthy that automated solutions without privacy profiles,
corresponding to the global predictors from Section 4.1, and without expecta-
tion, result in a higher amount of privacy violations than the Android system.

In summary, it is possible to automate privacy decisions with high perfor-
mance, specially when taking into consideration user expectation. Contextual
features seem to have a low impact in the performance of the prediction, which
we mostly attribute to the fact that the pair category-permission already par-
tially encode the context. Furthermore, the achieved prediction model can reduce
the privacy violations in over 50% when compared to the current Android per-
mission system. However, such system requires knowing the expectation of the
user regarding every request, which we were unable to predict with sufficient
accuracy and would therefore require user input, that should optimally be min-
imized. Without the expectation, it is possible to automate privacy decisions,
while reducing the privacy violations by 27.9%. These results indicate that per-
mission systems can still be enhanced, specially by taking the expectation of
users into account.

5 Limitations and Future Work

As referred in Section 3.1, the dataset considered in this work is biased towards
young adults with technical expertise. This occurrence advents from the fact that
the data was collected whilst COVID-19 restrictions were enforced [13], and we
relied on students with on-site classes. We leave for future work to conduct a
campaign with a more diverse population as to better validate our findings.

One of the disadvantages of incorporating the expectation in the automation
of privacy decisions is that it requires input from the user. We attempted to
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predict the expectation following a similar methodology to the one described
for the privacy decision, including profiling. However, the performance was not
high enough to increase the results displayed in Figure 4. This is an indicator
that the expectation can be more personal and dynamic than the respective
privacy decisions. As future work we intend to analyze possible venues towards
improving the prediction of expectations.

An underlying limitation of all automated privacy decision systems, includ-
ing the approach described in this work, lies on the legal basis of such decisions.
Specifically, an automated response to a permission request might not constitute
legal consent. Regulations such as the EU General Data Protection Regulation
(GDPR) mandate express and unambiguous consent from the user before collect-
ing any personal data [21]. Unfortunately, the GDPR does not provide guidelines
for automating privacy decisions. Therefore, further legal discussion will be re-
quired. In the meantime, the personalized prediction of privacy decisions can be
instead offered as recommendations to the user [11], instead of fully automation.
Such approach can mitigate potential challenges of configuring complex privacy
systems, such as the lack of expertise by the average user [18].

Finally, a natural departure of this work would be to assess the feasibil-
ity of assigning the privacy profiles, the performance of the predictions, and
the perceived usability of such PM. Such endeavour requires a new field study.
Moreover, the dependence on user data for clustering users and predicting their
privacy decisions is a drawback of this approach. To address this issue, we have
proposed a clustering mechanism and federated prediction approach [6] with
privacy guarantees.

6 Conclusion

The complexity of mobile devices require automation for the management of
user privacy. However, the current approach, i.e. the runtime permission model,
often violates user privacy, thus failing at protecting the user. The root of this
ineffectiveness advents from the non consideration of contextual dynamism and
personal preferences within each context that are natural factors impacting pri-
vacy decisions. In this paper we analyze a dataset of privacy decisions and their
surrounding context to uncover their intrinsic relation. Our analysis reveals that
the visibility of the requesting app, the location of the user and the network
status are important contextual cues that partially explain the variability of the
grant result, i.e., the user decision to allow or deny a permission. In addition,
we find that the category of the requesting app and the requested permission
moderately encode the context, as the user uses different apps under different
contexts. We then leverage such analysis to train models towards building an
automated, personalized and context-aware permission manager for prediction
of the grant result. Our results show that by taking into account the expectation
of the user, one can reduce the number of privacy violations by over 50% when
compared to the Android permission manager. Without user expectation, it is
still possible to reduce the privacy violations by approximately 28%.
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A Grant Rate

Figure 6 presents the average grant result for each pair of category of the re-
questing app and requested permission.
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Fig. 6: Average grant result for each pair of category-permission. The number in
each cell is the number of requests for the respective pair category-permission
group, and GR is the grant rate for the respective category or permission. Cat-
egories and permissions with less than 10 requests were removed.

B Information Gain

Table 2 presents the information gain for the grant result with each other feature
in the dataset, where categorical features were one-hot encoded.
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Table 2: Information Gain for the grant result with every other feature. Showing
only values greater than 0.

grantResult

wasRequestExpected 0.182551
permission STORAGE 0.018125
category VIDEO PLAYERS 0.016729
category COMMUNICATION 0.013858
permission PHONE 0.013843
selectedSemanticLoc Home 0.011375
networkStatus METERED 0.008086
isRequestingAppVisible 0.007845
networkStatus NOT METERED 0.007624
permission CAMERA 0.006610
permission CONTACTS 0.005629
selectedSemanticLoc Travelling 0.005558
category GAME 0.005136
category TRAVEL AND LOCAL 0.004675
plugState 0.003084
category WEATHER 0.002793
isTopAppRequestingApp 0.002483
category TOOLS 0.002355
category MUSIC AND AUDIO 0.002348
permission LOCATION 0.002234
hour 0.002170
permission CALL LOG 0.001951
category PERSONALIZATION 0.001940
selectedSemanticLoc Work 0.001710
permission SENSORS 0.001467
category BUSINESS 0.001452
category SOCIAL 0.001350
category SPORTS 0.000973
category SHOPPING 0.000963
category HEALTH AND FITNESS 0.000801
isWeekend 0.000623
category MEDICAL 0.000485
callState 0.000389
category LIFESTYLE 0.000265
category ENTERTAINMENT 0.000156
category FOOD AND DRINK 0.000122
networkStatus DISCONNECTED 0.000103
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