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Abstract—Current methods for optimization of low-density
parity-check (LDPC) codes analyze the degree distribution pair
asymptotically as block length approaches infinity. This effec-
tively ignores the discrete nature of the space of valid degree
distribution pairs for LDPC codes of finite block length. While
large codes are likely to conform reasonably well to the infinite
block length analysis, shorter codes have no such guarantee. We
present and analyze an algorithm for completely enumerating
the space of all valid degree distribution pairs for a given block
length, code rate, maximum variable node degree, and maximum
check node degree. We then demonstrate this algorithm on an
example LDPC code of finite block length. Finally, we discuss
how the result of this algorithm can be utilized by discrete
optimization routines to form novel methods for the optimization
of small block length LDPC codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were introduced
by Robert Gallager in the 1960s [1], though not popularized
until rediscovered by MacKay in the 1990s [2], [3], [4].
These codes correct errors in transmitted codewords via belief
propagation [5], [6], a message-passing decoding algorithm
that has been shown to perform very close to the theoretical
Shannon capacity [7], [8], making LDPC codes very powerful
in many applications [9]. Today, their use is widespread and
well-documented. As a result, there have been a number of
methods developed to try to optimize the code construction
process (e.g., [9], [10], [11]).

As we tend towards next generation wireless machine-to-
machine communication, short-packet ultrareliable and low-
latency transmissions become crucial [12]. Most of the meth-
ods developed to date for the optimization of LDPC codes,
consider code design asymptotically as the block length ap-
proaches infinity [9], [13]. Other methods rely on a curve-
fitting approach using EXIT functions that does not explicitly
take block length into account, but relies on large block
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length to attain reliable performance estimates for the EXIT
curves [10]. Even code modification techniques involving
the removal of trapping sets [11], and alternate construction
techniques such as protograph-based constructions [14] rely
on infinite block length analysis to some degree. Although
these optimization methods have yielded positive results for
large codes, they ignore the underlying structure of LDPC code
degree distributions, and carry no guarantees for short block
length code design. There has also been significant work on
short block length LDPC code design (e.g., [15], [16], [17]),
and yet these works have not explored the enumeration of all
possible degree distribution pairs within fixed size constraints
on the codes.

In this paper, we show how to enumerate the finite block
length LDPC code degree distributions explicitly. Section II
defines LDPC codes in terms of bipartite graphs, presents
the constraints a finite block length LDPC code must satisfy
to be considered valid, and introduces the space of degree
distribution pairs over which optimization is performed. Sec-
tion III then describes and analyzes the main result of the
paper, an algorithm that generates all possible valid degree
distribution pairs for a given block length, code rate, and
maximum variable and check node degrees. We visualize the
space for one particular example in Section IV, then discuss
the potential this enumeration has for affecting the way LDPC
code optimization is performed at finite block lengths, before
concluding in Section V.

II. BACKGROUND

First we include a brief note about notation used throughout
the paper. If x is a vector, we denote the ith element of = by
z;. To denote the sth through jth elements of x, we write x;.;.
If j is not written explicitly in this notation (i.e. x;.), we mean
all elements of = from the 7th one to the end of the vector.

LDPC codes are commonly described using bipartite Tanner
graphs [18]. In these graphs, one set of nodes, called the
variable nodes, represents the codeword, while the other set
of nodes, called the check nodes, represents the parity-check
constraints. A block of n bits is a codeword if for each check
node, the mod-2 sum over all adjacent variable nodes is zero.
A distribution on the variable nodes, denoted by J, is defined
to be a vector of length equal to the maximum variable node



Fig. 1. An example of the type of bipartite graph commonly used to describe
LDPC codes. The variable nodes are on the left and the check nodes are on
the right. The variable nodes correspond to bits in the received message, and
have maximum degree 3. Notice that 6 of the 15 total edges (blue, dashed) are
connected to variable nodes of degree 2, while the other 9 of the 15 (black,

solid) are connected to variable nodes of degree 3. So, A = (0, 155 %)T for

this LDPC code. All 15 edges are connected to check nodes of degree 5, so

p=(0,0,0,0,:2)".

degree, where the ith component of A is the proportion of
edges connected to variable nodes of degree . A distribution
on the check nodes is defined analogously and is denoted by
p. A tuple containing A and p is commonly referred to as a
degree distribution pair. See Fig. 1 for an example.

An LDPC code can be completely determined by its parity-
check matrix. However, these matrices can be large, and
slight variations in matrices usually do not yield significant
differences in code performance. Thus, working with an LDPC
code ensemble or family, the collection of codes with the same
degree distribution pair, is more common than working with
specific code realizations.

Let d, be the maximum variable node degree, d. be the
maximum check node degree, n be the block length of the
code, n. be the number of edges present in the bipartite graph,
and m = n(1—r), where r is the rate of the code. For a degree
distribution pair to be valid, it must adhere to the following:
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For the purposes of this paper, we require \; = p; = 0 to
ensure there are no nodes of degree 1. We recognize that
degree 1 nodes can sometimes be acceptable, but care must
be taken in constructing the code in that case so as to avoid
hindering the decoding process [6].

Most methods for optimizing LDPC codes search the space
of valid degree distribution pairs for the pair that achieves
performance closest to the theoretical Shannon capacity. How-
ever, as mentioned in the introduction, this optimization is
performed asymptotically as block length approaches infinity.

This allows the range of potential values for the fractions on
the right-hand side of the constraints in (2) to become ef-
fectively continuous. At finite block lengths, those constraints
have the effect of discretizing the space of valid LDPC code
degree distributions, and the discretized space is progressively
more sparse as the block length decreases. Thus, the degree
distribution pairs produced by common optimization methods
are not, rigorously speaking, likely to be in the space of
valid degree distribution pairs for finite block lengths. For
small codes, many of the assumptions made in infinite block
length LDPC code optimization are much farther from the
truth than for large codes. Furthermore, smaller codes require
more “rounding” with the degree distributions to find a valid
code than do larger codes. It is also worth mentioning here
that asymptotic optimization assumes there are no cycles in
the graph, which are well known to hinder performance [11].
Though there are methods to reduce the number of small
cycles in finite length LDPC codes [11], [14], even these
techniques require good degree distributions as a starting point,
which can be better accomplished for small codes through
discrete code enumeration.

III. METHODS

Using constraints (1) through (3), we show it is possible
to completely enumerate every valid degree distribution pair.
We assume a fixed block length, a fixed code rate and fixed
maximum variable and check node degrees, then enumerate
every possible degree distribution pair at that block length and
code rate. For convenience, we break up the analysis into steps.

1) We show that, given a fixed number of edges in the bi-
partite graph and one particular valid degree distribution
pair, we can find all other valid degree distribution pairs
with the same number of edges.

2) We demonstrate that there are a minimum and maximum
number of edges possible for a fixed block length, fixed
code rate, and fixed maximum variable and check node
degrees.

3) We explain a way to easily find one particular valid
degree distribution pair given any number of edges
between the minimum and maximum number possible.

The combination of these three steps yields an algorithm that
can enumerate every valid degree distribution pair for a finite
block length LDPC code. At the end of this section, we provide
a complexity analysis for the algorithm.

A. Step 1: Finding Remaining Valid Pairs

For the first step, assume a fixed number of edges, n., and
a given valid degree distribution pair, (A, p). We show that all
other valid degree distribution pairs can be found from these
assumptions. Let \ be any other valid variable node degree
distribution. Then we can write A = A + h for some step h.

Since equations (1) and (2) must hold for A and A (note
A= 5\1 =0, so hy = 0), we have the constraints for h

dy v
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This set of constraints can be represented in matrix form as
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where C' is the constraint matrix obtained by Gaussian elimi-
nation.

From (6), we see that for h to be in the null space of C' as
required, we can lower the degrees of freedom by two, so
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Next we need to make sure that constraint (3) is met for both
A and A. To do this, we require

These constraints can be combined with (7) and (8) to produce
the matrix inequality

_2 _4 ... 2B=d)
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6 9 .. 3d,—6
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-1 0 0
ha = Ahg. < Ao, (10
0 -1 0 4: 4: < Ag: (10)
0 0 -1

where the < operates element-wise. Note A is dependent on
d,, but not \ or n..

We know by (9) and (3) applied to the given valid X that
—1 < h; <1 for all 4. In addition, we can reason that if we
are going to change the given valid distribution A by some
amount h, that h; must be an integer multiple of ni This
is because the number of edges connected to variable nodes
of degree 7 must always be an integer multiple of 7, and we
assume n. is fixed.

Finally, we can summarize how we can find all other valid
degree distribution pairs given a fixed number of edges, n.,
and one valid pair in particular, (A, p). First, for all ¢ > 4,
create a set of values, denoted S; for h; by taking all integer
multiples of -- in the interval [—1,1]. Use these lists to
construct a set E)f vectors

H = {h|hi € Sii > 4ihy =0;hy = > 20-3), .
—
= (11)
63
hy = ;:4; : hi}.

Now, remove all vectors from H that fail to satisfy (10) to
form a new set,

H= {h|heH,Ah4: gAQ:}. (12)

The result of adding A to all elements in H is the set of all
valid variable node degree distributions for a fixed number
of edges. Notice all previously done analysis applies for p as
well as A, so to find all valid degree distribution pairs, simply
repeat the described steps with p in place of A.

B. Step 2: Bounds on Number of Edges

For the second step, assume without loss of generality a
fixed block length, n, fixed code rate, r, and fixed maximum
variable and check node degrees, d, and d., respectively.
There must be a minimum number of edges possible for a valid
LDPC code. To find this, we consider that there are n variable
nodes and m = n(l — r) check nodes. Each variable and
check node must have at least two edges by assumption. So,
the minimum number of edges possible based on the variable
nodes is 2n, and the minimum number possible based on the
check nodes is 2m. Since 0 < r < 1, we have m < n by
construction, so 2n forms a tighter bound on the minimum
number of edges. Thus, n™" = 2n.

The maximum number of edges possible for a valid LDPC
code can be found as follows. For the belief propagation
algorithm, there cannot be more than one edge connecting any
two nodes, meaning we require d, < m and d. < n. Since
there are n variable nodes and d, represents the maximum
number of edges for each node, the maximum number of
edges possible based on the variable nodes is nd,. Likewise,
the maximum number of edges possible based on the check
nodes is md,.. The actual maximum number of edges possible,
nT¥  is thus given by the formula n™** = min{nd,, md.}.

€ ? €

Algorithm 1: Minimum edges pair generation

Result: Generate valid pair for min number of edges
Fix block length n;
Fix code rate r;
Fix max variable node degree d,;
Fix max check node degree d.;
m:=n(l—r);
n‘g‘i“ = 2n;
A= (0,2n,0,...,0)T;
p:=(0,2m,0,...,0)T;
k:=2m;
while £ < 2n do
¢ := idx of first non-zero elt. of p;
Decrement p; by i;
Increment p; 11 by i + 1;

k=k+1;
end
A = \/nmin;
p=p/n™

return (), p)

C. Step 3: Obtaining a Valid Pair for Each Number of Edges

For the third step, we explain an algorithm to find a valid
degree distribution pair for every number of edges between
the minimum and maximum number possible, beginning with



the minimum. First, fix a block length, a code rate, and
maximum variable and check node degrees. Second, use step
2 to determine the minimum and maximum number of edges
for these fixed values. Then, set A = (0,2n,0,...,0)” and
p = (0,2m,0,...,0)T. Set k = 2m and while k¥ < 2n, do
the following things. First, let ¢ be the index of the first non-
zero element of p. Second, decrement p; by i. Third, increment
pi+1 by i+ 1. Finally, increment k£ by 1. When k& = 2n, divide
both A and p by n™" to obtain a valid degree distribution pair
for the minimum possible number of edges. This algorithm is
detailed in Algorithm 1.

To generate valid degree distribution pairs for the remaining
possible number of edges, set k = n‘;““ and while k < nJ®,
follow the same steps described in the previous paragraph,
but do them for both A and p simultaneously. The degree
distribution pair produced at each step k forms a valid degree
distribution pair for k£ edges.

Algorithm 2: Valid pair generation

Result: Generate all valid degree distribution pairs
Run Algorithm 1;

Initialize dictionary A for variable node distributions;
Initialize dictionary R for check node distributions;
n* := min{nd,, md.};

k= n‘;’i“;

while & < n7 do

Construct Hy as in (12) for \;
Construct H o as in (12) for p;

Set A[k] = A+ H,;

Set R[k] = p + H,;

A=k

p=kp;

i := idx of first non-zero elt. of A;
Decrement \; by ¢;

Increment \;; by i + 1;

1 := idx of first non-zero elt. of p;
Decrement p; by 1;

Increment p;41 by 7 + 1;

k=k+1,

A= M\k;

p=p/k;
end

return (A, R);

To summarize this and the two preceding subsections, we
have shown that it is possible to completely enumerate the
entire space of valid degree distribution pairs and provided
analysis leading to a rigorous algorithm for doing so. First,
we fix all necessary variables and run Algorithm 1. Then,
we generate one particular valid degree distribution pair for
each number of edges between the minimum and maximum.
Finally, we use the generated pairs to generate all valid degree
distribution pairs for all possible number of edges. This algo-
rithm is detailed in pseudocode in Algorithm 2. For a given
number of edges, all valid variable node degree distributions

for that number of edges and all valid check node degree
distributions for that same number of edges can together form
a valid pair. So, the algorithm returns two dictionaries of sets
of valid variable and check node distributions, indexed by the
number of edges.

D. Complexity Analysis

We now present a complexity analysis for the number of
floating-point operations (FLOPs) required for Algorithm 1
and Algorithm 2. For Algorithm 1, 8 FLOPs are required prior
to the while loop. The while loop runs 2n — 2m = 2n —
2(n(1—7)) = 2nr times and requires 6 FLOPs each time, for
a total of 12nr FLOPs. Finally, the divisions at the end of the
algorithm require d,, and d. FLOPs, respectively. All together,
Algorithm 1 requires 12nr + d, + d. + 8 = O(nr) FLOPs.

A similar, though far more complex, analysis can be per-
formed for Algorithm 2. Due to space considerations, we
will only provide a summary of the analysis and present
upper and lower bounds on the resulting complexity. The
dominating contribution to the number of FLOPs required for
the algorithm comes from the construction of Hy and H o It
can be shown that for each k, the construction of these two
sets requires

(2k)%~3(31)
dy!
(2k)%~3(31)
d.!
FLOPs. Within the while loop, k ranges from n™" to n™>, so
a lower bound on the number of FLOPs in (13) can be found
by replacing k with n™" = 2n, and an upper bound can be
found by replacing k& with nJ®*, which for simplicity we will
assume is nd,. As a lower bound, constructing H » and f[,,

requires 0 s s
o (4n)®~ o (4n)%™
© (dv G e

FLOPs, while as a upper bound the construction requires

9 (2nd,)4>—3 9 (2nd,,)de=3
O<d“ o e

2k log (dvgdc> + (2d? — 5d, — 7)
(13)
+ (2d? — 5d. — 7)

(14)

15)

FLOPs.
The while loop runs n™* — pMin = nd, — 2n = O(nd,)

times, so the total number of FLOPs required for Algorithm
2 is bounded below by

4 dy—3 4 d.—3
O(ndi(n(;' + ndvdﬁ(’2|> (16)
and bounded above by
2nd, )43 2nd, )43
0<nd3(”d), + ndvdi(nd)') (17)

We note that these bounds are polynomial in the block length
n, but exponential in the maximum variable and check node
degrees, d,,, and d.. As a result, the algorithm becomes com-
putationally intractable if you allow large maximum degrees.
Fortunately, the enumeration algorithms are useful primarily
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Fig. 2. A visualization of the valid space of variable node degree distributions
for ne = 202. Note there are only two valid distributions, located at the
bottom right of the figure.
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Fig. 3. A visualization of the valid space of check node degree distributions
for ne = 202. Note the set forms a subset of a plane in R4,

for small block lengths and the low density requirement for
LDPC codes ensures reasonably small d,, and d. parameters.

IV. RESULTS

To demonstrate this algorithm, we provide an example.
We choose exceptionally small values for block length and
maximum variable and check node degrees to facilitate vi-
sualization of the discrete nature of the space. Fix the block
length n = 100, the code rate » = 1/2, the maximum variable
node degree d, = 4, and the maximum check node degree
d. = 5. We run Algorithm 2 with these fixed values, and plot
a visualization of all of the corresponding pairs for n, = 202
edges.

The three dimensional plot in Fig. 2 represents the set of all
valid variable node distributions for 202 edges. Since A\; =0
and d, = 4, there are only three possible degrees of freedom,

plotted as the three axes in the plot. Algorithm 2 produces
only two valid degree distributions for n. = 202.

The plot shown in Fig. 3 represents the corresponding set of
all valid check node distributions. Since d. = 5 and p; = 0,
there are four degrees of freedom, but we plot only three,
P3, p4, and ps. Based on the construction of H in (12), we
would expect the degrees of freedom to be reduced by two, and
therefore expect the valid space of check node distributions to
be a discrete subset of a plane in R*. We see from the plot
of three of the degrees of freedom that this is the case. We
note that any combination of a variable node distribution from
Fig. 2 and a check node distribution from Fig. 3 forms a valid
degree distribution pair for n. = 202.

The complete enumeration of degree distribution pairs pre-
sented in this paper allows for LDPC code optimization that is
both flexible and accurate at small block lengths. Asymptotic
optimization methods by nature are only capable of optimizing
objective functions that can be evaluated theoretically for
infinite block length codes. In contrast, the enumeration of all
valid pairs combined with standard discrete optimization meth-
ods, such as those found in [19], allows for the optimization
of any objective function that takes as an input a valid degree
distribution pair. This opens the door for the optimization of
LDPC codes with respect to objective functions that utilize
simulation of real codes, among other things. In addition, since
the search space for these methods will consist entirely of valid
degree distribution pairs of finite block length, any optimal pair
obtained from such optimization is guaranteed optimal for the
finite case, rather than only for the asymptotic case.

To conclude this section, we present an example of an
objective function that can be optimized using our enumeration
method. Again, we fix the block length n = 100, rate r = 1/2,
maximum variable node degree d, = 4, and maximum
check node degree d. = 5. Our goal is to find the degree
distribution pair with these constraints that produces the LDPC
code family that minimizes the average bit-error rate (BER)
through a simulated additive white Gaussian noise (AWGN)
channel at a fixed E},/Ny = 5 dB. We note the generation of
individual code realizations within a code family is handled
independently of the enumeration algorithms presented in this
paper. We define the objective function to accept a degree
distribution pair, run the simulations, and output the average
BER for that pair.

In Fig. 4 and Fig. 5, we visualize the value of this objective
function for every possible degree distribution pair shown in
Fig. 2 and Fig. 3. The plot in Fig. 4 is constructed by plotting
the two degrees of freedom (hy and hs) for the check node
distributions against the objective function value for the left-
most valid variable node distribution seen in Fig. 2, while Fig.
5 is constructed similarly, but for the right-most valid variable
node distribution in Fig. 2. There is a clearly discernible
pattern to the BER as a function of the degree distribution
pair that can be exploited by discrete optimization methods
to produce the optimal pair for this objective function. We
note that for n, = 202 like in the visualizations, the optimal

pair is (A, p) = ((0, 332, 555,0)7,(0,0,0, 232, 29T, which
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Fig. 4. A visualization of the continuous dependence of BER on location in
the space of valid check node degree distributions for the left-most variable
node degree distribution.
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Fig. 5. A visualization of the continuous dependence of BER on location in
the space of valid check node degree distributions for the right-most variable
node degree distribution.

corresponds to (h4, hs) = (0, 0) for the left-most variable node
degree distribution. However, a true optimization would also
need to account for degree distribution pairs with n, # 202
when optimizing the objective function.

V. CONCLUSION

In this paper, we have described an algorithm for completely
enumerating the valid space of degree distribution pairs for
LDPC codes of finite block length. We have performed the
necessary mathematical analysis to demonstrate the validity
and complexity of our method and have run the algorithm on
an example and visualized the results. Finally, we discussed
the possibility of using this algorithm for better optimization
of LDPC codes of small block lengths. In the future, we plan
to utilize the enumeration algorithm to find the best degree

distribution pairs satisfying a given objective function.
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