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Abstract—Polar codes have been shown to provide an effective
mechanism for achieving physical-layer security over various
wiretap channels. A majority of these schemes require channel
state information (CSI) at the encoder for both intended receivers
and eavesdroppers. In this paper, we consider a polar coding
scheme for secrecy over a Gaussian wiretap channel when no CSI
is available. We show that the availability of a shared keystream
between friendly parties allows polar codes to be used for both
secure and reliable communications, even when the eavesdropper
knows a large fraction of the keystream. The scheme relies on
a predetermined strategy for partitioning the bits to be encoded
into a set of frozen bits and a set of information bits. The frozen
bits are filled with bits from the keystream, and we evaluate the
security gap when the cyclic redundancy check-aided successive
cancellation list decoder is used at both receivers in the wiretap
channel model.

I. INTRODUCTION

Physical-layer security has emerged as a viable technique
for providing joint error-control and secrecy in modern com-
munication networks [1], [2]. The security obtained from ef-
forts at the physical layer need not be standalone, as physical-
layer security has been shown to effectively complement
security efforts from other layers, such as cryptography at the
application layer of the network [3]. Physical-layer security
uses the inherent characteristics of the environment to protect
the information of a transmitted message from being leaked
to eavesdropping devices, making the technology particularly
applicable for wireless transmissions due to their broadcast
nature and ease of interception by eavesdroppers. The gen-
eral model utilized for the design of physical-layer security
schemes is the wiretap channel model [4], in which a trans-
mitter (Alice) aims to send a message to a legitimate receiver
(Bob) in the presence of an eavesdropper (Eve) who is trying
to intercept and decode the private data. A variety of coding
techniques exist for secure and reliable communications over
several wiretap model variants [5], and polar codes [6] have
provided a number of approaches to coding over the wiretap
channel [7], [8].
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In their original form [6], polar codes were designed to
achieve the capacity of binary input memoryless symmetric
channels. The encoder is comprised of a rate-one mapping
taking n bits at the input and producing n coded bits at
the output; however, only a fraction of the input bits are
carrying information, while the remainder are frozen. Frozen
bits are traditionally set to zero (although they may be set
to any known values), and knowledge of those bits at the
receiver allows one to decode using a successive cancellation
approach also laid out in the original polar coding work [6].
The selection of frozen bits and information bits must be made
as a function of the channel state information (CSI) between
the transmitter and receiver, and the successive cancellation
decoder was designed to remove errors from the system as
long as the code matches the channel. The known value of
the frozen bits effectively allows the receiver to remove all
uncertainty at the decoder, thus guaranteeing reliable commu-
nications [6].

When these codes were first adapted to the wiretap chan-
nel [7], it became necessary to sort the input bits of the
encoder into three bins: (1) random bits for bit-channels that
are reliable for both Bob and Eve, (2) information bits for bit-
channels that are reliable only for Bob, and (3) frozen bits
for bit-channels that are reliable for neither Bob nor Eve.
It was assumed that Eve’s channel was worse than Bob’s
channel in this first work, which was shown to be sufficient to
guarantee that no bit-channels exist that are reliable for Eve
but not for Bob [7]. Successive cancellation easily guarantees
reliable communication between Alice and Bob using this
approach, and the random bits introduce sufficient uncertainty
to guarantee information theoretic security against Eve. The
downside is that this technique requires explicit knowledge of
the CSI of both the Alice-to-Bob channel and the Alice-to-Eve
channel, which may not be attainable in practice.

The literature on polar coding over wiretap channels now
includes many additional approaches to physical-layer secu-
rity. The original three-way binning technique was used to
achieve the secrecy capacity under the weak secrecy criterion
for degraded wiretap channels in [7], [9]. A clever concealment
of small secret keys in each coded block using a chaining tech-
nique was shown to allow one to overcome the requirement
for Bob to maintain a channel advantage over Eve and also
extended the security condition to strong information theoretic



secrecy [10]–[12].
The main problem remains the lack of ability to design

a polar code for secrecy without explicit CSI of all links
in the wiretap channel model, despite recent results that
appear to be moving in that direction [13]. Furthermore, most
results for polar coding over wiretap channels are restricted
to discrete memoryless channels, leaving explicit coding over
the Gaussian wiretap channel as an open problem despite some
theoretical results indicating the existence of such codes [14],
[15].

In this work, we show that a predetermined strategy for
partitioning a polar code based on an efficient rate-matching
scheme [16] can be effective in achieving a prescribed level of
physical-layer security over the Gaussian wiretap channel, as
shown via a security gap analysis [17]. This technique does not
require CSI from any of the channels in the network, but rather
takes the traditional error-control coding route of choosing a
coding rate and analyzing the performance of the resulting
codes as a function of signal-to-noise ratio [18]. Our scheme
requires a keystream known only to Alice and Bob, although
we analyze the effectiveness of the scheme even when Eve
knows large fractions of the key bits. Results indicate that
even a small fraction of unknown key bits is sufficient to
drastically affect the output of the cyclic redundancy check-
aided successive cancellation list (CA-SCL) decoder, which
represents the current state of the art in polar decoding.

The remainder of this paper is organized as follows. In
Section II, we present the channel model for the paper,
basic encoding and decoding for polar codes, the bit-channel
sorting technique used in the paper, and some notes on the
literature surrounding secret key agreement. Our scheme for
polar coding with a shared key is then presented in Section III,
with numerical results showcasing the effectiveness of the
scheme being given in Section IV. We then conclude the paper
in Section V.

II. BACKGROUND

A. Gaussian Wiretap Channel with a Shared Key

The communication model considered in this work is pre-
sented in Fig. 1. In this system, Alice intends to transmit a
private message U to Bob in the presence of the eavesdropper
Eve. Both channels depicted are Gaussian channels, i.e.,
f (yn|xn) and f (zn|xn) are n-dimensional Gaussian distributions
with mean vectors equal to the modulated symbols that corre-
spond to the bits in xn and variance N0/2. The signal-to-noise
ratio at both receivers is measured according to the energy per
information bit Eb/N0. Alice and Bob have a shared key K,
that is used to encode and decode. Bob and Eves’ estimates
of U are Û and Ũ , respectively, and both Bob and Eve are
assumed to use the best available decoder. The system should
be designed to reliably deliver the message to Bob so that
P(U 6= Û) is small, and at the same time avoid any significant
leakage of U to Eve.

Alice Encoder f (yn|xn) Decoder Bob

f (zn|xn) Decoder

Key

Eve

u

k k

xn yn û

zn ũ

Fig. 1: Secrecy coding with a shared key over the Gaussian
wiretap channel.

B. Ranking the Bit-Channels for Polar Codes

Let G =

[
1 0
1 1

]
, and let G⊗m be the mth Kronecker power

of G. Also, let Pn be the n×n bit-reversal permutation matrix
(see, e.g., [7]), where n = 2m is the blocklength of the code.
Then n input bits to the polar encoder vn are encoded as

xn = vnPnG⊗m, (1)

calculated in the binary finite field F2.
In a general polar code, the bits of the vector vn are

comprised of information (message) bits and frozen bits
(usually set to zero). In essence, the rows corresponding to
the indices of the information bits in vn of PnG⊗m form a
generator matrix for a linear block code. Such a code can
be decoded using successive cancellation techniques, and the
code achieves capacity over certain channels as long as the
bits of vn are properly assigned, according to the channel
properties, into the sets of information bits and frozen bits [6].
The bit-channels are effectively measured from the input to the
encoder to the output of the decoder, and the reliability of these
channels polarizes when successive cancellation is used so that
each channel is essentially perfect, or perfectly random. The
noise is effectively “collected” in the perfectly random bit-
channels, and it can be removed if the bits transmitted over
those channels are known at the decoder. These bits make up
the frozen bit set.

Usually the allocation of bit-channels to be used for the
transmission of either information bits or frozen bits is a
function of the CSI between Alice and Bob. Bit-channels
are then sorted into good channels and bad channels, where
information bits are sent over the good channels and frozen
bits are sent over the bad channels [6]. When an eavesdropper
is added to the network, the bins are more complicated. If
Bob’s overall channel is better than Eve’s, then bit-channels
that are good for both Bob and Eve can be assigned random
bits, bit-channels that are good for Bob and bad for Eve
can be assigned information bits, and bit-channels that are
bad for both Bob and Eve can be assigned frozen bits. The
assignment of bit-channels in this case is a function of the CSI
in the Alice-to-Bob channel and the Alice-to-Eve channel [7],
[19], [20]. In this work, however, we are assuming no CSI is
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Fig. 2: Bin assignments according to the partial weights for
the n = 512, R = 1/2 polar code.

available at the transmitter, meaning we need a new approach
to make the assignments of bit-channels.

To avoid assumptions over the receivers’ CSI, an alternative
is to use the bit-channel-ranking technique found in [16]. We
do not assume that Bob’s channel is superior to Eve’s channel
in this work, and we only sort the bit-channels into two bins.

Let the integers from zero to n−1 be expanded into their
binary form. For example, let the integer i = bm−1bm−2 . . .b0,
where the left-most bit bm−1 is the most significant bit. Then
let pi be the partial weight for the ith bit-channel (0 ≤ i ≤
n−1) be calculated as

pi =
m−1

∑
j=0

b j×2( j/4). (2)

Recall here that m = log2 n. Let the bin of indices associated
with the information-bit-carrying bit-channels be called ϒ, and
the frozen-bit-carrying bit-channels be called κ . Let R be the
design rate of the code. We then sort the partial weights from
highest to lowest, and assign the indices with the highest R×n
partial weights to ϒ, and the remainder to κ . We can assume
that R×n is an integer, since R and n are design parameters
of the code, and can be chosen with this constraint in mind.
In Fig. 2, we plot the bin assignments for the polar code with
n = 512 and R = 1/2 as an example.

C. Cyclic Redundancy Check-Aided Successive Cancellation
List Decoding

The cyclic redundancy check-aided successive cancellation
list (CA-SCL) decoder [21]–[23] is used in this work. The
decoder requires log-likelihood ratios (LLR) under successive
cancellation decoding and a list of depth specified by the user.
The LLR for the bit transmitted over the ith bit-channel is
calculated as

Li , ln

(
Wi(yn, [v̂0 v̂1 · · · v̂i−1]|vi = 0)
Wi(yn, [v̂0 û1 · · · v̂i−1]|vi = 1)

)
, (3)

where Wi is the probability density function (pdf) that gov-
erns the ith bit-channel and [v̂0 v̂1 · · · v̂i−1] is the vector

of estimated bits in the decoder through index i− 1. This
decoder was chosen for its superior performance over other
potential options [24], and represents the state-of-the-art in
polar decoding. The decoder rule works as follows:

v̂i =


0, if Li ≥ 0 and i ∈ ϒ,

1, if Li < 0 and i ∈ ϒ,

λ , if i ∈ κ,

(4)

where λ is equal to the value of the frozen bit.

D. Key Agreement Techniques

The use of a shared key is a well-investigated topic in
secrecy communication schemes, especially for cryptography
and information reconciliation. In terms of physical-layer se-
curity, a key-agreement system based on simultaneous channel
probing by Alice and Bob is explored in [25]. Schemes using
polar codes with key-agreement are proposed in [10], [26],
[27] where the basic idea is to send a seed with the message
to be used only for the next transmitted codeword and [10],
[27] proved theoretically that a scheme with a combined key
can achieve the secret-key capacity under the strong secrecy
criterion, although relying upon a selection of frozen bits based
on previous knowledge of the eavesdropper’s channel. In [28],
a key establishment based on physical unclonable functions
is evaluated, translating the unique randomness of specific
devices into a shared key. Furthermore, in [29], secret-key gen-
eration is performed by expansion-combination-interleaving of
an initial seed combined with advanced encryption standard
(AES) to protect private data.

For this particular work, it is assumed that the mecha-
nism for distributing the key is used in combination with
cryptography. The shared key can then be used to enhance
physical-layer security. In this way, a level of integration is
required between layers of the protocol stack, and physical-
layer security combines with security efforts throughout the
communication system. The seed (and consequently the dy-
namic frozen bits) are assumed to work without transmission
limitations like reliability, misinformation or synchronization,
for example. The key is assumed to be shared using protocols
(e.g., Diffie-Hellman key exchange) at upper-layers of the
protocol stack, and the main analysis here is focused on the
secrecy and reliability of the message with the assumption that
the secret key is in place.

III. POLAR CODES FOR SECRECY WITH SHARED KEY

The idea for our scheme is straightforward. We use the
shared keystream to supply the bits for the frozen bit-channels
in κ , and transmit each block with new key bits. Information
bits are assigned to the bit-channels in ϒ. The sets κ and ϒ

decide the locations of frozen bits and information bits in each
block, and these sets are fixed according to the partial weights
and the design rate of the code. We can then apply the CA-
SCL decoder and characterize the performance for a set of
receivers as a function of Eb/N0.

We first consider the intended receiver, for whom the
keystream is also known. For this user, knowledge of the



frozen bits allows the decoder to operate as if the bits were
set to zero in a general polar code [6], and performance is
expected to be very good. We then consider eavesdroppers
with knowledge of certain fractions of the keystream. In
essence, we want to know how performance degrades as the
keystream is revealed to an attacker. If we find that a small
amount of unknown keystream is sufficient to degrade the
performance to our liking, then this really implies that we
can actually freeze many bits (say, set them to zero), and
use the keystream for a smaller portion of bits at a negligible
performance cost.

Successive cancellation decoders tend to rely on the correct-
ness of previously decoded bits, and are capable of propagating
errors even in the case of the CA-SLC decoder [22]. Thus, we
may expect a significant degradation of performance without
knowledge of the frozen bits in κ . At the very least, this may
force eavesdroppers to consider other types of attacks. Luckily,
a similar scheme was set forth in [30], wherein the authors
took a cryptographic approach to security and considered a
number of well-known attacks. Their system was shown to
perform admirably in the face of these attacks, meaning we
can still have confidence that the keystream can be kept secure
(in terms of computational security), even if it is generated by
a smaller seed as in [30].

The decision rule for Bob in the scheme of Fig. 1 is defined
as

v̂i =


0, if Li ≥ 0 and i ∈ ϒ,

1, if Li < 0 and i ∈ ϒ,

ki, if i ∈ κ,

(5)

where ki is the bit value from the keystream assigned to vi in
the encoder. Since Eve is assumed to have no access to the
keystream, she can try to use the same decoding rule as Bob’s,
but this would require her to estimate ki for all bits in κ . Since
this is likely to result in many bad estimates, she can simply
apply the decision rule

ṽi =

{
0, if Li ≥ 0
1, if Li < 0,

(6)

which requires the device to calculate the LLR for all bit-
channels. Without knowledge of the key, this decision rule is
the maximum-likelihood decoder.

In addition, the eavesdropper is presumed to have knowl-
edge over the encoding and decoding techniques, including ex-
plicit knowledge of the sets ϒ and κ . She has no computational
restrictions when processing the data, and for the case with
partial knowledge of the keystream, she is able to use Bob’s
decoder rule when she knows ki. Again, partial knowledge of
the keystream allows us to test how much key is really needed
to degrade Eve’s performance to our liking, as a function of
her signal-to-noise ratio.

IV. SYSTEM EVALUATION

For evaluating the scenario in Fig. 1, we consider our
scheme using two polar codes with medium sized parameters.
The codes have size parameters (512, 256) and (1024, 512),

where the first parameter is the blocklength n, and the ratio
of the second parameter to the first is the coding rate R.
Codewords are modulated using binary phase shift keying
(BPSK), and simulations are conducted assuming additive
white Gaussian noise. At the legitimate receiver, the demod-
ulated signal is sent to an internal decoder responsible for
estimating the message U using the CA-SCL algorithm with
list size L = 32 and CRC polynomial defined as g(x) = x11 +
x10 + x9 + x5 + x4 + x3 +1. At the eavesdropper’s receiver, the
decoding capabilities are considered equal with the legitimate
receiver, except for the knowledge of K.

As discussed in [31], the best decoder strategy in a case
where random bits are being transmitted with the message is to
try to estimate the random bit values using the same decoding
procedure as applied to the information bits, and this is the
methodology chosen for evaluating the secrecy level of this
system. Let ∆ be the percentage of frozen bit values unknown
to the receiver. Then ∆ = 0% gives the baseline polar code
performance when frozen bits take on the value of zero. This
case also matches the performance of Bob in our scheme,
since the keystream is fully known at both Alice and Bob.
Eavesdroppers of varying degrees are given for specific ∆

values greater than 0% up to a full 100%, and several such
operating points are evaluated in the following.

Finally, for this paper, we assume that a system de-
signer would like Bob’s bit-error rate (BER) no higher than
BERBob

max = 10−3, and Eve’s BER no lower than BEREve
min = 0.2.

These choices are somewhat arbitrary, and can be changed by
any user. The security gap (SG) is then calculated as

SG = f Eb
N0

(BERBob
max)− f Eb

N0

(BEREve
min), (7)

where f Eb
N0

(B) is the value of Eb/N0 at which the system

achieves an average BER of B.
Figs. 3 and 4 show BER curves for Bob and various Eves

(0% < ∆ ≤ 100%) for the two codes. Note that the Eve
operating points tested tend to give very similar BER curves,
although extra knowledge of the keystream tends to help Eve’s
efforts at high SNR. Bob’s performance matches the expected
performance of the polar code, which is quite good.

When Eve is operating at around ∆ = 40%, the security gap
is roughly −3 dB for the smaller code and −4 dB for the
larger code. At ∆ = 100% (meaning, Eve has no knowledge
of the keystream) the smaller code gives a security gap of
roughly −4.5 dB, while the larger code gives a security gap
around −5 dB.

If a stricter security requirement on Eve is desired, say
BEREve

min = 0.4, then the security gaps measured over Eve with
∆ = 40% are roughly −1 dB for the smaller code and −2 dB
for the larger code. For ∆ = 100%, security gaps are closer to
−1 dB for the smaller code and −3.5 dB for the larger code.
Either way, we see that the key-based scheme is capable of
returning negative security gaps for a variety of scenarios, and
we also see that depending on the desired level of security, one
may be able to use less key bits (replacing them with frozen
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values of zero) while still maintaining reliable and secure
communication.

V. CONCLUSIONS

In this work, we proposed and evaluated the use of polar
coding with a secret keystream in achieving tunable physical-
layer security without the need for receiver CSI. The technique
allows a system designer to specify the code rate, and then as-
signs bit-channels as information-carrying or frozen according
to predetermined rankings using partial weights. Frozen bit
channels are then filled with bits from the secret keystream.
A security gap analysis shows that it is possible to achieve
both security and reliability, even when an eavesdropper is
more capable than the legitimate receiver (as indicated by the
scheme achieving negative security gaps). The scheme can still
achieve security gaps less than zero, even when the attacker
knows a significant percentage of the keystream, indicating

that smaller amounts of key may be used if needed, where the
remainder of the frozen bits may be set to an arbitrary value.
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