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Abstract—We consider privacy of obfuscated location reports
that can be correlated through time/space to estimate the real
position of a user. We propose a user-centric Location Privacy-
Preserving Mechanism (LPPM) that protects users not only
against single reports, but also over time, against continuous
reports. Our proposed mechanism, designated clustering geo-
indistinguishability, creates obfuscation clusters to aggregate
nearby locations into a single obfuscated location. To evaluate
the utility of the mechanism, we resorted to a real use-case
based on geofencing. Our evaluation results have shown a
suitable privacy-utility trade-off for the proposed clustering geo-
indistinguishability mechanism.

Index Terms—Location Privacy, Location Privacy-Preserving
Mechanisms, Location-Based Services, Geo-Indistinguishability,
Clustering, Geofencing

I. INTRODUCTION

Location privacy has became an emerging topic due to the
pervasiveness of Location-Based Services (LBSs). When shar-
ing location, our personal information is exposed to possibly
untrustworthy entities which have the capacity to share the
collected data with third parties. Although the analysis of
this data may be beneficial to several services and, hence, to
consumers, the collected data may contain sensitive and private
information, thus raising privacy concerns. This is specially
critical for location data because human mobility traces are
highly unique and extremely predictable given that visited
locations can reveal the user’s identity, habits, addictions or
even health conditions [1]–[3].

Obfuscation mechanisms are commonly used to protect
users’ location [4], [5], in where an obfuscated version of the
exact user location is reported instead of the exact location.
These techniques are known as user-centric LPPMs, as privacy
is preserved for each user independently, and act at collection
time, that is before the data is collected and therefore preserve
privacy even against the service provider [6]. Based on the
classic notion of differential privacy, geo-indistinguishability
has been proposed to design LPPMs that limit the amount of
information that is disclosed to a potential adversary observing
the reports. Geo-indistinguishability guarantees that any two
locations within a given radius around the user are statisti-
cally indistinguishable. The Planar Laplace (PL) mechanism
was the first proposed geo-indistinguishable LPPM [7]. This
mechanism obfuscates the exact user location by adding 2-
dimensional Laplacian noise centred at the user location.

While promising, geo-indistinguishability considers reports
to be independent from each other, thus discarding the poten-
tial threat that arises from exploring the correlation between
reports. In fact, in the context of sporadic release of data,

LPPMs typically consider reports to be independent between
each other [8]. However, location data can be reported spo-
radically or continuously, depending on the LBS [8], [9].
The frequency of reports impacts the achieved privacy level,
since the adversaries can use the inherent correlation between
reports to improve their attacks [1], [5], [10], [11]. Although
some recent research has started considering temporal and
spatial correlations [10], [12], this topic is far from being
mature and is still considered an open issue [5]. Therefore,
we explore this intrinsic characteristic of location data from
the perspective of privacy protection by proposing a user-
centric LPPM that acts at collection time and that is suitable
for continuous reports of location data. The contributions of
the work are summarised as follows:
• We develop a new mechanism that takes into con-

sideration the distance between the reported locations
and the frequency of updates. The clustering geo-
indistinguishability creates obfuscation clusters for closer
locations, such that the mechanism returns the same
obfuscated point for nearby locations. We evaluate and
compare the developed mechanism with the PL mecha-
nism and a recently proposed adaptive version of the PL
to the continuous scenario [13]. Results showed that the
proposed mechanism provides a better trade-off between
privacy and utility.

• We assess the utility of our mechanism through a real
use-case based on geofencing. To the best of our knowl-
edge, we are the first to consider a practical geofence
application as a utility metric.

The remainder of the paper is organised as follows.
Section II presents background concepts and the imple-
mented mechanisms. Section III describes clustering geo-
indistinguishability, our proposed LPPM. Section IV presents
the evaluation of the proposed mechanism, specifying the
experimental setup and the conducted methodology. Finally,
Section V draws the final conclusions of this work.

II. BACKGROUND

Location privacy is an emerging topic of research [1], [4],
[5] due to the pervasiveness of LBSs and always connected
mobile devices. Shokri et al. classified LBSs as continuous or
sporadic depending on the frequency of location reports [8].
An LBS is considered continuous when the user’s location is
reported periodically, and it is considered sporadic when the
user requests a single location query, receives the result from
the service and then terminates the query.

The existing LPPMs have been developed for both continu-
ous [10], [14] and sporadic scenarios [7], [15], [16], depending
on whether they consider the dependence or independence978-1-7281-0875-9/19/$31.00 ©2019 European Union



of the temporal correlation between subsequent reports, re-
spectively. Earlier research focused on the sporadic scenario,
whereas recently, studies on continuous reports have been
emerging.

Considering the objective of this work, we selected one
mechanism for each scenario. In particular, we focus on the
PL [7] for the sporadic scenarios and on the adaptive geo-
indistinguishability [13] for the continuous scenarios. The PL
mechanism was selected for the sporadic scenario, since it
was the first mechanism that achieved the notion of geo-
indistinguishability, which provides formal privacy guarantees
of differential privacy applied to location data. The adaptive
geo-indistinguishability was selected for the continuous sce-
nario, since it is a recent mechanism based on the PL that
explores the correlation between reports for protecting loca-
tion privacy. The following subsections detail these LPPMs,
respectively.

A. Geo-Indistinguishability
The geo-indistinguishable PL consists of adding 2-

dimensional Laplacian noise centred at the exact user loca-
tion x and with the following Laplacian distribution, whose
probability density function (pdf) is:

p(z|x) =
ε2

2π
e−εdx(x,z) (1)

To obtain z from x using equation (1), we can add a
randomly drawn vector expressed as a radius r and angle Θ.
In this case, Θ is uniformly chosen from [0, 2π) and r is
computed by drawing p uniformly from [0, 1) and feeding it to
the inverse planar Laplacian cumulative distribution function.
This function is calculated using the negative branch W−1
of the Lambert W function and is defined as C−1(p) =
− 1
ε

(
W−1

(
p−1
e

)
+ 1
)
. Therefore, the obfuscation location z

is calculated by z = x+ 〈r cos Θ, r sin Θ〉.

B. Adaptive Geo-Indistinguishability
The adaptive geo-indistinguishability was proposed for con-

tinuous scenarios. This mechanism uses the PL with a dynamic
ε that is computed according to the correlation between the
new location and the past locations. Based on this correlation,
the adaptive mechanism adjusts the amount of noise required
to obfuscate the exact user location x. Thus, the mechanism in-
creases the privacy level when the correlation between reports
is high and improves the utility level when the correlation
between reports is low. The correlation is measured as the
error between an estimation and the exact user location, where
the estimation is obtained using a simple linear regression.
Formally, we can define the dynamic ε as follows [17]:

ε =


α× ε, if d(x, x̂) < ∆1

ε, if ∆1 ≤ d(x, x̂) < ∆2

β × ε, if d(x, x̂) ≥ ∆2

(2)

where x is the exact user location, x̂ is the estimation,
d(·) is the euclidean distance, ∆1 and ∆2 are two thresholds,
and α and β are two constants. The authors also specify the
following constraints: ∆2 > ∆1, 0 < α < 1, and β > 1. In
original work [13], the authors used the following parameters:
∆1 = 0.96/ε, ∆2 = 2.7/ε, α = 0.1, and β = 5. From the
first branch of the equation (2), we have that if the distance
between the exact user location and the estimation is lower

than a small threshold ∆1, i.e. high correlation, then privacy
should be improved. To do so, ε is decreased by a factor α < 1.
On the other hand, when the error is larger than a higher
threshold ∆2, i.e. low correlation, the utility is enhanced by
multiplying ε with the factor β > 1 (third branch). Otherwise,
when the error is between [∆1,∆2[, the value of ε does not
change.

III. CLUSTERING GEO-INDISTINGUISHABILITY

In order to develop a new mechanism that can be used
both in the sporadic scenario and in the continuous scenario,
we started by looking at the PL, which is considered the
state-of-the-art LPPM for the sporadic scenario. From the PL
mechanism, we know that the exact user location x is reported
as an obfuscated location z, which is obtained by adding 2-
dimensional Laplacian noise centred at the exact user location.
Since the frequency of updates was shown to have impact on
the privacy preservation of the user location [11], our idea
consists in creating a mechanism that obfuscates the exact user
location x by applying the PL mechanism; then, an obfuscation
cluster centred at the real location x is created, such that the
same obfuscated location z is reported for every real location
inside the cluster. With this approach, we take advantage of the
original PL for sporadic scenarios (i.e. low sampling frequency
and distant reports), while providing a solution that leads to
the same obfuscated report for continuous scenarios, in which
real locations are close by.

Our mechanism produces an obfuscated location zi for the
first user location xi, by directly applying the PL mechanism.
The location xi creates an obfuscation cluster centred at
xc = xi, that is, a circle centred at xc, whose obfuscated
point is zi. For the next user location xi+1, the mechanism
verifies if it is inside the area of the previous obfuscation
cluster centred at xc. If the user location is inside the area,
the mechanism reports the previous obfuscated point, that is,
zi+1 = zi. Otherwise, the LPPM obfuscates the location xi+1

with the PL mechanism and creates a new obfuscation cluster
centred at xc = xi+1. In order to verify if the user location
is inside the area of the previous cluster, the mechanism
calculates the distance d between the current location and the
location that originated the previous cluster xc, using the great
circle distance g(·). The parameters of our scheme are then the
radius of the obfuscation cluster and the value of the privacy
parameter ε. To reduce the number of parameters, which in
turn increases the usability of the mechanism, one can set r
to depend on the ε value, according to the original definition
of PL, such that ε = l/r.

Algorithm 1 shows the implemented approach. The parame-
ters of the algorithm are the exact user location xi, the privacy
parameter ε and the radius of obfuscation r. By applying this
algorithm, the user location xi will be obfuscated and the
algorithm will return the obfuscated location zi. Regarding
the parameters, the value of ε will be used to apply the PL
mechanism and the radius r will be used to compute the radius
of the obfuscation area of the clusters as explained above.

A. Privacy Analysis
The correlation between reports may degrade the privacy

level of the LPPMs [11]. In particular, when a user reports sev-
eral nearby points, the PL mechanism leads to the disclosure
of user information [7]. For instance, if we consider the most
continuous scenario possible, i.e. when the user is continuously
reporting the same location, the PL mechanism will produce



Algorithm 1 LPPM based on clustering

1: function CLUSTERING(xi, ε, r)
2: if first report then
3: xc = xi
4: zi = planarLaplace(xi, ε)
5: else:
6: distance = g(xc, xi)
7: if distance ≤ r then
8: zi = zi−1
9: else

10: xc = xi
11: zi = planarLaplace(xi, ε)

12: return zi

several obfuscated locations for that same user location. From
the obfuscated locations and considering the behaviour of the
Laplacian distribution used by the mechanism, an adversary
can delineate the centre of the obfuscation area, which enables
to discover the exact user location. Our proposed mechanism
prevents this situation, since the clustering mechanism reports
the same obfuscated point for nearby locations, which is a
clear advantage.

Regarding the nearby locations, by the definition of ε-geo-
indistinguishability, if the distance between two locations x, x′
is at most r, then the multiplicative distance between the
obfuscation pdf centred at x and x′ is at most l, where l is
the level of privacy. Thus, for closer locations, the distributions
are similar and, consequently, the probability of generating the
same obfuscated location is higher. Since our mechanism uses
the same obfuscated point for locations that dist at most r,
it is guaranteed that the obfuscated locations reported by the
proposed mechanism are geo-indistinguishable, thus avoiding
the need to use PL to produce a new obfuscated location.

Furthermore, it can be shown that the privacy level of
geo-indistinguishability scales linearly with the number of
queries [7]. That is, for n location queries applying geo-
indistinguishability independently to each query results in nε
privacy disclosure. On the other hand, each time our proposed
mechanism uses the previous obfuscated location, it avoids a
new application of the PL to produce a different obfuscated
location. Therefore, our mechanism prevents the linear pri-
vacy degradation of geo-indistinguishability that comes from
multiple applications of the protection mechanism.

Lastly, although the number of reported points does not
decrease, as a result of applying our mechanism, the reported
point does not change in some of the cases. In fact, once the
user reports the same location instead of a new location, for
the service, the user stays in the same location. Thus, there is
less disclosure of user’s information. This is specially relevant
for the continuous scenario where the frequency of updates
is higher and, consequently, the distance between reports is
smaller. Our mechanism takes advantage of this property and
thus greatly reduces the number of applied obfuscations to
nearby locations.

IV. EVALUATION

The following subsections describe the experimental
setup, the performance of the proposed clustering geo-
indistinguishability mechanism and evaluate the achieved lev-
els of privacy and utility. Moreover, we present the comparison

between our mechanism and two existing mechanisms, the PL
and the adaptive geo-indistinguishability.

A. Experimental Setup
To evaluate the effectiveness of the proposed LPPM, we

selected an attack mechanism and a real mobility dataset.
Since adversaries may use maps to locate the users [4], we se-
lected a state-of-the-art Map-Matching (MM) technique [18],
which enables us to locate vehicles on road networks. While
MM is usually applied for Global Positioning System (GPS)
navigation, it can also be employed as a mechanism for
tracking attacks against location privacy [11], particularly in
the continuous scenario.

This subsection describes the experimental setup for the
evaluation, namely, the attack mechanism, the used metrics,
the selected dataset and its pre-processing.

1) Map-Matching: The objective of MM is to find a path
that corresponds to a sequence of location reports, assuming
that these reports are noisy and follow a normal distribution.
To do so, [19] resorts to a road network and a Hidden Markov
Model (HMM), where the HMM’s hidden states at each noisy
location correspond to potential locations on the road. The
most likely path from the HMM is obtained using a Viterbi
algorithm

MM can be used as a pre-processing technique in an LBS,
where the location reports are mapped to the most likely
position for the exact location. Nevertheless, MM can also
be used by an adversary to track a user even if the latter is
using an LPPM, since an LPPM acts as a noisy channel.

2) Metrics: To measure the privacy level, we can use a
point-by-point metric, such as the adversary error. The adver-
sary error measures the correctness of an adversary through the
distance between the exact user locations and the adversary’s
estimations. The adversary estimation error is computed as
PAE = E{d(xi, x̂i)}, where the adversary error (AE) is the
expected distance d(·) between the exact user location xi and
the adversary’s estimation x̂i. Typically, Euclidean distance is
used as distance metric [20].

However, for a tracking attack, a point-by-point metric
would fail to assess the effectiveness of the tracking mecha-
nism. The authors of [19] define F -score, also called F1 score,
to evaluate the accuracy of the MM, which can be calculated
by the following equations.

precision =
Lcorrect
Lmatched

; recall =
Lcorrect
Ltruth

F1score = 2× precision× recall
precision+ recall

(3)

where Lmatched is the length of the output path, Ltruth
is the length of the corresponding ground-truth and Lcorrect
is the length of the portions of the output path that overlap
with the ground-truth path. This metric basically measures
how accurate the mechanism is through the amount of over-
lapped path, Lcorrect, between the adversary’s estimated path,
Lmatched, and the ground-truth’s path, Ltruth. The value of
F1 score varies between 0 (worst path match) and 1 (best path
match).

3) Dataset Selection: We have selected the Taxi Cabs in
USA dataset [21], that contains vehicular trajectories with a
high sampling rate, thus being appropriate for analysis of
continuous scenarios, as well as allowing sub-sampling to
mimic different frequencies of updates. This dataset contains



trajectories from over 500 taxis travelling in the area of San
Francisco with duration of 30 days. This data includes not
only geo-location collected through a GPS at an average rate
of 10 seconds, but also the occupancy of the taxi.

4) Dataset Pre-Processing: We started by selecting a set
of relevant trajectories as follows. We first limited the distri-
bution of trajectories to a bounding box over the peninsula
of San Francisco, as this is the most dense area, defined
from south and west by the coordinates (37.5996104427, -
122.5168704724) and from north and east by the coordinates
(37.81093499, -122.3535056708). Then we considered only
trajectories with passengers, where the flag of occupancy is
true [22]. This division allowed us to remove cases where
the taxi was stopped waiting for a client. Finally, we selected
trajectories with a duration of at least 1 hour, with intervals
between reports of at most 100 seconds, to avoid temporal
discontinuities between reports. This pre-processing resulted
in 46 trajectories. To observe if the dataset contained noisy
readings, we displayed the trajectories in the map and did
a manual inspection of some of these trajectories, which
confirmed our premise. For example, there were some GPS
locations reported in the ocean instead of in the bridge that
the vehicle was clearly crossing.

To enhance the original data, we first apply the MM
mechanism described in Section IV-A1 to the 46 trajectories
from the original dataset, by employing the same parameters
as in [23], which is the baseline to the work in [19] and
uses GPS data as in our case. In [23] the estimated standard
deviation was σ = 6.86m and they limited the potential
locations to a bounding box of 50m centred in the noisy
GPS reading oi. For the other parameters, we use the original
values of [19]: λy = 0.69 and λz = 13.35. The constraint
of the 50m radius around oi produced observations without
candidate points due to the existing nodes of the road network.
For these observations, we consider the nearest node of the
road network as candidate. Moreover, after further manual
inspection, we observed that in some of the trajectories the
taxi stays roughly in the same place, which we attribute to
heavy traffic. Consequently, we removed those trajectories and
we obtained 30 trajectories as test data, henceforth referred as
our ground-truth.

Finally, to vary the frequency of reports we subsample
the dataset by suppressing reports such that the interval
between consecutive points is at least ∆t. Since our focus
was on continuous scenarios, we selected the following set of
values: ∆t = [60, 120, 180, 240, 300, 360, 420, 480, 540, 600]
seconds. It should be noticed that the values in our set
are already considered low-sampling rate in the context of
MM [18], [24]. In the selected MM technique [19], they
consider a range of frequencies between 60 and 300 seconds.

B. Methodology

Figure 1 summarises the employed methodology. As ex-
plained in Section IV-A4, the GPS data is pre-processed using
the MM technique, resulting in the ground-truth, which in turn
is subsampled considering the aforementioned values of ∆t.
Then the LPPMs are applied to the subsampled data, i.e. to the
exact locations. Finally, the MM is executed on the obfuscated
locations to obtain the adversary’s estimations. To evaluate the
privacy level of the LPPMs, we used the average adversary
error, PAE , as a point-by-point metric, and the F1 score from
equation (3) as a trajectory metric. Moreover, to evaluate the

trade-off between the privacy and the utility of the LPPMs,
we resort to a real use-case based on geofencing.

1) LPPMs Configuration: In this work, LPPMs are ap-
plied and evaluated under multiple values of ε as follows
ε = [0.016, 0.032, 0.064, 0.128] m−1. As parameters of the
adaptive geo-indistinguishability mechanism, we started by
using the values defined in the original work. However, we
observed that the adaptive geo-indistinguishability was bene-
fiting the utility instead of the privacy level for the majority of
the values of ε and ∆t, since most instances appeared above
the ∆2 threshold (third branch of equation (2)). In order to
have diversity in the behaviour of the adaptive mechanism,
we selected two different values of ∆1 and ∆2. Figure 2
shows the boxplot of the estimation errors with the selected
thresholds, ∆1 = 750 and ∆2 = 1750. This ensures that
we encompass a set of scenarios in which adaptive geo-
indistinguishability optimises for privacy (lower values of ∆t,
where most instances are below ∆1), utility (higher values
of ∆t) and intermediate cases. Lastly, regarding the simple
linear regression, we chose to use the parrot function because
it exhibited the best results [17]. The parrot function simply
consists of returning the previous value as the prediction.

Regarding the selection of the obfuscation radius r of the
clustering mechanism, we resorted to the original definition
of PL, such that ε = l/r or, likewise, r = l/ε. For that,
we considered the above set of ε values and l = log(4), as
suggested by the authors [7]. As we can observe, the same
value of r can be obtained with different combinations of
values of ε and l. Therefore, the degrees of freedom of our
mechanism actually correspond to the value of ε and r, with
r being a function of ε. As such, we focus our analysis on the
effect of ε.

2) MM Configuration: The parameters σ, λy and λz for
the MM attack were estimated following the proposal of the
authors in [19]. To estimate the σ, we calculated the standard
deviation of the location measurement errors. To estimate λy
and λz , we measured the circuitousness and the temporal
implausibility for a selected group of trajectories. Regarding
the selection of the trajectories, the authors used the paths
with duration between 1 and 5 minutes, resulting in 4828
trajectories with an average length of 2.6 km. In the same
way, we used the trajectories with duration between 1 and 5
minutes that had at least 2 km of travelled distance, resulting
in 6003 trajectories. The estimation of the parameters resulted
in the following values: λy ≈ 0.07 and λz ≈ 0.74.

Furthermore, considering the efficiency of the attack, we
only take into account candidate points within a radius com-
puted for MM. To compute this radius, we use the inverse
distribution function of the Gaussian distribution, such that
the circle centred at the observation contains the exact location
with 90% probability. Intuitively, this corresponds to the case
where the attacker computes the set of potential locations,
where with 90% probability the exact location is in the set.
When there is not a candidate within this radius, we consider
the nearest node of the road network as candidate. The road
network used covers the area defined by the referred bounding
box and was obtained from OpenStreetMap using the OSMnx
tool [25]. The road network is in the form of a networkx multi-
digraph, which is manipulated using the NetworkX tool [26].

C. Number of Points per Cluster
Figure 3 shows the average number of points per cluster

obtained by applying clustering geo-indistinguishability as
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Fig. 1: Diagram of the followed methodology.
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Fig. 2: Boxplot of the estimation errors of the adaptive geo-
indistinguishability with varying minimum interval between
points ∆t. Dashed lines correspond to the thresholds ∆1 and
∆2.

a function of ∆t for various ε values. As aforementioned,
the clusters were created according to the obfuscation ra-
dius, that is related to the value of ε. Thus, for the set
of ε values, the used set of radiuses is approximately r =
[86.64, 43.32, 21.66, 10.83] m. As expected, for lower values
of ∆t, the number of points per cluster is higher than for
higher values of ∆t. This can be explained by the proximity
of the locations when the time interval is lower. In particular,
from this figure, we can observe that the number of points
per cluster is approximately less than three for the values of
∆t ≥ 360 s in all values of ε that we used. The other five
values of ∆t correspond to time intervals between 60 to 300
seconds, that is, from the case where the user is reporting
at every minute until the case where the user is reporting
every 5 minutes. Therefore, as we will detail in the following
subsections, the impact of our mechanism on privacy and
utility will be higher for values of ∆t ≤ 300 s, that is, for
time intervals smaller or equal than 5 minutes.

Furthermore, we can observe from Figure 3 that the average
number of points per cluster increases with the decrease of
the ε value, for all ∆t values. This can be explained by the
original definition of PL, such that ε = l/r and, likewise,
r = l/ε. From this definition, we have that a higher value
of ε corresponds to a smaller radius r. Thus, the radius of
the obfuscation clusters is smaller for higher values of ε and,
consequently, there are less points per cluster for those ε
values.

D. Privacy Evaluation

To evaluate the privacy of the mechanism, we used the
adversary error as a point-by-point metric, and the F1 score as
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Fig. 3: Average of points per cluster obtained by applying
the clustering geo-indistinguishability for different values of
ε, with varying minimum interval between points ∆t, and
respective 95% confidence intervals.

a trajectory metric. The obtained results will be compared with
the results of the PL and the adaptive geo-indistinguishability.

1) Adversary Error Metric: Figure 4 presents the average
adversary error of the three mechanisms as a function of ∆t

for various ε values. As we can observe, the results of the
clustering geo-indistinguishability are similar to the results
of the PL mechanism. In fact, these results reveal that our
mechanism maintains the privacy level point-by-point.

When we compare the results of the adaptive geo-
indistinguishability with the results of the clustering geo-
indistinguishability, we observe that the difference between
the average adversary error is less than ∼10 m for ε =
[0.016, 0.032] and ∆t ≥ 420 s, for ε = 0.064 and ∆t ≥ 300 s,
and for ε = 0.128 and ∆t ≥ 240 s. For the remaining cases,
the adaptive geo-indistinguishability has a bigger adversary
error, which can be explained by the fact that the adaptive
mechanism is mostly benefiting the privacy level in those
cases. As mentioned in Section II-B, this behaviour is a con-
sequence of the parameters used in the adaptive mechanism.
From equation (2) and from Figure 2, we have that: ε = β× ε
when the estimation errors are greater than ∆2; ε = ε when the
estimation errors are between ∆1 and ∆2; and ε = α×ε when
the estimation errors are lower than ∆1. Therefore, as we can
observe in Figure 2, the majority of the estimation errors for
values of ∆t ≤ 240 s is lower than ∆1, then the mechanism
improves the privacy level by increasing the obfuscation level,
which results in larger adversary errors. For the remaining
values of ∆t, the mechanism does not change the value of ε
or improves the utility, by increasing the value of ε, which
results in lower values of adversary error.

2) F1 Score Metric: Figure 5 shows the comparison be-
tween the three mechanisms. When we compare clustering



geo-indistinguishability with the PL mechanism, we can ob-
serve that the clustering mechanism has lower values of F1

score for all values of ∆t < 360 s and all values of ε, which
means higher privacy level. For the remaining values of ∆t, F1

score is lower in some values of ∆t and ε and slightly higher
in others. As we showed in Section IV-C, the number of points
per cluster is higher for ∆t < 360 s and, therefore, the impact
of our mechanism is more significant for these values of ∆t.

Regarding the adaptive geo-indistinguishability, we can
observe that the results of the F1 score become similar to
the results of the clustering geo-indistinguishability with the
increase of the ∆t values, which can be explained by the
behaviour of the adaptive mechanism. Since for higher values
of ∆t, the estimation errors are higher and, consequently, the
mechanism tends to improve the utility of the data. Moreover,
the difference between the F1 score of the adaptive and the
clustering mechanisms is less than∼ 5% for ε = [0.016, 0.032]
and ∆t ≥ 300 s, and for ε = [0.064, 0.128] and ∆t ≥ 240
s. From Figure 5, we can further observe that the clustering
geo-indistinguishability has lower values of F1 score in some
of these cases.

Lastly, we can observe from Figure 5 that for lower values
of ∆t and ε, the adaptive mechanism has an F1 score of about
20%. Recalling the meaning of this metric, this value translates
to an overlap between the output path and the ground-truth
path of approximately 20%. Thus, the mechanism discloses
less than a quarter of the original trajectory. While this is
advantageous from a privacy perspective, it leads to a severe
degradation of utility as we will now illustrate.

E. Utility Evaluation
To evaluate the utility of the mechanisms, we consider a

real use-case based on geofencing. Geofencing is the process
of generating virtual geographical perimeters/areas in where
events occur when users enter or leave such perimeters. A
location service provider can create geofences around locations
of interest (e.g. Points of Interest (PoIs)), such that users
traversing the geofence can receive relevant information with
respect to the location (e.g. marketing or discounts from
supermarkets).

Therefore, we created geofences to several PoIs from San
Francisco. In order to have diversity of PoIs, we used PoIs
from different domains, namely: hotels, museums and su-
permarkets. These PoIs were obtained from OpenStreetMap
using the OSMnx tool [25], resulting in a total of 524
PoIs. Moreover, the geofences were created under multi-
ple values of radius r. The used set was defined as r =
[100, 200, 300, 500, 1000] m. This set was chosen according
to the guidelines for creating geofences for android develop-
ers [27], where a minimum radius of 100-150 m is recom-
mended.

In our work, when a user enters in the area of a geofence,
the application retrieves this PoI. Thus, we executed the appli-
cation for the ground-truth user mobility locations to obtain the
ground-truth PoIs. Then, we executed the application for the
obfuscated user mobility locations that result from applying
the PL, the adaptive geo-indistinguishability and the clustering
geo-indistinguishability, to obtain the reported PoIs. Finally, in
order to measure how the reported PoIs match the ground-truth
PoIs, we used the classification true/false positive/negative.

To classify the results as True Positive (TP), True Negative
(TN), False Positive (FP) or False Negative (FN), we first
defined the positive class and the negative class. Since the

TABLE I: Classification True/False Positive/Negative.

Ground-Truth Reported Classification
A given PoI Correct PoI True Positive

None None True Negative
A given PoI, None Incorrect PoI False Positive

A given PoI None False Negative

objective of the application is to return PoIs, we define
returning a PoI as the positive class and returning None as the
negative class. When the reported PoI is equal to the ground-
truth PoI, we have a TP. When both the ground-truth and
the reported do not return any PoI, we have a TN. When the
ground-truth returns a PoI or None and the reported returns a
different PoI, we have an FP. Lastly, when the reported returns
None and the ground-truth returned a PoI, we have an FN. This
classification is summarised in Table I.

Based on this classification, we were interested in knowing
how many PoIs were correctly or incorrectly identified. To
do so, we used the True Positive Rate (TPR) and the False
Positive Rate (FPR), which are defined as follows:

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
(4)

Although we used the TPR and FPR, we could have used
the True Negative Rate (TNR) and the False Negative Rate
(FNR) because the metrics are complementary. However, from
the point of view of the utility, the TPR is more relevant since
it corresponds to the cases of both the ground-truth and the
LPPM returning the same PoI.

Figures 6a and 6b respectively represent the TPR and the
FPR of the three mechanisms averaged for all values of ∆t,
for each ε, and for each geofence radius From Figure 6a, we
can observe that the TPR of all three mechanisms improves for
growing ε values. This is expected since higher ε values corre-
spond to lower obfuscation and, therefore, obfuscated locations
that are closer to the real ones. This effect of ε fades away
with increasing geofence radius, since a larger radius increases
the size of the geofence region and, consequently, benefits the
probability of getting the correct PoI, irrespectively of the level
of obfuscation applied.

Regarding the comparison between the mechanisms, we
can observe that the adaptive geo-indistinguishability has the
lowest TPR for all values of ε and all values of the geofence
radius. As we observed before, the adaptive mechanism has
higher adversary errors, which means a higher distance be-
tween the reported point and the exact user location. Thus,
these results reveal that the adaptive mechanism is improving
the privacy level by degrading the utility of the data. On
the other hand, the clustering geo-indistinguishability has the
highest TPR, except for the radius of the geofence 100 m and
ε = 0.016. This exception can be explained because the ε =
0.016 corresponds to an obfuscation radius of approximately
86 m. Thus, as the mechanism creates obfuscation clusters
within a radius of 86 m, the distance between the obfuscated
locations and the exact user locations included in the cluster
can be higher than the radius of the geofence and, hence, the
mechanism reports an incorrect PoI. As we mentioned before,
when the geofence radius increases, the difference between the
TPR of the clustering geo-indistinguishability and the other
mechanisms decreases. In particular, when the radius of the
geofence is 1 km, the TPR of the three mechanisms is similar
for high values of ε, since the increase of the radius of the
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(b) Clustering
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(c) Adaptive

Fig. 4: Average adversary error and respective 95% confidence intervals of PL, clustering and adaptive mechanisms for different
values of geo-indistinguishability privacy parameter ε, with varying minimum interval between points ∆t.
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(c) ε = 0.064
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Fig. 5: Comparison between the F1 score value of the PL, the adaptive and the clustering geo-indistinguishability for different
values of ε, with varying minimum interval between points ∆t, and respective 95% confidence intervals.

geofence, i.e. the increase of the geofence region, benefits the
probability of reporting correct PoIs.

Figure 6b shows the FPR of the three mechanisms. In-
versely to the TPR, here the FPR decays with increasing
ε, since higher ε values correspond to less obfuscation and,
therefore, improved FPR. As we can observe, the adaptive
mechanism has the highest value for all geofence radiuses,
which means that this mechanism reports more incorrect PoIs.
On the other hand, the PL mechanism and the clustering geo-
indistinguishability report fewer incorrect PoIs, again with our
scheme closely following PL. Lastly, when the radius of the
geofence grows, the size of the geofence region increases
and, consequently, the probability of reporting PoIs is higher.
However, this also leads to a high probability of reporting
incorrect PoIs, which explains the increase of the FPR for
larger geofence radius.

F. Trade-off Between Privacy and Utility
According to the performed evaluation of both the privacy

and the utility level of the mechanisms, we can conclude
how the mechanisms deal with the trade-off between privacy
and utility. In comparison with the PL mechanism, the clus-
tering geo-indistinguishability improves the privacy level for
continuous reports of location data (i.e. lower values of ∆t),
with little to no penalty in terms of utility loss (measured
by TPR), except for the case of the combined lowest ε and
lowest geofence radius explained earlier. The comparison of
our clustering scheme with adaptive geo-indistinguishability
shows that the adaptive mechanism is able to achieve higher

privacy levels (i.e. lower F1 scores) for continuous scenarios
(smaller ∆t values), albeit at a severe cost in terms of utility,
as shown in the practical geofence analysis. Therefore, we can
conclude that the clustering geo-indistinguishability provides a
favourable trade-off between privacy and utility for continuous
reports.

V. CONCLUSION

Location privacy is an emerging topic of research due to the
pervasiveness of LBSs. Regardless of the benefits that these
services offer to users, the shared data are not always and
only used for the initial purpose. In order to protect the users,
LPPMs have been proposed. Our objective was to develop a
mechanism that protects users not only against single reports
but also over time, against continuous reports. Toward this
goal, we developed a new mechanism that is suitable for
continuous reports of location data and that improves the level
of privacy for continuous reports, with limited or no loss in
terms of utility.

To develop the mechanism, we took into consideration the
geo-temporal correlations, namely the distance between the
reported locations and the frequency of updates. Thus, we
created a clustering geo-indistinguishability mechanism that
creates obfuscation clusters, such that the the same obfus-
cated point is reported for nearby locations. According to
the performed analysis, our mechanism improves the privacy
level in comparison with the PL mechanism, with little to no
loss in terms of utility. Moreover, although the adaptive geo-
indistinguishability exhibits higher privacy levels, it does so



(a) TPR (b) FPR

Fig. 6: Comparison between the TPR and the FPR of the PL, the adaptive geo-indistinguishability and the clustering geo-
indistinguishability for the average of the ∆t values and for different values of geofence radius and ε.

at the cost of an undesirably high loss of utility, as shown by
our analysis of a practical geofence application.
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