
Efficient Privacy Preserving Distributed
K-Means for Non-IID Data

André Brandão1, Ricardo Mendes2[0000−0003−2077−7223], and
João P. Vilela1[0000−0001−5805−1351]

1 CRACS/INESCTEC, CISUC and Dep. of Computer Science,
Faculty of Sciences, University of Porto, Portugal

2 CISUC, Dep. of Informatics Engineering, University of Coimbra, Portugal

Abstract. Privacy is becoming a crucial requirement in many machine
learning systems. In this paper we introduce an efficient and secure dis-
tributed K-Means algorithm, that is robust to non-IID data. The base
idea of our proposal consists in each client computing the K-Means al-
gorithm locally, with a variable number of clusters. The server will use
the resultant centroids to apply the K-Means algorithm again, discov-
ering the global centroids. To maintain the client’s privacy, homomor-
phic encryption and secure aggregation is used in the process of learning
the global centroids. This algorithm is efficient and reduces transmis-
sion costs, since only the local centroids are used to find the global cen-
troids. In our experimental evaluation, we demonstrate that our strategy
achieves a similar performance to the centralized version even in cases
where the data follows an extreme non-IID form.

Keywords: Privacy · Distributed Clustering · Federated Learning · Homomor-
phic Encryption · Secure Aggregation

1 Introduction

Ubiquitous devices allow for ever-growing data collection. This data is useful
in machine learning to optimize services and to extract information about the
population [17]. For example, sensor data from mobile phones can be used to
infer transportation modes [8] or to accurately estimate traffic congestion [23].

One of the techniques to extract information is clustering, where algorithms
partition objects into groups in order to find hidden structures in the data [27].
Clustering algorithms belong to the unsupervised learning class, i.e., they can
learn from unlabeled data. Labeling datasets is both costly and time consuming
[31], therefore clustering plays a crucial role in the machine learning paradigm.

In order to increase the amount and diversity of the data, entities can jointly
apply learning algorithms to the combined data. This is also used in the mobile
scenario, where each user shares his collected data. Traditionally, in this context,
learning is performed in a central trusted server, which receives the data from
all entities. However, this approach requires data owners to trust the server

2 André Brandão et al.

with their data, thus posing a privacy risk [25]. In order to overcome this issue,
distributed privacy preserving mechanisms have been proposed.

Distributed privacy preserving mechanisms can be evaluated in three axis:
privacy guarantees, efficiency and robustness to non-IID data. In the context
of mobile/crowd-sourcing scenarios, robustness to non-IID data is particularly
important, as the clients are the individuals collecting and storing the data. In
turn, this data might belong to a single or to a small subset of clusters that may
strongly vary between the different clients (non-IID case). This situation can
reveal to the clustering server which cluster(s) the client’s data belongs to, thus
posing a risk to individuals’ privacy. For example, in [11] information related to
the users’ app permission choices were clustered to create privacy profiles, where
each user belonged to a single profile. Therefore, in this case, a server would
know the privacy preferences of each user.

Existing distributed privacy preserving clustering approaches fall short at
either privacy, efficiency and/or robustness to non-IID data. In this paper, we
propose a strategy to apply distributed K-Means that, unlike previous work,
is efficient, mutually private and robust to non-IID data. To reduce the data
that is shared with the server and for robustness against non-IID data, clients
compute the K-means locally, with a variable number of clusters, and only the
centroids are sent to the server. To preserve privacy, the centroids are encrypted
homomorphically, which still allows the server to compute the distance from the
local centroids to the global centroids, over encrypted data. The distances are
then sent to the clients who, after decryption, assign each local centroid to a
global centroid. To update the global centroids in the server, secure aggregation
is used, thus keeping the data private. Results show that the proposed strategy
achieves a similar performance to the centralized K-means even for non-IID data.

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 details our proposal and presents the evaluation results, while
section 4 concludes this work.

2 Related work

In this section we revise previous work in clustering and privacy preserving
distributed clustering. We identify the advantages and disadvantages of current
strategies and compare them according to their efficiency, privacy and robustness
to non-IID data.

2.1 K-Means

K-Means [12], is one of the most known and widely used clustering algorithms.
The goal of K-Means is to assign each observation to a single cluster minimizing
the within-cluster Euclidean distance:

C∗1 . . . C
∗
k = argmin

C1...Ck

∑
k∈K

∑
xi∈Ck

||xi − ck||2 (1)

Efficient Privacy Preserving Distributed K-Means for Non-IID Data 3

where K is the set of cluster IDs, Ck is a set of points representing a cluster
and ck is the centroid value, i.e., the mean point for cluster k. The C∗i are the
resulting clusters.

The algorithm works as follows: given a set of k initial centroids c
(1)
1 , c

(1)
2 , . . . ,

c
(1)
k , the algorithm iteratively executes the following two steps:

Assignment: Assign each observation to the cluster with the nearest mean,
with respect to the Euclidean distance.

Update: Compute the new centroids’ values:

c
(t+1)
i =

1

|C(t)
i |

∑
xp∈C(t)

i

xp (2)

The algorithm repeats these steps until the shift between the new centroids and
the previous ones is lower than a specified threshold ε, i.e. ||c(t+1) − c(t)|| ≤ ε.

2.2 Privacy preserving Distributed K-Means

McMahan et al. presented in 2017 an efficient strategy to train neural networks
from decentralized data [14]. This algorithm, designated by Federated Averaging
takes advantage of the local clients’ computing power to apply the gradient de-
scent algorithm to the clients’ data in their own devices. At each iteration, every
client will send the gradient to the server where it is averaged and distributed
to every client.

Triebe and Rajagopal joined mini batch K-Means [19] and Federated Averag-
ing to create the federated K-Means algorithm [24], where clients share the
centroids’ position and number of observations per cluster, instead of the gra-
dient. The server applies a weighted average over the centroids’ positions based
on the cluster size and send back the results to the clients. The main problem
with this approach in the context of non-IID data is that averaging points in
opposite extremes results in final centroids in the center of the dataset, thus
achieving poor performance. Another problem of this strategy is the centroids
initialization method. Since we do not have access to the data, we have to ran-
domly select k points from the input space X . However, this method achieves
poor performance and may lead to empty clusters [2].

A different approach to privacy preserving clustering is taken by methods that
resort to homomorphic encryption [10,26,28,30]. This encryption technique
allows the clustering to be done over the encrypted data, thus preserving privacy.
However, in order for the server to update the global centroids, the clients must
send the sum and number of points in each cluster to the server, which can
disclose which cluster(s) the clients’ data belongs to. Additionally, due to the
amount of data that is sent to the server, it allows clients to apply trilateration
to find the global centroids [15], thus it is not mutually private. Because all
data is encrypted and computations are made over the encrypted data, these
approaches are computationally expensive [5].

Another common strategy for private clustering is based on differential
privacy (DP) [6, 13, 18, 22]. DP consists on adding “statistical noise” that is

4 André Brandão et al.

significant enough to protect client’s privacy, but small enough to not affect the
model performance. Although this strategy is efficient and robust to non-IID
data, it lacks a systematic methodology, due to the challenge of defining the
amount of noise, as it highly depends on the dataset [3]. Other problems of dif-
ferential privacy include the inherent uncertainty in the answer and the fact that
the guarantees of immunity to background knowledge attacks are overstated [3].
It has also been shown recently, that DP can increase existing biases and have
substantial impacts on the accuracy [4].

An alternative private distributed clustering approach is to select a subset
of local points (representatives) and apply clustering over them. Soliman et
al. [21] proposed running the K-Means algorithm locally on each client and using
HyperLogLog counters to share the centroids and the approximate number of
observations per centroid in a decentralized fashion with the other clients. Then
a weighted averaging over all the centroids is done to find the global centroids.
Januzaj et al. [9] have a similar strategy, where local representatives are extracted
on site and then shared with the server, who finally performs a global clustering
over the representatives. Both strategies are efficient and robust to non-IID data,
but lack privacy. In the first strategy, the clients will know to which cluster(s)
the other clients’ data belongs to. In the second strategy, partial data, i.e. the
representatives, is sent to the server.

Finally, two under-looked problems arise in privacy preserving K-Means,
when there is no access to the data, which is how to choose the ideal num-
ber of clusters and compute the initial centroids. Additionally, because there is
no access to the dataset, the typical metrics to evaluate the model cannot be
used. In this paper we present an approach that overcomes the identified issues.
Specifically, we propose a K-means algorithm that is efficient, secure and robust
to non-IID data. We additionally propose secure inertia, a secure method that
allows the estimation of the ideal number of clusters, the creation of the initial
centroids and the evaluation of the final model.

3 Efficient Privacy Preserving Distributed K-Means for
Non-IID Data

This section details our proposed approach towards an efficient and secure K-
Means algorithm that is robust to non-IID data. In section 3.1 we describe our
proposed approach and in section 3.2 we present a detailed evaluation of the
privacy, efficiency and robustness to non-IID data of our strategy.

3.1 Description

We consider a setup where a set of clients, each possessing its own dataset of N
points with two features, aims to cluster their data. In this scenario, we propose a
mechanism that allows the clients to cluster their data, alongside the other clients
without the server knowing the clients’ points. The operation of our proposed
mechanism is illustrated via an example in figure 1. In the first stage, each client

Efficient Privacy Preserving Distributed K-Means for Non-IID Data 5

performs Diffie-Hellman Key Exchange so as to agree on a seed with the server.
Then, they will compute the sum and number of points in their local dataset.
These two statistics will be masked and securely sent to the server using secure
aggregation (“Send Masked Statistics” step on figure 1). Secure aggregation
presented by Bonawitz et al. [1] allows the secure sum of vectors using Diffie-
Hellman Key Exchange, where the resulting secret will be used as a seed to
generate random vectors. These random vectors will be the same for each pair
of clients: one of the clients adds the random vector and the other subtracts the
vector to their contributions and both send the result to the server. To the server
each contribution will be indistinguishable from a random vector. But when the
server adds all the contributions, the random vectors cancel out, retaining only
the real sum of every client’s contribution. Using this strategy the server is able
to compute the center point of all clients’ datasets. In the example from figure

1, (28+56,50+58)
100+200 = (0.28, 0.36). To improve the k-Means performance we choose

k random points close to the center point as initial centroids. Since the server
cannot choose k points from the data (known only to the clients) and choosing
random points from the input space would result in a poor performance [2].

While the server is initializing the centroids, the clients will apply the K-
Means to their local dataset to generate local clusters. Each client uses the
silhouette score to estimate the best number of local clusters as follows. Given
the following metrics:

a(i) =

∑
j∈Ci,i6=j d(i, j)

|Ci| − 1
b(i) = min

k 6=i

∑
j∈Ck

d(i, j)

|Ck|
s(i) =

a(i)− b(i)
max{a(i), b(i)}

where Ci is the set of points in cluster i and d(·) is the distance metric. We can
interpret a(i) has how well is point i assigned to its cluster and b(i) as the smallest
mean dissimilarity of any cluster except Ci. The silhouette score is defined as the
mean s(i), over all observations of the local dataset. We compute the silhouette
score for 2 ≤ k ≤ K, where K is the number of global clusters, defined by the
server. Then, the number of clusters for the model with the maximum silhouette
score is chosen as the optimal local number of clusters.

The resulting centroids for the local clusters will be sent to the server in a
secure way, using homomorphic encryption. Homomorphic encryption allows
one to perform calculations over encrypted data, in such a way that when the
result is decrypted it yields the same result as if the operations were made over
unencrypted data. The centroids will be encrypted and sent to the server, that
will compute the distances between the encrypted local centroids and the unen-
crypted global centroids. To calculate the distances between the pairs of points,
we will need a schema that is able to subtract scalars from encrypted numbers
and multiply an encrypted number by itself. The CKKS schema [20] offers us
that possibility. By only providing approximate results, it is more efficient, but
still precise enough for machine learning models [20], as we also assess. Even
with the encrypted centroids, the server would still be able to known how many
clusters each client has. In order to hide this informantion, each client will al-
ways send information about k clusters, by adding random centroids whenever
needed. In the example from figure 1, the server defined k = 2 as the number of

6 André Brandão et al.

clusters and Client B found a single centroid, namely (0.28, 0.29). So, the client
is going to send [c1 = (0.28, 0.29), c2 = (0.56, 0.89)], where the second centroid
is randomly created to deceive the server.

The server computes the squared distance between the encrypted local cen-
troids and every global centroid. The encrypted distances are sent back to the
users, who decrypt them and assign each local centroid to a global cluster. Now
each client sends to the server the sum and the number of points for each
cluster – this information is needed for the server to compute the new cen-
troids (equation (2)). In the example from figure 1, the resulting statistics are
[((0.28, 0.29), 1), ((0, 0), 0)], for client B, where (0.28, 0.29) represents the sum
of points in this cluster and 1 the number of points in the cluster. The dis-
tances for the random centroid are ignored and both the sum and the number of
points are set to zero. Since only the local centroids are sent to the server, this
will difficult the trilateration attack, since in order to infer the global centroids
from the distances, the client needs to have more points than the number of
features [15]. To update the global centroids in the server without revealing the
clients’ individual statistics, secure aggregation is employed again to send the
masked statistics. With these statistics, the server is able to compute the new
global centroids’ values by dividing the total sum by the total number, just like
in equation (2). These steps will be repeated until the new centroids are equal
to the previous ones or a maximum number of iterations is performed.

CLIENT A SERVER CLIENT B

Diffie-Hellman Key Exchange
Compute Sum and
Number of Points:
SUM=(28, 50)
NUM=100

Compute Sum and
Number of Points:
SUM=(56, 58)
NUM=200

Send Masked Statistics Send Masked Statistics

Sum Statistics to
Compute Average Point:
AVG POINT=(0.28, 0.36)

Obtain Initial Centroids by
Adding Random 1x2 Vectors

INIT. CENTROIDS: [(0.27, 0.34),(0.26,0.37)]

Apply K-Means over the
Local Dataset.
Result=[(0.28, 0.28), (0.28, 0.61)]

Homomorphic Encryption
of the Local Centroids

Generate Homomorphic
Encryption Keys

Apply K-Means over the
Local Dataset.
Result=[(0.28, 0.29), (0.56, 0.89)]

Homomorphic Encryption
of the Local Centroids

Generate Homomorphic
Encryption Keys

Random
Centroid
to Deceive
the Server

Send Encrypted Local Centroids Send Encrypted Local Centroids

Compute Encrypted Square Distances
Between Global and Local Centroids

Send Encrypted Distances Send Encrypted Distances

Decrypt Distances
Assign Each Local Centroid
to a Global Cluster

Compute the Sum and Number
of Points per Cluster:
[((0.28, 0.29), 1), ((0, 0), 0)]

Decrypt Distances
Assign Each Local Centroid
to a Global Cluster

Send Masked Statistics Send Masked Statistics

Sum the Contributions from all Clients:
Result: [((0.56, 0.57), 2), ((0.28, 0.61), 1)]

Random
Centroid
is Ignored

Update Global Centroids from
the Previous Result

NEW CENTROIDS:[(0.28, 0.285), (0.28, 0.61)]

Repeat Until
 the New
Centroids are
Equal to the
Previous Ones.

Compute the Sum and Number
of Points per Cluster:
[((0.28, 0.28), 1), ((0.28, 0.61), 1)]

Fig. 1: Sequence diagram (with example) of the proposed algorithm.

Efficient Privacy Preserving Distributed K-Means for Non-IID Data 7

3.2 Evaluation

To evaluate this strategy we ran the algorithm through 114 artificial benchmark
datasets3. To simulate an environment of non-IID data, we created 20 clients,
where each has a random number of clusters from 1 to k (depending on the
dataset). Every client has a random number of 70 to 90 observations from one
cluster and a random number of 1 to 30 observations for each of the remaining
clusters, except in the case of only one cluster, with 100 observations from the
same cluster. All random numbers are generated from a uniform distribution.

Since we have access to the cluster labels of the benchmark datasets, we
used the Adjusted Rand Index (ARI) metric to compare our strategy with the
centralized K-Means over the entire dataset [7]. Let Kt be the clustering ground
truth and Kp the clustering done by the model. If a is the number of pairs of
elements that are in the same set in Kt and Kp and b the number of pairs of
elements that are in different sets in Kt and Kp, then

RI =
a+ b

C
nsamples

2

(3) ARI =
RI− E[RI]

max(RI)− E[RI]
(4)

Since the Random Index (RI) in (3) does not guarantee a value close to zero
for random label assignments, we resort to the ARI in (4) that counters this effect
by subtracting the expected RI. We run the strategy 30 times for each dataset
and the one with lowest inertia is chosen. The inertia metric corresponds to the
sum of the distances of all points within a cluster to the respective centroid [16].
Each client computes the local inertia and, using secure aggregation, the server
obtains the total inertia, without knowing individual contributions. This metric
can be used to compare models and allows the server to use the elbow method to
estimate the best number of clusters in the dataset [29]. We chose the best inertia
because our goal is to prove that our strategy can achieve a good performance
with few repetitions. Additionally, this procedure replicates a real world scenario
where one computes the inertia securely in order to choose the best model.
We compared the results of our strategy to the centralized version in terms of
efficiency and robustness to non-IID, since the centralized version achieves the
best results in these two criteria.

Robustness to non-IID Data Figure 2a shows the distribution of the ARI
over the 114 datasets of the proposed strategy (orange) versus the centralized K-
Means (blue). From this plot, we can see that our strategy and the centralized K-
Means have a similar distribution, however our proposal achieves smaller values
at the extremes. In fact, our strategy was not able to achieve ARI values above
0.9 in around 10 datasets. However, it also produced fewer ARI values closer to
0 and achieved more ARI values between 0.6 and 0.9. Overall, we can conclude
that this strategy is consistent with the centralized version of K-Means.

Figure 2b presents the ARI score for every dataset. The number of datasets
for which our approach performed better than the centralized model is 56, worse
in 43 and had the same performance in 15 of the 114 datasets. As aforementioned,

3 https://github.com/deric/clustering-benchmark

https://github.com/deric/clustering-benchmark

8 André Brandão et al.

0.0 0.5 1.0
Adjusted Rand Index

0

10

20

30

Ab
so

lu
te

 F
re

qu
en

cy

Centralized
Distributed

(a) Adjusted rand index distribu-
tion.

Dataset
0.0

0.5

1.0

Ad
ju

st
ed

 R
an

d
In

de
x

Centralized
Distributed

(b) Adjusted rand index by dataset.

Fig. 2: Adjusted rand index distribution and adjusted rand index by dataset.

0.0 0.1 0.2 0.3 0.4 0.5
Differences

0.0

0.2

0.4

Re
la

tiv
e

 F
re

qu
en

cy Centralized is Worse
Centralized is Better

Fig. 3: Adjusted rand index differences.

when the centralized model is better, it is usually better by a larger difference
than when the centralized model is worse.

Figure 3 compares the differences between ARI scores when the centralized
model is worse than our strategy (blue distribution) and when the centralized
model is better than our strategy (orange distribution). We can observe, as
previously discussed, that the two distributions are similar. More than 50% of
the times, when the centralized model is better, the ARI differences are lower
than 0.1 and the same happens when the centralized model is worse. However,
we see a more uniform distribution in the interval between 0 and 0.1 when the
centralized model is worse, as to when the centralized model is better, where
approximately 45% of the times the difference is practically 0.

From figures 2 and 3 we conclude that the proposed strategy achieves a
similar performance to the centralized K-Means. Specifically, it achieves a better
ARI score in more datasets than the centralized version, but the majority of the
differences are lower than 0.1. Therefore, our strategy, while decentralized, is
robust against non-IID data.

Efficiency In order to understand the efficiency of our final strategy we com-
pared it to the strategy without privacy features, i.e. without secure aggregation
and homomorphic encryption. To measure the efficiency, we measured the exe-
cution time, without taking into account the network delay, in three dimensions:
number of points, number of clusters and number of clients. For each dimension
we measured the time spent by the clients and by the server. To facilitate the
efficiency evaluation, we assume the server to know how many clusters there are
in the dataset. Since the steps executed by the clients are done in parallel, the

Efficient Privacy Preserving Distributed K-Means for Non-IID Data 9

2 4 6 8 10
Number of Centroids in the Dataset

0

5

10

15

Ex
ec

ut
io

n
Ti

m
e

 (s
ec

on
ds

) W/o Privacy Features
W Privacy Features

(a) Clients’ execution time.

2 4 6 8 10
Number of Centroids in the Dataset

0.00

0.05

0.10

Ex
ec

ut
io

n
Ti

m
e

 (s
ec

on
ds

) W/o Privacy Features
W Privacy Features

(b) Server’s execution time.

Fig. 4: Execution time versus the number of centroids on the clients and server
side (95% confidence intervals are shaded). The case with privacy features cor-
responds to our proposed method.

20 40 60 80
Number of Clients

0
1
2
3
4

Ex
ec

ut
io

n
Ti

m
e

 (s
ec

on
ds

) W/o Privacy Features
W Privacy Features

(a) Clients’ execution time.

20 40 60 80
Number of Clients

0.00

0.02

0.04

0.06

Ex
ec

ut
io

n
Ti

m
e

 (s
ec

on
ds

) W/o Privacy Features
W Privacy Features

(b) Server’s execution time.

Fig. 5: Execution time versus the number of clients on the clients and server
side (95% confidence intervals are shaded). The case with privacy features cor-
responds to our proposed method.

reported clients’ execution time corresponds to the time of the slowest client.
We trained the model 30 times and in the following figures is presented the mean
values and the 95% confidence interval.

In Fig. 4 we present the execution time according to the number of centroids
in the dataset. We can observe that for the strategy with privacy features, most
of the work is done by the clients (see Fig. 4a). This is expected, since the clients
perform local clustering followed by the encryption of the centroids. The server
execution time shown in Fig. 4b is much higher without privacy features than
with privacy. This result is expected since without privacy features the server
needs to apply the full clustering algorithm as opposed to only computing the
distances and updating the global centroids. Nevertheless, for the server side,
both strategies have a rather low server execution time – below 0.1 seconds.
Thus, the predominant execution time is the clients’ time.

In Fig. 5 we present the execution time according to the number of clients.
The strategy with privacy takes more time to execute in the client side and slowly
increases with the number of clients. Specifically, its execution times are 1 to 2
seconds higher than the strategy without privacy features. This latter strategy
has a higher server execution time, but the difference is low, below 0.025, and
thus the total execution time is mostly affected by the clients’ execution time.

We additionally measured the execution time as a function of the number of
points in the dataset. Our results indicate that on both strategies, the execution
time is not affected by the number of points in the dataset (between 100 and

10 André Brandão et al.

50000). On the clients’ execution time, the strategy with privacy features takes
around 1 second more than the strategy without privacy features. On the server
side, this latter strategy takes around 0.025 seconds more than the strategy with
privacy features. We omit these plots due to the lack of space.

Overall, we consider the algorithm to be efficient. While it takes more time
than the strategy without privacy features it is only significant when the datasets
have many centroids. In this case, our strategy will take longer to execute.

To conclude, our proposal is robust to non-IID data while preserving the
privacy of individual contributions, as the server only accesses the encrypted
local centroids. Additionally, it is efficient at the expense of a slightly higher
execution time, yet within reasonable bounds when compared to the centralized
version. In particular, letting npts, ncol, ncent and ncli respectively represent
the number of points, coordinates per point, centroids and clients, our method
achieves a complexity of O(n2cent× (npts×ncol +n2col + 1) +npts×ncol) for each
client and O(ncli×n2cent +ncli×ncent×ncol)4 for the server. When compared to
the strategy without privacy features, with a complexity of O(npts×ncent×ncol)
for each client and O(ncli×n2cent×ncol) for the server, this confirms that the cost
of our scheme lies in the increase of the client execution time, with the server
execution time becoming even lower than for the base strategy without privacy.

4 Conclusion

In this paper, we propose a privacy preserving clustering algorithm that is pri-
vate, efficient and robust to non-IID. As far as we known, there is no method
that can fully fulfill the three. Our strategy based on local representatives, ho-
momorphic encryption and secure aggregation is capable of outperforming or
matching the centralized version in more than half of the datasets in terms of
Adjusted Random Index in a non-IID scenario. In terms of efficiency, the time
complexity moves from the server to the clients, yet leading to an overall time
complexity within reasonable bounds when compared to the centralized version.
Moreover, given the lack of secure metrics to evaluate models in a distributed
environment, we introduced secure inertia, a method to compute the inertia of
the model without sharing individual contributions. Our experiments show that
our strategy can effectively be made practical in real world settings.

Acknowledgements

The work presented in this paper was carried out in the scope of project COP-
MODE, that has received funding from the European Union’s Horizon 2020
research and innovation programme under the NGI TRUST grant agreement
no 825618, and the project AIDA: Adaptive, Intelligent and Distributed As-
surance Platform (POCI-01-0247-FEDER-045907), co-financed by the European
Regional Development Fund through the COMPETE2020 program and by the

4 We assume a constant time complexity for multiplication between the encrypted
centroids and the plaintext global centroids, according to [20].

Efficient Privacy Preserving Distributed K-Means for Non-IID Data 11

Portuguese Foundation for Science and Technology (FCT) under the CMU Por-
tugal Program. Ricardo Mendes wishes to acknowledge the Portuguese funding
institution FCT - Foundation for Science and Technology for supporting his
research under the Ph.D. grant SFRH/BD/128599/2017.

References

1. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving
machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1175–1191 (2017)

2. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient ini-
tialization methods for the k-means clustering algorithm. Expert systems with
applications 40(1), 200–210 (2013)

3. Clifton, C., Tassa, T.: On syntactic anonymity and differential privacy. In: 2013
IEEE 29th International Conference on Data Engineering Workshops (ICDEW).
pp. 88–93. IEEE (2013)

4. Farrand, T., Mireshghallah, F., Singh, S., Trask, A.: Neither Private Nor Fair:
Impact of Data Imbalance on Utility and Fairness in Differential Privacy, p. 15–19.
Association for Computing Machinery (2020)

5. Graepel, T., Lauter, K., Naehrig, M.: Ml confidential: Machine learning on en-
crypted data. In: Information Security and Cryptology – ICISC 2012. pp. 1–21.
Springer Berlin Heidelberg (2013)

6. Hu, X., Lu, L., Zhao, D., Xiang, J., Liu, X., Zhou, H., Xiong, S., Tian, J.: Privacy-
preserving k-means clustering upon negative databases. In: International Confer-
ence on Neural Information Processing. pp. 191–204. Springer (2018)

7. Hubert, L., Arabie, P.: Comparing partitions. Journal of classification 2(1), 193–
218 (1985)

8. Jahangiri, A., Rakha, H.A.: Applying machine learning techniques to transporta-
tion mode recognition using mobile phone sensor data. IEEE transactions on in-
telligent transportation systems 16(5), 2406–2417 (2015)

9. Januzaj, E., Kriegel, H.P., Pfeifle, M.: Towards effective and efficient distributed
clustering. In: Workshop on Clustering Large Data Sets (ICDM2003). vol. 60 (2003)

10. Jiang, Z.L., Guo, N., Jin, Y., Lv, J., Wu, Y., Liu, Z., Fang, J., Yiu, S.M., Wang,
X.: Efficient two-party privacy-preserving collaborative k-means clustering protocol
supporting both storage and computation outsourcing. Information Sciences 518,
168–180 (2020)

11. Liu, B., Andersen, M.S., Schaub, F., Almuhimedi, H., Zhang, S.A., Sadeh, N.,
Agarwal, Y., Acquisti, A.: Follow my recommendations: A personalized privacy
assistant for mobile app permissions. In: Twelfth Symposium on Usable Privacy
and Security (SOUPS 2016). pp. 27–41 (2016)

12. Lloyd, S.: Least squares quantization in pcm. IEEE transactions on information
theory 28(2), 129–137 (1982)

13. Lu, Z., Shen, H.: A convergent differentially private k-means clustering algorithm.
In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. pp. 612–
624. Springer (2019)

14. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-Efficient Learning of Deep Networks from Decentralized Data. In:
Int. Conference on Artificial Intelligence and Statistics. Proceedings of Machine
Learning Research, vol. 54, pp. 1273–1282. PMLR (20–22 Apr 2017)

12 André Brandão et al.

15. Navidi, W., Murphy Jr, W.S., Hereman, W.: Statistical methods in surveying by
trilateration. Computational statistics & data analysis 27(2), 209–227 (1998)

16. Palacio-Niño, J., Berzal, F.: Evaluation metrics for unsupervised learning algo-
rithms. CoRR abs/1905.05667 (2019), http://arxiv.org/abs/1905.05667

17. Sarker, I.H., Hoque, M.M., Uddin, M.K., Alsanoosy, T.: Mobile data science and
intelligent apps: Concepts, ai-based modeling and research directions. Mobile Net-
works and Applications pp. 1–19 (2020)

18. Schellekens, V., Chatalic, A., Houssiau, F., De Montjoye, Y.A., Jacques, L., Gribon-
val, R.: Differentially private compressive k-means. In: ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
pp. 7933–7937. IEEE (2019)

19. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th Interna-
tional Conference on World Wide Web. p. 1177–1178. WWW ’10, Association for
Computing Machinery (2010)

20. Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL (Apr 2020),
Microsoft Research, Redmond, WA. Accessed: 2020-11-26.

21. Soliman, A., Girdzijauskas, S., Bouguelia, M.R., Pashami, S., Nowaczyk, S.: De-
centralized and adaptive k-means clustering for non-iid data using hyperloglog
counters. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining.
pp. 343–355. Springer (2020)

22. Su, D., Cao, J., Li, N., Bertino, E., Jin, H.: Differentially private k-means clustering.
In: Proceedings of the sixth ACM conference on data and application security and
privacy. pp. 26–37. ACM (2016)

23. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H.,
Toledo, S., Eriksson, J.: Vtrack: Accurate, energy-aware road traffic delay estima-
tion using mobile phones. In: Proceedings of the 7th ACM Conference on Embed-
ded Networked Sensor Systems. p. 85–98. SenSys ’09, Association for Computing
Machinery (2009)

24. Triebe, O.J., Rajagopal, R.: Federated K-Means: clustering algorithm and proof of
concept (2020), online preprint: https://github.com/ourownstory/federated_

kmeans/blob/master/federated_kmeans_arxiv.pdf. Accessed: 2020-11-26.
25. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically parti-

tioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. p. 206–215. KDD ’03 (2003)

26. Xing, K., Hu, C., Yu, J., Cheng, X., Zhang, F.: Mutual privacy preserving k-
means clustering in social participatory sensing. IEEE Transactions on Industrial
Informatics 13(4), 2066–2076 (2017)

27. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on neural
networks 16(3), 645–678 (2005)

28. Yin, H., Zhang, J., Xiong, Y., Huang, X., Deng, T.: PPK-means: Achieving privacy-
preserving clustering over encrypted multi-dimensional cloud data. Electronics
7(11), 310 (2018)

29. Yuan, C., Yang, H.: Research on k-value selection method of k-means clustering
algorithm. J—Multidisciplinary Scientific Journal 2(2), 226–235 (2019)

30. Yuan, J., Tian, Y.: Practical privacy-preserving mapreduce based k-means cluster-
ing over large-scale dataset. IEEE Transactions on Cloud Computing 7(2), 568–579
(2019)

31. Zhang, W., Li, C., Peng, G., Chen, Y., Zhang, Z.: A deep convolutional neural
network with new training methods for bearing fault diagnosis under noisy envi-
ronment and different working load. Mechanical Systems and Signal Processing
100, 439–453 (2018)

http://arxiv.org/abs/1905.05667
https://github.com/Microsoft/SEAL
https://github.com/ourownstory/federated_kmeans/blob/master/federated_kmeans_arxiv.pdf
https://github.com/ourownstory/federated_kmeans/blob/master/federated_kmeans_arxiv.pdf

	Efficient Privacy Preserving Distributed K-Means for Non-IID Data

