
Effect of User Expectation on Mobile App Privacy:
A Field Study

Ricardo Mendes
CISUC

Dept. of Informatics Engineering
University of Coimbra

Coimbra, Portugal
rscmendes@dei.uc.pt

André Brandão, João P. Vilela
CRACS/INESCTEC and CISUC

Dept. of Computer Science
Faculty of Sciences
University of Porto

Porto, Portugal
{up201908477, jvilela}@fc.up.pt

Alastair R. Beresford
Dept. of Computer Science and Technology

University of Cambridge
Cambridge, England

arb33@cam.ac.uk

Abstract—Runtime permission managers for mobile devices
allow requests to be performed at the time in which permissions
are required, thus enabling the user to grant/deny requests in con-
text according to their expectations. However, in order to avoid
cognitive overload, second and subsequent requests are usually
automatically granted without user intervention/awareness. This
paper explores whether these automated decisions fit user expec-
tations. We performed a field study with 93 participants to collect
their privacy decisions, the surrounding context and whether each
request was expected. The collected 65261 permission decisions
revealed a strong misalignment between apps’ practices and ex-
pectation as almost half of requests are unexpected by users. This
ratio strongly varies with the requested permission, the category
and visibility of the requesting application and the user itself; that
is, expectation is subjective to each individual. Moreover, privacy
decisions are most strongly correlated with user expectation,
but such correlation is also highly personal. Finally, Android’s
default permission manager would have violated the privacy of
our participants 15% of the time.

Index Terms—Permission Managers, Privacy as Expectations,
Contextual Integrity, Mobile Devices, Android

I. INTRODUCTION

The pervasiveness of smart devices and the always con-
nected paradigm have fostered applications that benefit from
sensing the environment to provide contextualized services to
users. However, this constant collection and flow of informa-
tion present severe privacy and security risks [1], such as the
possibility of disclosure through data breaches.

Due to their inherent capacity to collect high quantities
of sensible data, smartphones have implemented permission
managers to give users control over which applications can
access certain device resources, including sensors and data.
Both Android’s and iOS’s permission managers implement
runtime permissions, where an application attempting to access

This work is supported by project COP-MODE, that has received funding
from the European Union’s Horizon 2020 research and innovation pro-
gramme under the NGI TRUST grant agreement no 825618, and the project
SNOB-5G with Nr. 045929 (CENTRO-01-0247-FEDER-045929) supported
by the European Regional Development Fund (FEDER), through the Regional
Operational Programme of Centre (CENTRO 2020) of the Portugal 2020
framework and FCT under the MIT Portugal Program. Ricardo Mendes wishes
to acknowledge the Portuguese funding institution FCT - Foundation for
Science and Technology for supporting his research under the Ph.D. grant
SFRH/BD/128599/2017.

a sensitive resource must first check if it has permission; if
not, permission is requested from the user. By using runtime
permissions, the permission requests made to the user are well
contextualized by the app, typically at the time the resource
is required, thus helping users with their decision to allow
or deny the request [2], [3]. The problem with this model
however, is that, after being allowed once, the permission is
typically automatically granted on all subsequent occasions,
including when the user is unaware that the app is running [4],
[5], thus violating privacy’s contextual integrity [6], or in other
words, defying users’ expectations.

Privacy as contextual integrity is a model that binds privacy
to the appropriateness of gathering and disseminating data at
each specific context [6]. In this model, context is not limited
to time and location, but is instead an abstract sphere that
describes a situation and thus can encompass the activity being
performed, the roles and norms binding each involved entity,
the cultural and political ecosystem, and any other information
that characterizes the current status. In this regard, any given
data practice might be both appropriate or a violation of
privacy depending on the context and on the expectations
of the user within that context [6]. In mobile devices, the
expectation of a user is their mental model that describes the
functionality of an app [7], i.e., what the app does and how it
works.

Expectation is important: if an app fully behaves as expected
by the user then fewer privacy problems would arise [7].
However, users’ expectations and app practices often diverge
due to the lack of knowledge by the user [2], [7] or by
apps’ intrusive practices [4], [5]. Expectations should guide
app design and support privacy-aware decisions [2], [7].

This work aims to evaluate the importance of the expec-
tation in privacy decisions through the lens of privacy’s con-
textual integrity [8]. Specifically, to measure the importance
of user expectation in privacy decisions and how strongly
it varies with changes in the context, such as the visibility
of the requesting app and the location of the user. Towards
this end, we have collected permission decisions and the
respective context and whether the requests were expected
(which we simply refer to as expectation) from 93 participants,

Joao Vilela
Carimbo



who carried an Android phone with a modified permission
manager for at least one week. This work makes the following
contributions:

• To the best of our knowledge, this is the first field study
to capture the expectation of users regarding runtime
permissions at scale and in-situ, thus avoiding poten-
tially aspirational responses that might not align with
behavior [9]. We make this dataset available to interested
researchers (see Section III-B).

• We uncover a strong misalignment between app prac-
tices and the expectation of users. Specifically from the
collected data, almost half of requests are unexpected
by users, a ratio that mostly varies with the requested
permission, category of the requesting app, the visibility
of the requesting app and, more importantly, the user.

• Privacy decisions see the strongest correlation with ex-
pectation, mainly due to the fact that 90% of expected
requests are allowed by users. However, expectation
greatly varies with each individual. Thus we conclude that
not only is expectation personal but so is the importance
of it in privacy decisions.

• Finally, our data shows that Android 9 default permission
manager would have resulted in privacy violations 15%
of the time, i.e. allowed permission requests that were
explicitly denied by our participants when using our
permission manager. This behavior is a clear violation of
privacy, which potentially originates from the need to im-
prove usability; that is, to reduce the number of requests
and therefore avoid warning fatigue and habituation. In
fact, with the default permission manager of Android 9, to
reach 15% of privacy violations the user would still have
to reply to a median of 64 permission request prompts
during the 7 day campaign period.

The remainder of this work is structured as follows. Sec-
tion II presents the related work and Section III describes the
methodology of the campaigns and details the data collection
tool. Section IV does an exploratory data analysis on the
collected dataset, with a focus on privacy decisions and the
respective expectation. Section VI concludes this work.

II. RELATED WORK

With runtime permissions, applications must request permis-
sion the first time they require access to a sensitive resource,
thus allowing finer-grained control over each particular per-
mission for any installed app [2]. By prompting at runtime,
permission requests are contextualized by the needs of the
application, therefore helping users to make an informed
decision [2], [3]. Additionally, it allows for the inclusion
of developer explanations in the prompts, clarifying their
necessity [10], [11].

The major problem with the current runtime permission
model lies not in the permission prompts, but in the resource
accesses that are made without user knowledge [4], [5], [12],
a clear violation of contextual integrity. After being granted
once, apps generally have access to a resource until the user
denies it through phone settings, which they typically do not

change [3] or, in newer Android versions (from Android 11)
until it is automatically reverted to the denied state after a few
months of not using the app. In fact, users feel their personal
space violated when confronted with apps’ intrusive prac-
tices [4], [13]. Consequently, industry permission managers
found in Android (and iOS) still fail to convey the privacy
risks that arise from allowing these permissions [2], [14].

Towards improving privacy awareness, researchers have
proposed using personal examples to better convey permission
risks [15], crowdsourcing the feelings of uneasiness regarding
apps’ practices [7], and designing better permission warn-
ings [16] or indicators of resource usage [17]. These types
of warnings can show information on how, how often and
even for which purpose permissions are used in a non-intrusive
approach [18], [19], thus leading users towards knowledgeable
privacy decisions. However, the challenges here relate to
the decision on which information is relevant and how to
clearly present this information such that users understand
and act upon these warnings [14], [18]. Furthermore, it has
been reported that these notices might “annoy” users when
prompted at inconvenient times [4], [20]. Solutions to this
latter problem include configurable periodic nudges [4], [21],
and contextualized notices [18], where the user is presented
with nudges that are relevant to the current context, such as
upon occurrence of a specific data practice.

To mitigate warning fatigue and habituation, a state where
users become desensitized and therefore promptly dismiss no-
tices, solutions for automatically setting permissions have been
proposed. These approaches leverage the correlation between
the user privacy decision, the category of the requesting app,
requested permission [2], personal preferences [20], [22] and
contextual features [23]–[25].

Automated and personalized proposals generally rely on
privacy profiles to capture personal preferences, where each
profile is a representation of privacy behavior from like-
minded individuals [22]. A small of number of profiles is
sufficient to describe the diverse space of permission deci-
sions [22] and a profile can be readily assigned through a
few questions [20], therefore bootstrapping the automation
while minimizing the required input. However, current privacy
profile approaches correspond to a static set of rules that
consequently fail to account for contextual integrity. Towards
tackling this issue, researchers proposed context-aware per-
mission managers [23]–[25]. The challenge here however,
relates to the definition and modelling of context [18], while
keeping the user interaction to a minimum. Therefore, to
model context, simplified approaches are typically used to
describe user state (e.g., time and location) and device status
(e.g., screen state). In particular, visibility of the app [5], [24]
has been reported as one of the most important contextual
features guiding the users towards granting or denying a
permission request.

Our research is more aligned with the work from [7], where
the authors inquire through surveys whether users expect
certain apps to require specific permissions, their degree of
comfort in allowing such permission and for which purpose



the app required the permission. From the responses, the
authors concluded that the comfort of the user is highly
related to their expectations, which in turn is influenced by the
knowledge about the apps’ requirements for the permissions.
The strongest limitation of this work is that it was conducted
with install-time permissions, in where users either accepted
all permissions, or refuse to install the application. Therefore,
it is inconclusive on how much expectation affects privacy
decisions. Furthermore, it does not capture privacy’s contextual
subjectiveness, that is, it fails to capture how expectation varies
with regard to the context of the phone [5], for example, the
visibility of the requesting app. In fact, the time at which
the request is accessed and the purpose of the access, the
context, are crucial [12]. In this work we collected privacy
decisions in-situ and at scale from 93 participants, including
their respective expectation for each permission request and
the surrounding contextual data. From this data we analyze the
expectation of users regarding current app practices under the
runtime permission model and evaluate its impact in personal
privacy decisions.

We should note that our field trial was run with Android 9,
the latest operating system at the time. Since our study, newer
releases have improved the permission manager. Following
research on the importance of app visibility in users’ privacy
decisions [5], Android 10 has introduced a new permission
that is required for apps to access location when the app is
in the background, thus enabling the user to allow access to
the location permission only while using the app. In 2020,
the permission manager in Android 11 implements: one-time
permissions, which grant an app the permission a single time;
permissions auto-reset, where granted permissions from apps
are automatically set to the denied state when the app is unused
for a few months; and automatically blocked permissions, for
permissions that are always denied by the user for specific
apps. The permission manager used in our campaigns, which
is described in Section III-A more closely resembles the modus
operandi of the permission manager from Android 11 as if the
user always chooses one-time permissions, with the difference
that in our permission manager user choice would be cached
for 30 minutes and replayed should the app require the same
permission during this time.

III. METHODOLOGY

In order to relate privacy decisions with the respective ex-
pectations, we perform data collection campaigns with a total
of 93 volunteers from Portugal. Participants were recruited
through word-of-mouth, university mailing lists and from oral
presentations. This resulted in the participation of 60 (64.5%)
students, 11 (11.8%) researchers and the remaining 19 (20.4%)
with diverse backgrounds. Some 66 (71%) participants were
between 18-24 years old, 25 (26.9%) between 25 and 39
and 2 (2%) over 40 years old. While most participants were
students, the professional areas of occupation diverged: 53
(57%) participants were from informatics engineering or com-
puter science, 12 (12.9%) from other engineer fields, 8 (8.6%)
from exact sciences other than engineering and the remainder

Fig. 1: An example of a translated (from Portuguese) permis-
sion prompt issued by Naive Permission Manager as a result
of the app “WhatsApp” checking for the contacts permission.

spread through other occupations, retired or did not answer
the question. Therefore, the dataset is skewed towards young
adults and slightly more than half with an IT background.

A campaign consisted of a period of at least 1 week,
where participants used borrowed smartphones that came
pre-installed with their personal apps, which we collected
beforehand through our campaign signup app, along with
Naive Permission Manager (NPM), our data collection tool
and permission manager. NPM and the collected data are
detailed in Section III-A.

Participants that showed interested in continuing the exper-
iments were sometimes allowed to continue using the phone
for longer. Participation was rewarded with a gift card with
the requirement of using the campaign phone as the main
smartphone for the duration of the campaign. While this
requirement was explicitly announced, we gave the voucher
to every participant.

A. Naive Permission Manager

To collect the data throughout the campaigns, the borrowed
smartphone has our Naive Permission Manager (NPM) pre-
installed alongside the participant’s personal apps. NPM is
both a permission manager and our data collection tool.
Specifically, NPM intercepts permission checks performed by
any app and prompts the user to either accept or deny the
permission. At the time of the prompt, NPM further collects
contextual data and additional information from the user as
follows:

• Requesting Application: name, package name, version
code, UID, flags and app category from the Play Store.

• Permission: the name and group of the permission and
the user response.

• Phone state: geolocation, plug, dock, call, screen and
keyguard states, network connection type, list of apps
running in the foreground and in the background. An



application is in the foreground if it either has an activity
in the foreground (visible to the user) or a service with a
foreground notification. Apps running in the foreground
and background have the same fields as the requesting
application.

• User context: current time, semantic location, Bluetooth
and WiFi devices in vicinity and whether the user is or
is not in an event, as returned by their calendar. The
semantic location was collected from user input, whose
possibilities were “home”, “work”, “travelling” or “other”
as illustrated in Figure 1.

• Expectation: the participant has to answer the question
(translated from Portuguese) “For what you were doing
with the phone, is this request expected?” with: yes, no
or do not know. See Figure 1 for an illustration on how
this data was asked to participants.

The permission dialog and context data are collected, stored
locally and finally sent opportunistically to our project server.

1) Implementation Details: The Naive Permission Manager
(NPM) comes preinstalled in campaign phones, acting as data
collection tool and permission manager. Below we provide
an implementation overview of NPM and refer the interested
reader to the project website for further detail [26].

With runtime permissions, apps need to check if they have
a permission before executing the API call that would collect
the data. If an app does not have the permission, the app may
or may not make a request [27], as it can check whether it
has the permission without explicitly asking the user. This
conditional execution led us to primarily intercept permission
checks, escalating them to permission requests in the form of
the prompts illustrated in Figure 1, while intercepting permis-
sion requests only to override the result with the participant
input given to the prompt created by NPM at the respective
permission check. This latter interception allow us to bypass
the Android default permission manager. Note that while we
collect the data at permission checks, we refer to this data as
permission requests.

In order to not bias the data, NPM follows the Android
system by only requesting dangerous permissions and man-
aging permissions on a group level [27], that is, if an app
requires the read calendar permission and the user grants
it, the app will automatically be granted the write calendar
permission on request. When a dangerous permission check
call is made by an app, NPM prompts the user as illustrated
in Figure 1 and collects the contextual data aforementioned.
Similarly to the work in [25], we cache the answer for 30
minutes, thus returning the same answer for the given app and
permission group for this duration, in order to avoid warning
fatigue [28]. The permission icon and permission description
are obtained directly from the Android operating system, so
as to not bias the response. To avoid breaking functionality,
NPM does not handle permission requests from system apps,
letting the Android native permission manager handle those.

B. Dataset Sharing and Ethics

Due to the limitations in existing datasets, we make an
anonymized version of our dataset available to interested
researchers [29]. Please contact us for access or for potential
collaborations. All shareable data is stripped of identifiable
information. Our Naive Permission Manager is open-sourced
and freely available [30].

This research was approved by the Ethics Committee,
Department of Computer Science and Technology, University
of Cambridge, and by the Ethics Commission of the Faculty
of Sciences and Technology of the University of Porto.

IV. DATASET CHARACTERIZATION AND EFFECT OF USER
EXPECTATION

From the 93 participants, we collected 2180302 permission
requests at an average of 836.85 requests per day and per
participant with a standard deviation (std) of 19.15, or 34.87
(std = 0.8) per hour. These numbers prove that an ask-on-
every-time approach, the ideal privacy choice, is infeasible in
practice. Note however, that this number varies with general
phone usage, including the type of installed apps. Of the
total requests, 65261 (2.99%) were answered by participants,
corresponding to an average of 25 (std = 0.42) answers
per day, per participant. Permissions not answered by the
participant were either answered by the cache, timeouts or
dismissed. The following subsections analyze these answers,
where Section IV-A focuses on the grant result, that is, whether
the user allowed or denied the permission, while Section IV-B
delves into the effect of user expectation on privacy decisions.

A. Analysis of Grant Ratio and Privacy Violations

From the 65261 answered requests, participants granted
43263 (66.29%), while denying the remaining 21998
(33.71%); that is, users grant 2 out of every 3 permission
requests. These results strongly contrast with the grant rate
reported in [2], where participants granted 86% of requests.
This disparity occurs due to the fact that the data in [2]
was collected from Android’s runtime permission prompts,
which only occur when apps have their permissions denied
and are running a foreground activity. However, after being
allowed once, applications can access the resource any time
even without the user being aware, until it is explicitly denied
through the phone settings. Our permission dialog, on the other
hand, prompts users on every permission check, unless the
same permission has been answered in the last 30 minutes
as previously explained, including from background apps,
regardless of whether they previously had the permission
granted.

Similarly to the results discussed in [2], our data reveals a
strong variation of the grant ratio depending on the category of
the requesting app and the requested permission. Specifically,
the grant ratio varies mostly in the interval of [45, 75]%
depending on the category and in the interval of [45, 85]%
depending on the requested permissions, as displayed in GR
information on the labels of the axis of Figure 3. CAMERA,
STORAGE and CALENDAR permissions are granted over



grantResult expectation

category_VIDEO_PLAYERS
permission_PHONE

category_SOCIAL
isTopAppRequestingApp
isRequestingAppVisible

selectedSemanticLoc_Travelling
permission_CAMERA

networkStatus_METERED
category_COMMUNICATION

permission_STORAGE
expectation
grantResult

-0.2 -0.16
-0.17 -0.23

0.0069 0.11
0.033 0.15
0.065 0.24

0.1 -0.065
0.11 0.11
0.12 -0.054
0.14 0.13
0.18 0.18
0.57 1

1 0.57

Fig. 2: Pearson correlation coefficient for the grant result and
expectation with all other features, where categorical features
are one-hot encoded, requests with UNKNOWN expectation
value removed and coefficients in the interval of ]−0.1, 0.1[
are omitted.

80% of the time, which might indicate that when apps request
these permissions, there are contextual cues or a clear necessity
that lead users to allow. We further discuss this aspect when
analyzing the grant rate as a function of the expectation of the
request.

It is possible to assess the number of privacy violations
of the default Android Permission system. Specifically, we
can measure the number of requests that would have been
allowed by Android’s permission manager but instead were
denied by the user, as after being accepted once the permission
is allowed everytime. We do so by counting the number of
requests for each pair of app–permission that were denied
after being accepted once. From the 65261 user answered
permissions, 9950 (15%) were denied by participants that
would have otherwise been allowed by Android’s permission
manager. Note that while this number seems rather small, this
corresponds to privacy violations 15% of time. Additionally,
due to the fact that the default Android permission manager
would prompt a request until the user allows a permission
for each specific app, achieving this violation rate with an
Android system would require users answering an average
of 129.5 permission prompts (median of 64). The privacy
violation ratio is identical to the results from [24] (from their
table III, 15.39% would be wrongly allowed). However, the
number of prompts is significantly different, as we saw a
median of 64 prompts per user, whereas [24] reported 12.34.
This disparity is justified by the fact that their work came
before the introduction of runtime permissions in Android,
and therefore the set of dangerous permissions that the authors
considered differs from our set, the default Android dangerous
permissions.

From the 139440 requests where we have contextual data,
53938 (39%) were requests in where the requesting app was
in the foreground and the remaining 85502 (61%) from the
background, that is, approximately two thirds of the requests
come from apps running in the background. Users allow 68%
of requests coming from visible apps, while allowing 62%
of requests from background apps. In contrast with the line

of work in [5], [24], our values suggest that the visibility
of the requesting app actually has limited importance in
the privacy decision; the pair category-permission is more
relevant. Figure 2 confirms this hypothesis, by showing the
Pearson correlation coefficient for the grant result and all
relevant features, where the visibility of the requesting app
(isRequestingAppVisibility) sees a coefficient value close to
0, while some categories and permissions see a stronger
correlation.

B. Analysis of the Effect of User Expectation

The strongest correlation with the grant result, that is, the
privacy decision to either accept or deny the permission, is
user expectation with a coefficient value of 0.57, as evidenced
in Figure 2. This result can be further analyzed by looking
at the distribution of the grant result for each expectation
value, which can be EXPECTED, UNEXPECTED or UN-
KNOWN, where this latter value corresponds to when the user
was unsure whether the request was expected or unexpected.
Specifically, when users expect a request, they allow it 92%
of the time, while allowing only 38% of the requests that
are unexpected. When in doubt, the user accepts 2 out of 3
(≈ 67%) requests, which is inline with the global grant ratio.
These results indicate that developers should explain the ra-
tionale behind permission requests, a possibility implemented
since Android 6.0 and iOS6, that has been shown to help
with privacy decisions [11], yet it is still largely unused in
practice [10].

From the 65261 user answered requests, 52% were EX-
PECTED, 46% were UNEXPECTED and the remaining 2%
were UNKNOWN, that is, the participant was unsure whether
the request was expected or unexpected. In other words, almost
half of requests are unexpected. This result reveals a strong
misalignment between app practices and the expectation of
users, and therefore calls for more transparency from app
developers, as an informed user is a comfortable user [7], and
endorses the use of the minimum required permissions for the
functionality of the app.

Similarly to the grant result, user expectation varies for each
category and each permission. Figure 3 presents the average
expectation for each pair of category-permission and the grant
and expected ratios, where the latter is the percentage of
EXPECTED requests, for each category and permission. It is
clear from the plot that some pairs of category-permission are
often expected, such COMMUNICATION-STORAGE, while
others are often unexpected, such as GAME-PHONE. In
fact, the PHONE permission sees the lowest expected ratio
from all permissions at only 22.3%, closely followed by the
CALL LOG permission with 23.6% of expected requests.
Our reasoning for these low values lies on their lack of
understanding surrounding these two permission groups. The
CALL LOG permission group was created in Android 9 by
moving some of the PHONE permission to the former group.
At the time of the study it is possible that some users did
not have Android 9 in the personal phones and were therefore
first exposed to this permission group during the campaign.



CALENDAR
ER=59.2%
GR=80.9%

CALL_LOG
ER=23.6%
GR=76.7%

CAMERA
ER=74.4%
GR=86.7%

CONTACTS
ER=53.3%
GR=62.4%

LOCATION
ER=47.6%
GR=61.7%

MICROPHONE
ER=60.1%
GR=68.6%

PHONE
ER=22.3%
GR=44.4%

SMS
ER=29.5%
GR=55.7%

STORAGE
ER=71.0%
GR=82.7%

Permission

AUTO_AND_VEHICLES
ER=54.0%; GR=72.5%

BOOKS_AND_REFERENCE
ER=19.4%; GR=38.7%

BUSINESS
ER=50.4%; GR=46.1%

COMMUNICATION
ER=62.2%; GR=75.4%

EDUCATION
ER=78.4%; GR=79.0%

ENTERTAINMENT
ER=30.0%; GR=49.1%

EVENTS
ER=1.5%; GR=1.5%

FINANCE
ER=44.1%; GR=62.4%

FOOD_AND_DRINK
ER=58.0%; GR=58.6%

GAME
ER=20.7%; GR=22.3%

HEALTH_AND_FITNESS
ER=25.9%; GR=73.6%

LIFESTYLE
ER=22.9%; GR=63.9%

MAPS_AND_NAVIGATION
ER=48.7%; GR=67.1%

MUSIC_AND_AUDIO
ER=33.8%; GR=56.0%

NEWS_AND_MAGAZINES
ER=62.6%; GR=70.4%

PERSONALIZATION
ER=27.1%; GR=95.8%

PHOTOGRAPHY
ER=80.3%; GR=80.3%

PRODUCTIVITY
ER=33.1%; GR=65.9%

SHOPPING
ER=25.1%; GR=57.6%

SOCIAL
ER=59.9%; GR=66.6%

SPORTS
ER=45.3%; GR=54.8%

TOOLS
ER=36.6%; GR=43.6%

TRAVEL_AND_LOCAL
ER=42.4%; GR=74.6%

UNIDENTIFIED
ER=45.8%; GR=51.0%

VIDEO_PLAYERS
ER=11.5%; GR=19.1%

WEATHER
ER=52.2%; GR=92.7%

Ca
te

go
ry

21

126

1

17

135

34

2

21

19

72

276

91

14

1489

105

3

17

6

30

2

32

15

2

14

12

3

2186

1

53

10

21

18

71

11422

15

322

175

12

52

217

16

19

16

1476

37

5164

170

536

7

11

183

11

10

597

28

17

65

215

214

112

281

199

295

126

87

6

17

567

432

7202

211

967

755

24

5

352

21

18

1045

7

3

23

1

16

26

1088

1

4

3

1

1954

64

7

6

21

2

1524

22

2

29

6

440

56

382

12

157

2

56

1

271

400

1770

3

249

21

2343

6

21

879

4

3

2

13

2

95

13

2

6

4200

14

53

54

94

245

66

1

575

1

8

35

336

35

6765

8

168

272

35

27

6

UNEXPECTED

EXPECTED

Fig. 3: Average expectation for each pair of category-permission, with requests with UNKNOWN expectation removed. The
number in each cell is the number of requests for the respective pair category-permission group and ER and GR are respectively
the expected ratio (percentage of requests that were expected) and grant ratio for the respective category/permission. Categories
and permissions with less than 10 requests were removed.

Furthermore, the PHONE permission allows not only checks
on the phone state, but also to make and manage calls and even
access unique identifiers1, functionalities that might not be
evident to the user. In fact, previous work [28] showed that less
than 5% of 85 respondents correctly identified the functionality
of READ PHONE STATE, a permission within the PHONE
group. Almost as low in the expectation ratio as the PHONE
and CALL LOG, comes the SMS permission with less than
30% of requests expected, as illustrated in Figure 3. Contrary
to the other two permissions, the functionalities allowed by the
SMS group are arguably clearer [28]. A possible reasoning for
this low expectation lies in the number of SMS requests that
originate from the background. Only 28% of these requests
(c.f. in Figure 4) originate from apps that are visible to the
user, making the user unsure on the need for these requests. It
is possible that the functionality provided by this permission
group is not worth for the user. Confirming this would require
a survey. However, the sensitivity of the SMS and CALL LOG

1Access to unique identifiers is now restricted since Android 10 [31].

groups has led Google to restrict their usage to the default
SMS/Phone/Assistant handler or as core app features [32].

In contrast with the limited influence of the visibility of the
requesting app in the grant result as discussed in Section IV-A,
our data reveals that the expectation is influenced by it, as
showcased by a correlation coefficient value of 0.24 in Fig-
ure 2. Particularly, approximately 60% of requests originating
from a foreground app are expected, whereas only ≈ 34%
are expected from background apps, that is, 2 out of every
3 requests originating from background apps are unexpected.
This ratio greatly varies between the different categories and
permissions, were the values for the latter are illustrated in
Figure 4. From this plot we observe that for any permission,
it is more likely to be expected when requested from a
foreground app than from a background app. Additionally,
most requests for both SMS and CALL LOG permissions
come from the background, where in these situations, less
than 20% are expected, while STORAGE, MICROPHONE
and CAMERA were requested from the foreground over 80%
of times, where the expectation ratio in these cases was over



0 20 40 60 80
Expected Ratio

CALENDAR (N=340, FR=63%)
CALL_LOG (N=484, FR=20%)
CAMERA (N=4119, FR=87%)

CONTACTS (N=20436, FR=62%)
LOCATION (N=13256, FR=66%)

MICROPHONE (N=4354, FR=81%)
PHONE (N=7901, FR=61%)

SMS (N=1035, FR=28%)
STORAGE (N=13333, FR=84%)

Background Foreground

Fig. 4: Expected ratio per permission group and visibility of
the requesting app. The “N” is the number of requests per
group and “FR” the foreground ratio, that is, the percentage
of requests that came from apps that were visible to the user
at the time of the request.

60%.
Privacy expectations can be highly subjective due to the

imperfect mental model (knowledge) that each individual has
about the functionalities of apps [7]. An open question how-
ever, is how much influence does expectation have on privacy
decisions. Previous results showed than in general expected
requests are allowed and unexpected requests are mostly
denied. However, this can differ for each participant. Figure 5
presents the average grant result per expectation value, for each
user. In this plot, users are represented by their ID on the x
axis, while the respective average grant result is presented as
a colored bar for each expectation value on the y axis. The
color ranges from dark red, if the user denies all requests, to
dark green if the user allows all. For example, the user with ID
22 mostly rejects requests independently of whether they are
expected or not, while the user with ID 61 allows all expected
and unknown requests, while denying all unexpected ones.
From this plot we observe that the importance of expectation
greatly varies with each individual. There are users whose
privacy decisions are uncorrelated with their expectations. In
the plot, these are the users with similar color bars for any
expectation values, and we see examples of users that allow
all (all green), deny all (all red) or allow or deny selectively
(all orange/yellow). Then, there are people that deny most
or all unexpected requests but allow most or all expected,
as can be seen by the green bar in expected requests and
red/orange in unexpected. These are individuals whose privacy
decisions closely follow their expectations and correspond
to the majority. Finally, there are participants in between
the previous two extremes, which take into consideration the
expectation as well as other variables, such as the visibility,
the category or requested permission. In summary, while the
importance of expectation in privacy decisions varies for each
user, the majority acts in accordance with their expectations,
as highlighted from the strong correlation in Figure 2 and now
confirmed in Figure 5. We pose the possibility of modeling the
expectation towards automating privacy decisions with fewer
privacy violations. We leave such an endeavor for future work.

V. LIMITATIONS AND FUTURE WORK

The data was collected in a set of campaigns spawning from
July 2020 up to May 2021 in Portugal. This period included
periods of mandatory confinement and recommended remote
work, thus limiting the data collected at each (semantic)
location. In fact, both the collected context and app usage
might differ from normal conditions. We should note that we
balanced the dataset for each location and verified that the
insights obtained in this work hold. We leave as future work
any analysis of the impact of the COVID19 in the data.

Borrowing a campaign phone has the disadvantage of
having to configure participant applications on the phone.
To ease transition and favor using the campaign phone, we
installed the participant’s personal apps on the campaign phone
before lending. The advantage, however, is that any person can
participate in our experiments. Using personal phones would
be possible, but CM-NPM requires administrator permissions
(rooted Android device), which would reduce the experiment
population and bias the dataset towards more tech-savvy
participants. Nevertheless, participants were still required to
configure their accounts in each app. Due to the short duration
of the campaigns, some participants might have not configured
all apps, potentially limiting the amount of data collected.

To enhance the overall quality of the dataset and ecological
validity of the findings we could have collected app usage from
the personal phone, although doing so would require rooted
personal phones due to Android’s restrictions, and implement
opportunistic surveys to further analyze the reasoning behind
the expectation and respective privacy choices. We leave these
remarks as learnt lessons for future works.

VI. CONCLUSION

Runtime permission managers allow permission requests
to be contextualized by the need to access functionality at
the time of the prompt. However, after being accepted once,
subsequent requests are automatically granted without user
awareness and therefore can violate user expectation. In this
work we performed a field study with 93 participants to
collect permission decisions, the surrounding context and the
expectation of the user regarding each request at runtime and
in-situ. This data reveals a strong misalignment between apps
practices and user expectations. In fact, almost half of requests
are unexpected. Additionally, there is a strong correlation
between privacy decisions and the expectation of the user. In
particular, 9 out of 10 expected requests are allowed, a ratio
that highlights the importance of explaining app requirements
to the user. However, both the expectation and the importance
of the expectation in the decision are highly personal. Finally,
our dataset reveals that the default Android system would have
violated user privacy in 15% of requests. The high correlation
observed between expectation and grant rate calls for methods
to model user expectation in order to predict grant decisions
with minimal user input. Furthermore, our results should spark
further research on improving privacy in mobile devices by
taking into consideration the expectation of the user in the
design of applications.



22 21 26 6 42 29 49 33 57 68 78 65 83 11 91 86 44 23 51 88 14 18 9 79 73 34 67 3 17 84 8 27 76 41 13 38 39 58 7 2 92 66 50 62 82 16 10 72 69 53 85 43 31 1 56 63 46 24 25 4 64 81 71 77 32 55 60 28 30 12 15 40 61 80 59 0 48 47 89 35 19 74 45 75 87 52 5 70 37 90 20 54 36

userID

EXPECTED

UNEXPECTED

UNKNOWN

Ex
pe

ct
at

io
n

DENIED

ALLOWED

Fig. 5: Average grant result per expectation value and per user. Each user is represented by an id on the x label and the average
grant result is represented as a color ranging from dark green, if the user allows all requests, to dark red, if the user denies all
requests, for each of the three expectation values in the y axis.

REFERENCES

[1] L. Cranor, T. Rabin, V. Shmatikov, S. Vadhan, and D. Weitzner,
“Towards a Privacy Research Roadmap for the Computing Community:
A white paper prepared for the computing community consortium
committee of the computing research association.” 2015.

[2] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft, “Exploring decision
making with android’s runtime permission dialogs using in-context
surveys,” in Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017). Santa Clara, CA: USENIX Association, 2017, pp.
195–210.

[3] P. Andriotis, G. Stringhini, and M. A. Sasse, “Studying users’ adaptation
to Android’s run-time fine-grained access control system,” Journal of
Information Security and Applications, vol. 40, pp. 31–43, 2018.

[4] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck,
L. F. Cranor, and Y. Agarwal, “Your location has been shared 5,398
times!: A field study on mobile app privacy nudging,” in Proceedings
of the 33rd annual ACM conference on human factors in computing
systems. ACM, 2015, pp. 787–796.

[5] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on con-
textual integrity.” in USENIX Security, vol. 15, 2015.

[6] H. Nissenbaum, “Privacy as contextual integrity,” Wash. L. Rev., vol. 79,
p. 119, 2004.

[7] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang, “Ex-
pectation and purpose: understanding users’ mental models of mobile
app privacy through crowdsourcing,” in Proceedings of the 2012 ACM
conference on ubiquitous computing, 2012, pp. 501–510.

[8] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum, “Privacy
and contextual integrity: Framework and applications,” in 2006 IEEE
symposium on security and privacy (S&P’06). IEEE, 2006, pp. 15–pp.

[9] A. Acquisti, L. Brandimarte, and G. Loewenstein, “Privacy and human
behavior in the age of information,” Science, vol. 347, no. 6221, pp.
509–515, 2015.

[10] X. Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and T. Xie, “A large-scale
empirical study on android runtime-permission rationale messages,”
in 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 2018, pp. 137–146.

[11] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thompson,
S. Egelman, and D. Wagner, “The effect of developer-specified explana-
tions for permission requests on smartphone user behavior,” Proceedings
of the 32nd annual ACM conference on Human factors in computing
systems - CHI ’14, pp. 91–100, 2014.

[12] D. Votipka, S. M. Rabin, K. Micinski, T. Gilray, M. L. Mazurek, and
J. S. Foster, “User comfort with android background resource accesses
in different contexts,” in Fourteenth Symposium on Usable Privacy and
Security (SOUPS 2018), 2018, pp. 235–250.

[13] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, and H. Borgthorsson,
“Leakiness and creepiness in app space: Perceptions of privacy and
mobile app use,” in Proceedings of the 32nd annual ACM conference
on Human factors in computing systems. ACM, 2014, pp. 2347–2356.

[14] B. Shen, L. Wei, C. Xiang, Y. Wu, M. Shen, Y. Zhou, and X. Jin, “Can
systems explain permissions better? understanding users’ misperceptions
under smartphone runtime permission model,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[15] M. Harbach, M. Hettig, S. Weber, and M. Smith, “Using personal exam-
ples to improve risk communication for security & privacy decisions,” in
Proceedings of the SIGCHI conference on human factors in computing
systems. ACM, 2014, pp. 2647–2656.

[16] F. Shih, I. Liccardi, and D. Weitzner, “Privacy tipping points in smart-
phones privacy preferences,” in Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems, 2015, pp. 807–
816.

[17] Y. Feng, Y. Yao, and N. Sadeh, “A design space for privacy choices:
Towards meaningful privacy control in the internet of things,” in Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’21. New York, NY, USA: Association for Computing
Machinery, 2021.

[18] F. Schaub, R. Balebako, A. L. Durity, and L. F. Cranor, “A design space
for effective privacy notices,” in Eleventh Symposium On Usable Privacy
and Security (SOUPS 2015). USENIX Association, 2015, pp. 1–17.

[19] J. Gluck, F. Schaub, A. Friedman, H. Habib, N. Sadeh, L. F. Cranor,
and Y. Agarwal, “How short is too short? implications of length and
framing on the effectiveness of privacy notices,” in Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016), 2016, pp. 321–340.

[20] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. Zhang, N. Sadeh,
A. Acquisti, and Y. Agarwal, “Follow my recommendations: A person-
alized privacy assistant for mobile app permissions,” in Symposium on
Usable Privacy and Security, 2016.

[21] Y. Elbitar, M. Schilling, T. T. Nguyen, M. Backes, and S. Bugiel,
“Explanation beats context: The effect of timing & rationales on users’
runtime permission decisions,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 785–802.

[22] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy and us-
ability on smartphones: could user privacy profiles help?” in Proceedings
of the 23rd international conference on World wide web - WWW ’14,
2014, pp. 201–212.

[23] P. Wijesekera, J. Reardon, I. Reyes, L. Tsai, J.-W. Chen, N. Good,
D. Wagner, K. Beznosov, and S. Egelman, “Contextualizing privacy
decisions for better prediction (and protection),” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’18. New York, NY, USA: ACM, 2018, pp. 268:1–268:13.

[24] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. Wagner,
and K. Beznosov, “The Feasibility of Dynamically Granted Permissions:
Aligning Mobile Privacy with User Preferences,” in Proceedings - IEEE
Symposium on Security and Privacy, 2017, pp. 1077–1093.

[25] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan, and J.-
P. Hubaux, “Smarper: Context-aware and automatic runtime-permissions
for mobile devices,” in 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 2017, pp. 1058–1076.

[26] R. Mendes, “The Project COP-MODE,” https://cop-mode.dei.uc.pt/,
2021, accessed: 2022-01-14.

[27] G. Developers, “Request app permissions,” https://developer.android.
com/training/permissions/requesting, accessed: 2021-08-29.

[28] A. Felt, E. Ha, S. Egelman, and A. Haney, “Android permissions: User
attention, comprehension, and behavior,” Proc. of SOUPS, pp. 1–14,
2012.

[29] R. Mendes, “COP-MODE Dataset Guide,” https://cop-mode.dei.uc.pt/
dataset, 2021, accessed: 2022-01-20.

[30] ——, “COP-MODE Naive Permission Manager,” https://cop-mode.dei.
uc.pt/cm-npm, 2021, accessed: 2021-08-29.

[31] Android Developers, “Privacy changes in android 10,”
https://developer.android.com/about/versions/10/privacy/changes#
non-resettable-device-ids, 2019, accessed: 2022-01-07.

[32] Google, “Use of sms or call log permission groups,” https://support.
google.com/googleplay/android-developer/answer/10208820, 2018, ac-
cessed: 2022-01-07.


