
A Privacy-Aware Remapping Mechanism for Location Data
Guilherme Duarte

CISUC, CRACS/INESCTEC, and
Department of Computer Science
Faculty of Sciences, University of

Porto, Porto, Portugal
guilherme.duarte@fc.up.pt

Mariana Cunha
CISUC, CRACS/INESCTEC, and
Department of Computer Science
Faculty of Sciences, University of

Porto, Porto, Portugal
mariana.cunha@fc.up.pt

João P. Vilela
CISUC, CRACS/INESCTEC, and
Department of Computer Science
Faculty of Sciences, University of

Porto, Porto, Portugal
jvilela@fc.up.pt

ABSTRACT
In an era dominated by Location-Based Services (LBSs), the concern
of preserving location privacy has emerged as a critical challenge.
To address this, Location Privacy-Preserving Mechanisms (LPPMs)
were proposed, in where an obfuscated version of the exact user
location is reported instead. Adding to noise-based mechanisms,
location discretization, the process of transforming continuous
location data into discrete representations, is relevant for the effi-
cient storage of data, simplifying the process of manipulating the
information in a digital system and reducing the computational
overhead. Apart from enabling a more efficient data storage and pro-
cessing, location discretization can also be performed with privacy
requirements, so as to ensure discretization while providing pri-
vacy benefits. In this work, we propose a Privacy-Aware Remapping
mechanism that is able to improve the privacy level attained by Geo-
Indistinguishability through a tailored pre-processing discretization
step. The proposed remapping technique is capable of reducing the
re-identification risk of locations under Geo-Indistinguishability,
with limited impact on quality loss.

CCS CONCEPTS
• Security and privacy→ Privacy protections; Usability in
security and privacy; • Human-centered computing→ Mobile
devices.
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1 INTRODUCTION
Location-Based Services (LBSs), while undeniably valuable in en-
hancing the convenience and efficiency of our daily lives, can give
rise to significant privacy concerns. These services rely on track-
ing and storing an individual’s real-time location data, which, if
misused or mishandled, could lead to severe repercussions. From
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the perspective of personal privacy, the constant monitoring of
an individual’s movements can paint an intimate picture of their
habits, preferences, and even sensitive activities [9, 12, 24]. In the
wrong hands, this data could be exploited for targeted advertising,
identity theft, or surveillance, compromising individuals’ autonomy
and security. Additionally, under inference attacks, location-based
services might (un)intentionally disclose sensitive locations, like
home, workplace, health and religious institutions, as well as infor-
mation about users, their habits and conditions, thus making users
vulnerable to potential threats.

Over the past two decades, important achievements have been ac-
complished in user protection, specifically in the fields of anonymiza-
tion and obfuscation techniques [6, 13]. Anonymization involves
modifying or removing personally identifiable information from
datasets, making it challenging to link specific data points to indi-
vidual users. On the other hand, obfuscation mechanisms introduce
noise or perturbations to location data, making it more challenging
to pinpoint an individual’s exact location. Despite their differences,
both methods make use of spatiotemporal generalization, which
involves aggregating or reducing the granularity of location data
to a certain level. By doing so, they mask precise details about a
user’s movements and activities, preserving their anonymity while
still providing useful information for analysis or services.

Geo-Indistinguishability [2] is acknowledged as the of state
of the art in Location Privacy-Preserving Mechanisms (LPPMs),
where Planar Laplace (PL) was the first mechanism proposed to
achieve it. Built upon the foundation of differential privacy [7],
Geo-Indistinguishability ensures that even when sharing location
information for various services or applications, an individual’s
true whereabouts remains hidden within a radius 𝑟 with a level
of privacy that depends on the radius, while providing a delicate
balance between utility and privacy.

Remapping techniques have been proposed for Planar Laplace
to increase the utility of the queries without degrading the privacy
level by feeding the noisy generated location to a remapping func-
tion which relocates them in a more suitably new location, consid-
ering the remapping function metric [4]. In fact, the PL mechanism
with optimal remapping is considered the state-of-the-art of Geo-
Indistinguishability in sporadic location privacy [21]. The optimal
remapping techniques only use the current obfuscated LPPM out-
put and the mobility profile of the user for mapping an obfuscated
location into a grid-based discrete location [2, 4]. Remapping targets
preserving the privacy guarantees while maintaining the quality
loss in the same order of the noised location generated through
the privacy-preserving mechanism. However, we verified that after
applying a privacy-preserving mechanism and remapping into a
grid, the users’ locations become much more unique due to the
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X Set of true locations
X∗ Set of discrete true locations
Z Set of obfuscated locations
Z∗ Set of discrete obfuscated locations
𝜖 Privacy parameter
K(·) Obfuscation mechanism
K𝜖 (·) Obfuscation mechanism with a fixed 𝜖
𝑃𝐿𝜖 (·) Planar Laplace Function
𝐶𝜖 (·) CDF for a radius of obfuscation
𝑟 Radius of obfuscation
G Set of cells from a grid discretization
𝐺 (·) Grid Discretization Function
𝑠 Constant cell spacing on a grid

Table 1: General Notations

spreading effect, which could pose a threat if the anonymization
poorly protects user traits.

Therefore, we propose a novel algorithm which produces a
remapping function from the cells of a uniform grid into itself. Our
proposed remapping mechanism aggregates groups of cells from a
uniform partitioning of the domain of locations. This process of cell
aggregation takes into consideration the frequency of locations that
actually appear in the dataset, to produce a smaller set of utilized
cells, i.e. cells effectively used during the discretization process. At
a small cost in terms of utility, our discretization method makes
it more difficult for an adversary to re-identify individuals. Our
remapping function strategically transforms cells within the grid,
effectively diminishing the impact of weighted noise introduced
through Geo-Indistinguishability techniques, yielding a more sensi-
ble remapping of locations, ensuring that the privacy enhancements
gained from obfuscation methods are not compromised, whilst re-
sulting in a discrete dataset.

The major contributions of this paper are summarized as follows:

• identification of flaws from remapping Laplacian noised lo-
cations into a uniform grid-based discretization mechanism;
• proposal of a novel algorithm which addresses the flaws
identified from a uniform grid at a small cost of utility.

The remainder of the paper is organized as follows: we review
the existing works in Section 2. Section 3 describes our remapping
mechanism. We evaluate our proposed method in Section 4 and
discuss the obtained results. Section 5 concludes our work. The
notation used throughout the paper is presented in Table 1.

2 BACKGROUND AND STATE OF THE ART
This section provides an overview of background concepts and
state-of-the-art approaches that are taken into consideration in the
development of the Privacy-Aware Remapping mechanism. First,
in Section 2.1, we grasp the essence of what is a mechanism that
achieves Geo-Indistinguishability and consider one such method
in Section 2.2. In Section 2.3 we discuss about discretization tech-
niques and their properties. At last, we introduce the main focus
of this work: the composition of obfuscation methods alongside
discretization techniques, in Section 2.4.

2.1 Geo-Indistinguishability
Geo-Indistinguishability [2] is a privacy concept and technique that
ensures that an individual’s exact location is indistinguishable from
a set of nearby locations, thereby preventing the precise identifica-
tion of a user’s movements and activities. Geo-Indistinguishability
achieves this by introducing noise or perturbations to the location
data, making it challenging to link specific location traces to a par-
ticular individual. The level of indistinguishability is controlled
by a parameter called the privacy budget 𝜖 , which determines the
amount of noise added to the data. The main idea behind a Geo-
Indistinguishable mechanism is the guarantee that the user location
𝑥 is indistinguishable to any other nearby location 𝑥 ′ based on the
obfuscated report 𝑧.

Formally [17], denoting by K an obfuscation mechanism which
assigns to every true location 𝑥 ∈ X a probabilistic distribution
onZ, the set of all obfuscated locations, this mechanism satisfies
𝜖-geo-indistinguishability iff for all 𝑥, 𝑥 ′ ∈ X:

𝑑P (K(𝑥),K(𝑥 ′)) ≤ 𝜖𝑑x (𝑥, 𝑥 ′) (1)

where 𝑑x (·) is any distance function and 𝑑P (·) is the multiplicative
distance between two distributions, defined as:

𝑑P (𝜎1, 𝜎2) = sup
𝑆 ∈S

���� log 𝜎1 (𝑆)𝜎2 (𝑆)

���� (2)

where 𝜎1 and 𝜎2 are two distributions on some set S, and following
the convention that L =

�� log 𝜎1 (𝑆)
𝜎2 (𝑆)

�� = 0 if 𝜎1 (𝑆) = 𝜎2 (𝑆) = 0 and
L = ∞ if only one of the two is 0.

Intuitively, condition (1) states that the probability of reporting
location 𝑧 while standing in location 𝑥 is similar to that of standing
in any location 𝑥 ′ [16]. In particular, both probabilities differ at
most by the distance between 𝑥 and 𝑥 ′ factored by a small constant
𝜖 . This constant is usually set to 𝜖 = 𝑙/𝑟 [2], which represents
a simple way to specify a user’s privacy requirements - level of
privacy 𝑙 within a radius 𝑟 , enforcing that any 𝑥 ′ within 𝑟 distance
of 𝑥 discloses 𝑙 information, at most.

2.2 Planar Laplace Mechanism
Planar Laplace (PL) [2] was the first mechanism proposed to sat-
isfy Geo-Indistinguishability and consists of adding 2-dimension
Laplacian noise centered at the true user location 𝑥 . Formally, for
all 𝑥 ∈ X and 𝑧 ∈ Z, the probability density function (pdf) is given
by:

𝑝𝑥 (𝑧) =
𝜖2

2𝜋
𝑒−𝜖𝑑 (𝑥,𝑧) (3)

Obtaining 𝑧, the obfuscated location, from 𝑥 can be efficiently done
using polar coordinates [2]:

(1) draw 𝜃 uniformly in [0, 2𝜋 )
(2) draw 𝜌 uniformly in [0,1)
(3) set 𝑟 = 𝐶−1𝜖 (𝜌)

where the cumulative densitity function (cdf) 𝐶𝜖 (𝑟 ) represents the
probability that the radius of the random generated point falls
between 0 and 𝑟 , which uses PL’s cumulative distribution function
defined in (3). Therefore, using the Lambert𝑊 function at branch
-1, the inverse function is defined as:

𝐶−1𝜖 (𝜌) = −
1
𝜖
(𝑊−1 (

𝜌 − 1
𝑒
) + 1) (4)
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Finally, simply report 𝑧 = 𝑥 + ⟨𝑟 cos(𝜃 ), 𝑟 sin(𝜃 )⟩. We will denote
by 𝑃𝐿𝜖 : 𝑋 →Z the above mechanism.

2.3 Data Discretization
Location Data discretization is a crucial pre-processing step in man-
aging and sharing location-based data effectively while upholding
individual privacy. It involves transforming continuous and precise
location coordinates in R2 into a discrete set of pointsW, such as
cells or clusters. Additionally, it allows us to reduce the granularity
of the data, making it less precise and less likely to pinpoint indi-
viduals’ exact locations, while still providing high levels of utility.
Our proposed mechanism, Privacy-Aware Remapping, will dispatch
locations to others and take advantage of the finite set of potential
locations resulting from discretization.

One widely used discretization approach is a grid-map method,
used in various scenarios [2, 4, 11, 18, 19, 22, 25–27], where geo-
graphic regions are partitioned into a grid of uniform cells. Another
technique involves clustering methods [8, 10, 23, 29], which group
similar data points together, creating clusters that represent geo-
graphical areas. Additionally, Voronoi diagrams [14, 20] divide a
geographical space into cells based on the proximity to specific data
points, ensuring that each region is associated with the nearest data
point.

We decided to proceed with the study of the grid-based dis-
cretization technique, mentioned as the uniform grid throughout
the paper, due to its distinct advantages. One of the key reasons for
selecting this method is its simplicity in storage. The uniform grid
discretization can be efficiently represented as a matrix, making
it an ideal choice for data storage as well as data manipulation.
Furthermore, this technique allows for precise control over the
size of the discrete locations, which is especially valuable when
analysing data transformations, like privacy-preserving methods
such as Geo-Indistinguishability.

A uniform grid, denoted by G, partitions geographic regions into
cells of constant size. Grid discretization is a powerful yet simple
technique used to efficiently represent and process location data.
Given four corners of a bounding box as well as a constant value
of a cell spacing, the mechanism divides the box in 𝑛 = 𝑛0 × 𝑛1
cells, represented by a 𝑛0-by-𝑛1 matrix. Real-time services, such
as navigation systems, and points-of-interest (POI’s) finders, can
benefit from this structured representation since the obfuscation
can be calculated in real-time - simply pinpoint the cell it contains
the ground-truth, i.e. the real location. Moreover, the quality loss
resulting from this discretization is bounded and predictable since
each cell maintains a constant size. Denoting by 𝑠 the grid cell’s
spacing and considering that the reported location from a cell is
its center, the maximum quality loss obtainable is 𝑠/

√
2 (the points

within the cell furthest from its center are its corners).
We will denote the function which discretizes real locations to a

cell of the grid G as 𝐺 : X/Z → G.

2.4 Remapping Locations
We are now prepared to discuss how to add a layer of discretization
after applying Laplacian noise to a real location, which is the main
focus of this work.

In [2], it has been proven that grid map discretization preserves
Geo-Indistinguishability. The authors have defined the probabilistic
mechanism 𝐾𝜖 : G → 𝑃 (G), where 𝐾𝜖 (𝑐 |𝑥) represents the proba-
bility of reporting the cell 𝑐 when the actual ground-truth location
is 𝑥 , with 𝑥 ∈ X and 𝑐 ∈ G. The mechanism involves generating
(𝑟, 𝜃 ) and computing 𝑧, as previously described, and then remap-
ping 𝑧 to the closest point 𝑐 on G. Formally, given 𝑥 ∈ X we obtain
𝑐 = (𝐺 ◦ 𝑃𝐿𝜖 ) (𝑥) and report its center.

Let us focus on Figure 1.We extracted a user’s trajectory from the
data we used throughout the paper and applied 𝑃𝐿𝜖 to demonstrate
how it affects the utilized cells (i.e. cells from the grid that contain
location reports). As it can be seen, the application of a mechanism
such as PL spreads out the true locations, sometimes even to cells
from the grid which were previously empty. This result implies that
a larger amount of discrete points (center of cells) are needed to
discretize every true location, i.e. the number of unique locations
in the discrete set of true locations, X∗, will be much smaller than
the number of unique locations in the discrete set of obfuscated
locations,Z∗.

Figure 1: Noise added by PL mechanism and how it affects
the utilized cells

This result can contribute to privacy threats to the individual,
as we will see in Section 4.2. The remapping that our algorithm
produces, introduced in the following section, will come in as a
privacy context-aware choice which decreases densely the amount
of clusters needed to discretize the data, while still achieving Geo-
Indistinguishability. Additionally, we will verify how benefiting the
use of a smaller set of clusters will also dramatically decrease the
number of individuals affected by re-identification attacks thought
their most visited and preferred locations.
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3 A PRIVACY-AWARE REMAPPING
MECHANISM

The algorithmwe propose generates a remapping function, denoted
by R, which maps individual cells within a grid to themselves. The
distinctive property that R offers is its ability to minimize the
weighted quality loss inherent from the conjugation of Laplacian
noise after remapping to a grid. When applied to a specific cell,R(𝑐)
will identify and designate the cell that minimizes the weighted
quality loss, considering all the possible cells which 𝑃𝐿𝜖 might
report locations from the cell 𝑐 to. We will then verify how R is
actually nor injective, i.e. given two cells 𝑐1, 𝑐2 ∈ G s.t. 𝑐1 ≠ 𝑐2
does not imply that R(𝑐1) ≠ R(𝑐2); nor surjective, i.e. not for all 𝑐2
must exist a 𝑐1 s.t. R(𝑐1) = 𝑐2. So the number of cells which will
get reported with R will be smaller than the number of cells that a
uniform grid requires.Wewill show how that provides extra privacy
guarantees, thus making re-identification of users more challenging.
Furthermore, this remapping generates a grid composed of multiple
aggregated cells, each contained by unique cells and a single output
center which minimizes our metric, so it is able to determine which
areas will need more or less generalization.

This section is divided as follows: in Section 3.1 we present the
pseudocode to the generator of the Privacy-Aware Remapping; in
Section 3.2 we explain how remapping was designed to be used
and some of its properties; and finally, we discuss the computation
complexity in Section 3.3.

3.1 Algorithm in a Nutshell
The pseudocode of the generation of the remapping function is
listed in Algorithm 1. The inputs to the algorithm are the dataset
M, a uniform grid G, and the obfuscation radius 𝑟 related to the
Laplacian noise. The algorithm will then return a remapping map
R : G → G.

In the initialization phase, the remap R is initialized as an empty
map (line 1). Afterwards, using the subroutine𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑒𝑙𝑙𝑠𝑊𝑒𝑖𝑔ℎ𝑡

(line 2), we build a weight function 𝑤 s.t. 𝑤 (𝑐) holds the number
of ground-truth reports which lay on the grid cell 𝑐 . This can be
achieved by a simple iteration over every report from the dataset,
translating the coordinates into cells from the grid, and increment
accordingly.

The algorithm then enters the main loop (lines 3-17), which
iterates over all cells 𝑐 from G and calculates the best candidate 𝑐 ′
to get reported instead, according to a metric we will now describe.
Let 𝐷𝑟 (𝑐) denote the set of cells where Planar Laplace might send
locations in 𝑐 to, i.e. 𝐷𝑟 (𝑐) will contain every cell 𝑐 ′ such that the
distance from 𝑐 to 𝑐 ′ is less than or equal to 𝑟 . In the for conditions
of lines 6 and 8, we verify if 𝑐 ′ and 𝑐 ′′ are in 𝐷𝑟 (𝑐), respectively,
where 𝑑𝑔𝑐𝑑 denotes the great circle distance.

Finally, based on the Bayesian remap [4], we define the optimal
candidate for remapping 𝑐 as the cell that effectively minimizes the
weighted generated quality loss, formally described as:

𝑅(𝑐) = argmin
𝑐′∈𝐷𝑟 (𝑐)

∑︁
𝑐′′∈𝐷𝑟 (𝐶)

𝑤 (𝑐 ′′) · 𝑑𝑒 (𝑐 ′, 𝑐 ′′) (5)

where 𝑑𝑒 (·) denotes the euclidean distance between the two cells,
since each cell can be represented as 𝑖 and 𝑗 offsets from matrix of
the grid G. This is accomplished on lines 8-14.

Algorithm 1 Pseudocode for the generator of R
Input: DatasetM
Input: Uniform grid G
Input: Obfuscation radius 𝑟
Output: Cell remapping R

1: R ← initialize map
2: w← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑒𝑙𝑙𝑠𝑊𝑒𝑖𝑔ℎ𝑡 (M,G)
3: for 𝑐 ∈ G do
4: 𝑛𝑐 ← 𝑐

5: 𝑙𝑜𝑤𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 ←∞
6: for 𝑐 ′ ∈ G s.t. 𝑑𝑔𝑐𝑑 (𝑐, 𝑐 ′) ≤ 𝑟 do
7: 𝑒𝑟𝑟𝑜𝑟 ← 0
8: for 𝑐 ′′ ∈ G s.t. 𝑑𝑔𝑐𝑑 (𝑐, 𝑐 ′′) ≤ 𝑟 do
9: 𝑒𝑟𝑟𝑜𝑟 ← 𝑒𝑟𝑟𝑜𝑟 +𝑤 (𝑐 ′′) · 𝑑𝑒 (𝑐 ′, 𝑐 ′′)
10: end for
11: if 𝑒𝑟𝑟𝑜𝑟 < 𝑙𝑜𝑤𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 then
12: 𝑛𝑐 ← 𝑐 ′

13: 𝑙𝑜𝑤𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 ← 𝑒𝑟𝑟𝑜𝑟

14: end if
15: end for
16: R(𝑐) = 𝑛𝑐
17: end for

3.2 Remapping Planar Laplace Points Using R

Using our Privacy-Aware Remapping R will result in an extra step
before reporting the obfuscated location. As before, given the actual
location 𝑥 ∈ X, we generate (𝑟, 𝜃 ) and compute 𝑧 ∈ Z following
the PL methodology (Section 2.2). Afterwards, we get 𝑐 ∈ G, the
cell where 𝑧 is contained on the uniform grid and we finally report
the cell R(𝑐). Formally, we obtain 𝑐 = R(𝐺 (𝑃𝐿𝜖 (𝑥))) and report its
center.

Let us discuss some properties which this remapping provides.
The computation of the function R will generate group of cells
which will report the same cell. Let 𝐻𝑐 represent the set of cells
which get remapped to 𝑐 , i.e. ∀𝑐 ′ ∈ G:

𝑐 ′ ∈ 𝐻𝑐 iff R(𝑐 ′) = 𝑐 (6)

Note that 𝑐 might not necessarily belong to𝐻𝑐 : the algorithm might
find a more suitable cell from the set 𝐷𝑟 (𝑐) which decreases the
overall weighed quality loss (Equation 5). This abstraction of the
remapping R allows us to see the uniform-grid as a coarser grid,
by considering every set 𝐻𝑐 ≠ ∅ as unified cells which have as its
center the same cell 𝑐 .

Additionally, due to the nature of the algorithm, we found that
it is highly likely that there will always exist some cell 𝑐 such that
|𝐻𝑐 | > 1. That can be justified by the simple fact that two neigh-
bour cells 𝑐1, 𝑐2 will have identical sets of obfuscation centered at
each cell, respectively 𝐷𝑟 (𝑐1) and 𝐷𝑟 (𝑐2), so the one cell which
minimizes the weighed quality loss of each cell will be, most likely,
one cell on the intersection of both sets. Naturally, this result de-
pends on the grid spacing 𝑠 , the privacy parameter 𝜖 , as well as
the obfuscation radius 𝑟 , since these will determine how much
the obfuscation sets of neighboring cells will intercept each other.
Therefore, assuming an appropriate configuration of the parameters
according to the dataset and the desired utility/privacy trade-off,
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the R remapping is, by definition, not injective, implying that is
also not surjective, since the domain and co-domain sets are the
same, then not for all 𝑐2 must exist a 𝑐1 s.t. R(𝑐1) = 𝑐2, through the
pigeonhole principle.

3.3 Computational Complexity
In order to determine the exact computational complexity of Algo-
rithm 1, let us consider a dataset with |M| reports, a grid G with 𝑛
cells of constant size 𝑠 , as well as a radius of obfuscation 𝑟 .

At the initialization phase, the first instruction (line 1) takes
constant time. Computing the weight𝑤 of each cell (line 2) requires
to verify in what cell each report fromM lays. That can be done in
O(|M|).

The main loop from line 6 to 15, which runs 𝑛 times, requires
some enhancements to avoid an O(𝑛3) algorithm, which would
quickly become infeasible for grids with tens of thousands of cells.
For each 𝑐 ∈ G, we are interested to perform a nested-loop on
every cell in 𝐷𝑟 (𝑐), which are all the cells that are at a distance
of at most 𝑟 from 𝑐 , as explained before. Instead of linear search
between every cell to verify if the condition is met (as described in
Algorithm 1), one can simply consider a square of cells centered at
𝑐 composed by ⌈2 · 𝑟𝑠 + 1⌉

2 cells, since the obfuscation circle with
center 𝑐 and radius 𝑟 is inscribed in this square, as it can be seen in
Figure 2 (the green area corresponds to 𝐷𝑟 (𝑐) and the red area to
the search space of the algorithm). So the complexity of this loop is
O(𝑛 · ⌈ 𝑟𝑠 + 1⌉

4), which can be simplified to O(𝑛 · ( 𝑟𝑠 )
4) assuming 𝑟

is rounded to the next closest multiple of 𝑠 , as well as following the
properties of the Big-O.

Therefore, the overall complexity of our algorithm is O(|M| +𝑛 ·
( 𝑟𝑠 )

4), so it grows as the grid spacing decreases ( 𝑟𝑠 and 𝑛 increases)
as well as when considering a greater obfuscation radius. Note that
the main loop can be done concurrently, so it is possible to divide
the workload among multiple processing units or threads, resulting
in a feasible execution time when considering large datasets and
small levels of granularity.

In the next section, we provide reasoning for the additional
computational cost needed to construct the remapping function, as
opposed to the straightforward use of the uniform grid.

Figure 2: Circle of obfuscation in green and algorithm’s
square of search in red

4 EVALUATION AND DISCUSSION
To evaluate the effectiveness of the conjugation of PL mechanism
with remapping using only the uniform grid and the additional
remapping of R, we selected a real mobility dataset, Geolife [31],
which was collected in a period of over three years from GPS de-
vices. The dataset contains data from 182 users, 17,621 trajectories
and roughly 25 million reports. Following [15], we first limited
the distribution of reports to a bounding box over 5th ring road
of Beijing, China. It is defined from South and North by the lati-
tudes 39.753, 40.026, and from West and East by longitudes 116.199,
116.547, still leaving us with approximately 16 million reports. This
division allowed us to focus on a high traffic urban area surrounded
by the suburbs with a lower density.

As constant spacing of the cell’s grid, we fixed the value of
100 meters [3, 28], which we found to provide a reasonably high
level of resolution for most practical purposes. For values of the
privacy budget 𝜖 , we used multiple values in the typical ranges of
privacy-preserving mechanisms for continuous reports [1, 5, 15],
specifically 𝜖 = [4, 8, 16, 32] km−1. For the PL, this corresponds to
an average obfuscation of [500, 250, 125, 62.5] m, respectively. With
these values across the 100 meter intervals of the grid cells, we can
investigate scenarios where the obfuscation, on average, extends
far beyond the confines of the location’s cell, approaches the cell
boundary, or remains entirely contained within the cell itself.

For the value of 𝑟 , the obfuscation radius, let us recall (Equation 4)
the inverse cumulative density function of PL and how this function,
given a probability 𝜌 , returns the radius 𝑟 for which the probability
of falling within that radius is equal to 𝜌 . Note that:

lim
𝜌→1

𝐶−1𝜖 (𝜌) = −
1
𝜖
(−∞ + 1) = +∞ (7)

since lim𝜌→1
𝜌−1
𝜖 = 0 and lim𝑧→0𝑊𝑘 (𝑧) = −∞ for all 𝑘 ≠ 0, so the

obfuscation radius given by 𝐶−1𝜖 could get as large as possible as 𝜌
gets closer to 1. Therefore, there is not a 𝜌 we can feed to𝐶−1𝜖 which
would bound all the noise added from all obfuscated locations. So
we decided to set 𝑟 = 𝐶−1𝜖 (𝜌) + 𝑠/

√
2, with 𝜌 equal to 95%. The

additional 𝑠/
√
2 represents the maximum quality loss generated

by discretizing a real location on a uniform grid, as mentioned
in Section 2.3. This way, we can focus on the obfuscation circle
centered at each cell 𝑐 ∈ G with radius 𝑟 , knowing that the 95th
percentile of all obfuscated locations at 𝑐 are contained in the circle.

4.1 Quality Loss
Quality loss is a point-by-point metric, measuring the quality lost
between the ground-truth and the data obtained after applying a
privacy-preserving mechanism, i.e. for an original location 𝑥 ∈ X
and the respective obfuscated location 𝑧 ∈ Z, the quality loss
is given by 𝑑𝑒 (𝑥, 𝑧), the Euclidean distance metric. When we are
considering remapping after using PL, we actually compute 𝑑𝑒 (𝑥, 𝑐)
where 𝑐 ∈ G represents the center of the cell where 𝑧 is contained.

Figure 3 quantifies the quality loss of our Privacy-Aware Remap-
ping compared to a plain Uniform Remapping and Planar Laplace
without Remapping (𝑃𝐿𝜖 ), for different values of privacy budget,
𝜖 . Initially, one can see how little affects remapping PL to a uni-
form grid. Since the maximum introduced error by this operation is
𝑠/
√
2, this cost will be negligible as 𝜖 decreases, i.e. as obfuscation
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increases. The weighed quality loss used in our proposal (see Equa-
tion 5), although related, does not necessarily decrease the overall
quality loss. Let 𝑥 ∈ X, 𝑧 the output of 𝑃𝐿𝜖 evaluated on 𝑥 , and
𝑐 the cell where 𝑧 is contained. With high probability (95% from
the configuration of the obfuscation radius 𝑟 ), the true location 𝑥
will be contained in the circle of obfuscation centered at cell 𝑐 with
radius 𝑟 . On the other hand, 𝑐 ′ = R(𝑐), by definition, will be also a
cell from the circle. Therefore, the overall introduced error must be
bounded by the diameter of the circle, i.e. 𝑑𝑒 (𝑥, 𝑐 ′) ≤ 2 · 𝑟 .

Figure 3: Quality loss obtained when using Planar Laplace
with noRemapping andwhen applyingUniform and Privacy-
Aware Remapping, for different 𝝐 ’s

Additionally, we found that the smaller the 𝜖 , the larger the loss of
utility with remapping is. This behaviour is already expected when
applying PL, i.e. the average obfuscation from a privacy budget is
given by 2/𝜖 so the obfuscation amount increases inversely to 𝜖 . As
it can be observed, using the Privacy-Aware Remapping introduces
an average obfuscation of 2/𝜖 +𝑘 , where 𝑘 > 0 also grows inversely
to 𝜖 but 𝑘 ≪ 2/𝜖 . For instance, an epsilon value of 4 km−1 resulted
in an average obfuscation of 414 meters and, consequently, to an
average quality loss of 416 and 478 meters when applying Uniform
Remapping and Privacy-Aware Remapping, respectively, which is
still under the expected obfuscation of 500 meters. Therefore, we
argue that the amount of noise generated with R remapping is in
the same order of the noise from Uniform Remapping.

In the upcoming sections, we will furnish beneficial outcomes
that can rationalize the introduced supplementary error.

4.2 Number of utilized cells
We focused on comparing the number of utilized cells with and
without the R remapping, having as baseline the number of unique
cells needed to discretize the non-obfuscated data, which we refer as
ground-truth. As previously described, an utilized cell is a cell from

Number of utilized cells
𝝐 = 4 𝝐 = 8 𝝐 = 16 𝝐 = 32

Ground-Truth Remapped 41120
Uniform Remapping 81945 74191 65367 56113
Privacy-Aware Remapping 29255 24447 21327 19539

Table 2: Number of utilized cells when using Ground-Truth
Remapped Data and when applying Uniform and Privacy-
Aware Remapping for different 𝝐 ’s

the grid which has location reports contained. Table 2 summarizes
the obtained results. Firstly, note that the number of utilized cells
without obfuscation is constant to all privacy parameters 𝜖 , equal
to 41120. Following, note the effect of the 𝜖’s values have on the
number of utilized cells. As mentioned in Section 2.4, applying 𝑃𝐿𝜖
will spread out the true locations (see Figure 1) and, as the privacy
parameter 𝜖 increases, so does the radius of obfuscation. Therefore,
Uniform Remapping contributed to a large increase of the size
of this set and, consequently, there will be more unique discrete
locations than unique ground-truth locations, leading to user’s
trajectories to become overall more unique. This result can lead to
some privacy threats in the case where the anonymity mechanism
performs poorly, for instance when the applied noise maps true
locations into non-admissible ones or sparsely frequented, like into
the sea or mountain. Although possible, it is unlikely to receive
queries at such locations, so an adversary can take advantage of
this information.

On the other hand, our Privacy-Aware Remapping was able to re-
duce around 300% of the utilized cells in comparison with Uniform
Remapping. At a small cost on utility, the proposed remapping
drastically reduces the number of discrete points, which has its
advantages at the computational level, also leading to better results
under inference attacks, as we will see in the next section. Fur-
thermore, the remapping into non-admissible locations will rarely
happen, since those locations have no weight associated, not con-
tributing to the weighted quality loss metric used to determine the
optimal R(𝑐), for every 𝑐 .

4.3 Top-𝑵 Re-Identification Attack
The top-𝑁 re-identification attack [30] measures the risk of a pri-
vacy threat that revolves around the concept of identifying indi-
viduals based on their location data. In this attack, an individual is
considered re-identifiable if their top-𝑁 visited locations are unique,
even if the actual identity of the person is anonymized. This attack
leverages the uniqueness of an individual’s movement patterns and
frequently visited places to de-anonymize them.

For each 𝑁 , we compute the anonymity sets, namely the number
of users with the same top-𝑁 preferential locations. Therefore,
we define a user as re-identifiable if the size of the anonymity set
is 1, i.e. the user’s top-𝑁 most visited locations identify the user
without ambiguity, meaning that there is no other user with the
same top-𝑁 visited locations. If a noise-based privacy mechanism,
like 𝑃𝐿𝜖 is applied to the data, we add to the condition of being
considered as re-identified the following: the user’s top-𝑁 produced
from the unaltered data must be the same as the top-𝑁 produced



A Privacy-Aware Remapping Mechanism for Location Data SAC ’24, April 8–12, 2024, Avila, Spain

Figure 4: Percentage of re-identified users with the Top-𝑵 Re-Identification Attack, i.e. the real locations remapped to the
uniform grid, and for the Uniform and Privacy-Aware Remapping, for different privacy parameters 𝝐 ’s and 𝑵 ’s

from the obfuscated data. This way, even if a user is in a unitary-
sized anonymity set, if the obfuscation mechanism changed the
top-locations, then we consider the user as non re-identifiable,
although, in this case, the user can be considered as unique.

Figure 4 depicts the percentage of re-identified users when ap-
plying the top-𝑁 attack with the ground-truth data, i.e. the non-
obfuscated data remapped into a grid, and using the Uniform and
Privacy-Aware Remapping. Note that the results from the non-
obfuscated data do not vary with different values of the privacy
parameter. Following [30], we considered the top-1, top-2 and top-3
locations of each user. Intuitively, for the ground-truth data, top-1
is included in top-2, as well as top-2 in top-3, so one can only expect
a greater amount of re-identifications as 𝑁 increases. As it can be
seen at the ground-truth results, at a such fine level of granularity
(regions of 100 meters), an attacker can easily re-identify a large
chunk of users, even when considering small sets of top-locations,
reaching upwards to 90% of re-identification when considering the
top-3 locations of each user.

Due to the extra rule we added to consider a user as re-identified
in case a privacy mechanism is applied, re-identification no longer
grows as the set of top-locations enlarges. As the value of 𝑁 in-
creases, most likely the user’s top-𝑁 produced from the unaltered
data differs from the top-𝑁 produced from the obfuscated data.
Notice now how decreasing the privacy parameter, where one
should expect privacy to be favoured, also decreases the overall
re-identification. As 𝜖 decreases, higher amounts of obfuscation
gets added to the real location, so it becomes easier to protect a
user’s top-locations. For example, for 𝜖 = 8 km−1 and 𝑁 = 1, the
top-𝑁 attack with Uniform Remapping was able to re-identify 27%
in comparison to 83% when not applying any obfuscation to the

data, which are already substantial results. Privacy-Aware Remap-
ping was able to decrease this value even further to around 5%.
This represents an improvement of 81% in comparison to the Uni-
form Remapping and 94% to the ground-truth data. In a lot of other
cases, our mechanism was able to achieve total user protection,
representing considerable results in comparison to the Uniform
Remapping.

Finally, our Privacy-Aware Remapping decreases immensely the
re-identification, most of the times achieving total user protection,
thus showing an adequate utility/privacy trade-off, since a quality
loss of the same order as the Uniform Remapping is accompanied
by a large reduction of the number of re-identified user.

5 CONCLUSIONS
As Location-Based Services become ubiquitous, the need for ef-
fective privacy mechanisms cannot be overstated. State-of-the-art
approaches resolve into Geo-Indistinguishability, a privacy con-
cept that prevents the precise identification of a user’s location.
For an extra layer of protection, discretization comes into play,
transforming continuous locations into a discrete set of points. We
have verified how the conjugation of these methods, namely Planar
Laplace with a grid-based discretization technique (mentioned as
Uniform Remapping in this paper), highly increases the number of
utilized cells, i.e. the cells needed to fully discretize a dataset. The
sparseness of locations resulting from the large number of utilized
cells, can lead to threats coming from non-admissible locations,
thus affecting the performance of anonymization mechanisms.

In response to this challenge, we have introduced a novel ap-
proach: Privacy-Aware Remapping. This mechanism builds upon
the foundation of a grid-based discretization technique and unifies
cells to enhance privacy protection. While it introduces a marginal
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amount of extra quality loss, this loss is directly correlated with
the chosen privacy parameter in 𝑃𝐿𝜖 , therefore the Privacy-Aware
Remapping introduces noise in the same order as Uniform Remap-
ping does.

One of the key strengths of our proposed mechanism lies in its
significant reduction of cluster regions, referred to as the utilized
cells. Our remapping function, by design, is not surjective, resulting
in a smaller number of output cells compared to the total avail-
able cells. This reduction not only streamlines data storage and
processing but also minimizes the risk of potential breaches.

Privacy-Aware Remapping demonstrates a robust defense against
re-identification attacks, particularly those leveraging top-𝑁 loca-
tions. In most of the cases, it is able to achieve a level of protection
tantamount to total user anonymity. This outcome reinforces the
viability and effectiveness of our approach in securing the privacy
of individuals utilizing location-based services.

For a future work, it would be interesting to evaluate the be-
haviour of the proposed remapping technique against attacks other
than the top-𝑁 . As the number of discrete regions tend to decrease
significantly, more information about a user tends to be aggregated
among others, and, therefore, we expect that this mechanism be-
haves competently facing other inference attacks.
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