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Abstract—In this paper, we fill a void between information
theoretic security and practical coding over the Gaussian wiretap
channel using a three-stage encoder/decoder technique. Security
is measured using Kullback-Leibler divergence and resolvability
techniques along with a limited number of practical assumptions
regarding the eavesdropper’s decoder. The results specify a
general coding recipe for obtaining both secure and reliable
communications over the Gaussian wiretap channel, and one
specific set of concatenated codes is presented as a test case
for the sake of providing simulation-based evaluation of security
and reliability over the network. It is shown that there exists a
threshold in signal-to-noise (SNR) ratio over a Gaussian channel,
such that receivers experiencing SNR below the threshold have
no practical hope of receiving information about the message
when the three-stage coding technique is applied. Results further
indicate that the two innermost encoding stages successfully
approximate a binary symmetric channel, allowing the outermost
encoding stage (e.g., a wiretap code) to focus solely on secrecy
coding over this approximated channel.

Index Terms—Physical-layer security, Gaussian wiretap chan-
nel, practical secrecy coding.

EDICS: CIT-PHY, CIT-PHY-COD, CIT-INF-SECC.

I. INTRODUCTION

Physical-layer security has been advancing at a rapid pace of
late. The origins of the field can be traced back to Shannon [1]
and Wyner [2], while some of the more recent advances are
highlighted in [3], [4]. In this paper, we focus on coding for
secrecy, and highlight the need for a hybrid security standard
for real networks and finite blocklength codes. Semantic
secrecy and strong secrecy are now the metrics of choice
among information theorists [5], [3], [6], while security gap
and bit-error rate are supreme among practical researchers [7],
[8]. Unfortunately, it can be shown that both of these methods
fall short of measuring secrecy when finite blocklength codes
are deployed in real networks.
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FEDER-016753 and UID/EEA/50008/2013.

No explicit wiretap codes are currently known that can
achieve both reliability and information theoretic security
(weak, strong, or semantic) over a Gaussian wiretap channel,
despite the recent works on lattice coding, which show the
existence of such codes [9], but do not show how to design
them [10]. It is furthermore true, with the exception of very
few works [11], [12], that the security analysis of wiretap
codes tends to focus on the infinite blocklength regime. The
current status of practical information theoretic security coding
for the wiretap channel is that we yet lack knowledge of how
to code at finite blocklengths over real-world channels, as
almost all known code constructions achieve secrecy only over
a discrete memoryless channel (DMC)-based wiretap model,
often when the legitimate receiver’s channel is assumed to be
noiseless. For extensive summaries of the state-of-the-art in
explicit code constructions for information theoretic security,
the reader is directed to [3], [5], [13] and references therein.

Security gap results do offer explicit code designs at finite
blocklength over Gaussian and fading channels [7], [8], and
works that highlight these techniques tend to simulate their
performance as well. However, the security gap relies on the
average bit/block error rate to quantify security, which is far
from the preferred strong and semantic secrecy measures used
in information theoretic approaches. One of the main draw-
backs of the security gap is that it does not measure correlation
between the message and the received data, which could be
exploited to attack the system. Information theoretic metrics
measure correlation by definition. Security gap results are
also only indicative of the average performance. For smaller
blocklength codes, a full understanding of the distribution of
error rates would be more valuable [14], [15]. For a summary
of practical physical-layer security coding, we direct the reader
to [4].

In this work, we present a general concatenated coding
technique that can be used to achieve reliable and secure
communications over the wiretap channel when both the main
and eavesdropper’s channels are additive white Gaussian noise
(AWGN) channels. Our technique is a hybrid approach be-
tween the two existing competing strategies. The information
theoretic approach to coding for secrecy is to employ a nested
wiretap code structure, mapping each message to one of
several codewords at random to increase the confusion of an
eavesdropper. The security gap approach to coding for secrecy



is to achieve an extremely steep waterfall region in the bit-error
rate (BER) curve of a code so that only a small advantage in
channel quality is required over the eavesdropper to achieve
both reliability and security in practice. Our approach uses
ideas from both of these techniques. The process requires three
layers of coding altogether; the inner-most layer is used to fine
tune a reliability threshold for the intended receiver, while
the second layer then propagates any remaining errors at the
output of the inner-most decoder. The main novelty of our
approach lies in using the two inner layers of coding over an
AWGN channel to generate an effective noisy DMC for any
receiver with signal-to-noise ratio (SNR) below the reliability
threshold. The outer-most code is then a nested wiretap code
(e.g., as in [2], [11], [16]), that has been shown to be able
to achieve information theoretic security over many DMC
models, as we provide with our two inner layers of coding.

Security guarantees are made using a combination of a
limited number of reasonable decoder assumptions at the
eavesdropper, and resolvability calculations with signals along
the eavesdropper’s receiver chain. To be clear, we adopt a
similar approach as in [17], where a network is deemed secure
if

Jim. dist(para; pupa) =0, )]

where, M is the message to be securely communicated, A =
Z™ is the eavesdropper’s length-n observation directly at the
output of the channel (see also Fig. 1), n is the blocklength
of an encoding process at Alice, and dist(-;-) could be any
meaningful distance measure between two distributions. When
the distance between the distributions pas4 and pyrpa goes
to zero, this indicates that the signals M and A are tending
towards statistical independence, and thus the joint distribution
and the product of the marginals become indistinguishable,
or unresolvable. A small number of modifications to (1) are
necessary to apply the technique in our case, and we will
use similar measures when analyzing the effectiveness of a
specific set of concatenated codes in generating a DMC for
the eavesdropper.

The rest of the paper is organized as follows. Section II
further motivates the approach being taken in this paper for
achieving both reliable and secure communications over the
Gaussian wiretap channel. The system model assumed by
the paper and the specific security constraint imposed on the
model are presented, and some additional related work is
reviewed. In Section III, the novel three-stage coding technique
is given generally, while in Section IV, we provide a specific
set of codes that together form an implementation of the
system. Theoretical and simulation-based analysis of the three-
stage encoding/decoding technique is given in Section V,
where it is shown that the inner two coding layers can be
used to effectively generate a DMC for the eavesdropper, and
a coset-based secrecy code at the outer coding layer provides
practical secrecy. Results are given in Section VI, and the
paper is concluded in Section VII.

II. SETUP AND MOTIVATION
A. System Model

In this work, we consider a modern version of the Gaussian
wiretap channel model originally presented in [18]. Notation-
ally, capital letters are random variables, or random vectors
where a superscript indicates the length of the vector. In
Fig. 1, we see a network with three players; a source (Al-
ice), a destination (Bob), and an eavesdropper (Eve). Alice
encodes a message M with an underlying discrete alphabet
M ={1,2,...,|M]|} into a length-n vector of symbols X",
which is broadcast over two channels: a main channel, and an
eavesdropper’s channel. Both channels are AWGN channels,
with additive noise sequences N7 for the main channel and
N for the eavesdropper’s channel. The two channels are
assumed to be independent with noise variances 0% and 0%,
respectively. Then Bob receives

Y™ = X" 4+ N%, )

and Eve receives
Z" =X"+ Ny. 3)

Bob’s (Eve’s) decoder attempts to recover the message and has
as its output M (M ). The communications goal is to broadcast
the data under two constraints:

1) Pr(M # M) < 6, (reliability constraint) and

2) dist(para;pupa) < € (security constraint).
We assume that both § and e are very small positive real
numbers, and for more meaningful operation of the system,
we’d like them to be as small as possible. Notice that since we
consider finite blocklength codes, we do not allow the security
constraint to be evaluated in the limit as n — oo. The random
variable A is a placeholder that can be filled in with any of a
number of variables that represent signals along Eve’s receiver
chain. For this work, we consider the Kullback-Leibler (KL)
divergence (or relative entropy) [19] as the distance metric of
choice, i.e.,

dist(para;pvpa) = D(parallpampa) 4
_ / S pualogy P 4o (5)
Wl meM PMPA

when A is a continuous random variable, and

dist(paraspvpa) = D(parallpavpa) 6)
=Y > pualog, DA (7
a€AmeM bmpa

when A is a discrete random variable. In both cases [17],
D(parallpmpa) = I(M; A)=H(M) — H(M|A), (8)

where I(;-) and H(-) are the well-known mutual information
and entropy functions, respectively [19].

Since the encoder is a three-stage process, A can be
set to be any of the three decoder outputs with tradeoffs
between the complexity of the calculation of (8) and the
meaningfulness of security results for each choice. Depending
on the decoding methods, some signals in the chain will
have continuous distribution functions, while some will have
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Fig. 1. The Gaussian wiretap channel model. Alice attempts to communicate
reliably to Bob while keeping her messages secure against eavesdropping by
Eve. Both channels of communication are Gaussian.

discrete distribution functions. The traditional approach is to
let A = Z™, as the data processing theorem [19] indicates that
I(M;Z™) > I(M; A) for any signal A at the output of a de-
coding stage in the eavesdropper’s receiver chain. The lefthand
side of the inequality gives the strongest security guarantee,
and some form of this expression is used in determining weak,
strong, and semantic secrecy [5], [13]; however, the righthand
side may give meaningful practical measures and be easier to
simulate, particularly when A is a discrete random variable.

B. Additional Related Work

It has been noted by others that one of the main issues that
continues to plague secrecy coding is perhaps our failure to
adequately address security in the finite blocklength regime,
particularly over practical channel models such as Gaussian
and fading, where the friendly parties are not assumed to have
noiseless channels ([4] Chapter 1, [5]).

There have been other attempts to overcome the short-
comings of coding over continuous channels, although not
necessarily at finite blocklengths. In [5], [13], [20], the authors
note that every binary-input communication channel can be
modeled as a binary erasure channel (BEC) followed in series
by an additional channel. Since we know how to code for
secrecy over an eavesdropper’s BEC, we can then simply
ignore the additional channel, and code for the BEC. It is
well known [3] that if a code achieves a level of equivocation
H(M|Z™) over a channel, then the equivocation can be no less
over channels that are stochastically degraded' with respect to
the original channel. However, this technique often delivers
pessimistic results, indicating that an eavesdropper’s SNR
must be far below a level where signal detection could even be
achieved to guarantee semantic (or strong) secrecy [5]. How-
ever, at these SNR levels, we have a hard time justifying the
label of eavesdropper on Eve, since she would be hard pressed
to even detect the legitimate communications in practice.

There also exists another approach to quantifying physical-
layer security that involves bounding the equivocation as a
function of blocklength using Fano’s inequality [21], [22],

!Channel one is stochastically degraded with respect to channel two, if there
exists a channel three such that channel one’s noise parameters are identical
to the noise parameters of the combined channel made by serial concatenation
of channel two with channel three [3].

but these bounds prove to be incredibly loose for small
blocklength codes, and hence have limited utility in the finite
(and short) blocklength regime.

III. THREE-STAGE APPROACH TO SECRECY CODING

In this paper, we achieve both reliability and security over
the Gaussian wiretap channel shown in Fig. 1 using a three-
stage encoding process. The high-level procedure is outlined
in Fig. 2, where we see a message M as the overall input to the
system by Alice, and three encoder blocks at the transmitter.
The outputs of the respective encoders are U™+, V™, and X".
If we assume the message is uniform over M, then the rate
of the Stage 1 encoder is

log, | M
Ry = o8, ©)
Ny
the rate of the Stage 2 encoder is
Ry =%, (10)
nU
and the rate of the Stage 3 encoder is
Ry = . (11)
n

Overall, if the alphabets of all three output signals are identi-
cal, then the three-stage encoder has a rate of

log, ‘M|

n

R =R1RyR3 = (12)
which is measured in bits per channel use, assuming one
element of the vector X" is transmitted with exactly one use
of the Gaussian wiretap channel. Bob (Eve) receives Y (Z")
as before, and the outputs of the decoder stages are labeled
to correspond to their associating signals at the transmitter;
that is, Bob’s (Eve’s) estimates of U™ and V"v are Unu
and V™ ((NJ"“ and ‘7”“), respectively, and finally, M (M )
is Bob’s (Eve’s) estimate of M. When writing the lower-case
realizations of these random vectors, we omit the superscripts.

The types of codes used at the distinct stages of the encod-
ing/decoding process and the goals of each stage are given as
follows. Decoders are presented using Bob’s variables, but we
assume that Eve also has access to the decoders, and can use
them in the same way that Bob does.

S1: The code employed at Stage 1 is a secrecy code (e.g., as
in [5], [13]) capable of achieving information theoretic
security over a DMC. The respective encoder and decoder
functions for the Stage 1 code are defined generally as

u = ¢1(m)’
m =1 (a).

Goal: ensure that dist(p,, ;. Pmpy) < € by wrapping
the other two stages of coding in a randomized nested
code structure for guaranteeing confusion at the eaves-
dropper.

S2: The code employed at Stage 2 is an error propagation
code (e.g., a scrambler, interleaver, or some type of

13)
(14)
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Fig. 2. Three-stage coding approach to secure communications. Stage 3 is fine-tuned to provide error-free communication to Bob, Stage 2 propagates any
remaining errors throughout the output bits, Stage 1 wraps the entire procedure in a code known to achieve information theoretic security.
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Fig. 3. Stages 2 and 3 and the Gaussian channel from Fig. 2 combine to
generate a noiseless channel for Bob, and an effective DMC for Eve. For
binary codes, Eve’s generated channel is a BSC.
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hashing function). The respective encoder and decoder
functions for the Stage 2 code are

v = ¢a(u),
U = o (D).

Goal: ensure that dist(p,;7n., , PMPgn.) < € by spread-
ing any errors remaining from the Stage 3 decoder
throughout the vector of symbols U™ in Eve’s receiver
chain.

S3: The code employed at Stage 3 is an error correcting code.
The respective encoder and decoder functions for the
Stage 3 code are

15)
(16)

8
I
<

7)
(18)

3(’0),
Y3 (y).

Goal: ensure Pr(V™ # V™) < §, for & sufficient to
guarantee Pr(M # M) < & through careful tuning of
code parameters so as to avoid all errors being corrected
in Vo,

These goals are chosen because the quantity
dist(pprzn; pupzn) is particularly difficult to calculate
for sufficiently complicated encoding procedures, and the
closed-form expression for pprz~ may be unknown. This
same issue plagues all current works that propose explicit
coding schemes over the Gaussian wiretap channel, which is
one of the main reasons practical works focus on bit-error
rate rather than information theoretic security. For us to
maintain any useful definition of security, we therefore must
assume that Eve employs the best known decoder at Stage 1,
Stage 2, and Stage 3.

>
I

IV. CODE CHOICES FOR AN IMPLEMENTATION

In this section we define a set of coding algorithms that can
be used in the three-stage encoder/decoder methodology of
this paper. We note that these are not the only codes that can
be employed within the three-stage scheme, but the simulation

results of this paper will focus on only these codes. For this
particular implementation, all codes are assumed to be binary,
and therefore, signals and encoding operations are assumed to
occur over the binary finite field Fy unless otherwise stated.

A. Coset Coding

The Stage 1 code can be taken to be a coset code as
originally presented in [2], [23]. This technique was later
used to provide the first explicit code construction capable
of achieving weak secrecy over the binary erasure wiretap
channel (BEWC) in [16], and the scheme has been used as
the basis for additional coding constructions that achieve both
strong and semantic secrecy over DMC wiretap models [5],
[13]. In essence, each message m € M = {1,2,... 2"}
is assigned a unique coset of an (n,,n, — k) binary linear
block code. The 2" cosets are labeled as Cy,C1, ..., Cqr_q,
where Cj is the linear block code whose (n, — k) X ny
generator matrix is called G. Each coset is comprised of 27 ~*
codewords [24], and a message m is encoded by choosing
uniformly at random one of the codewords from C,,. To be
specific,

¢r(m) = [m m'] [g] = u, (19)

where G’ is a k x n, matrix whose rows are chosen so that
!

G* = G
G

check matrix of Cy. In [11] it was shown that the rows of G’
can also be chosen so that the syndrome s = uH” of u for
{u: ¢(m) = u} is equal to m when m is written in binary
form. This should not surprise us since syndrome decoders
for error-correcting linear block codes make corrections as a
function of the coset [24]. The variable m’ is an (n, — k)-
length binary vector chosen uniformly at random from Fg’“k
The result of the encoding can be summarized as: m chooses
the coset, and m’ chooses the random representative of the
coset. We will assume the decoder to be a simple syndrome
calculation, and we choose the rows of G’ to let m = s. Then
the decoder function at Stage 1 is

Y1(1)

Note that the secrecy code at Stage 1 has no error correction
capability due to all vectors in F5* belonging to exactly one
of the 2¥ cosets. The variable U™+ is a discrete random vector
with elements in F5“ for this choice of a Stage 1 code.
Note also that this code can be applied as presented here,
with n, as the blocklength of the secrecy code, or the
blocklength of the secrecy code can be taken to be smaller,

has full rank in Fo. Let H be the k£ x n,, parity

=s=aHT =n. (20)



and several secrecy codewords can be concatenated to form
U™-. For any coset code, the encoder and decoder require
at most additional computations on the order of n3 from the
matrix multiplications. The encoder of some coset codes can
be made more efficient as is shown in [16] by adjusting the
code matrices similarly as in [25].

B. Interleaved Coding for Secrecy with a Hidden Key

The Stage 2 and Stage 3 codes can be derived from the
interleaved coding for secrecy with a hidden key (ICSHK)
scheme that was originally presented in [15]. The technique
is based on a combination of key-based interleaving and a
powerful systematic punctured error-correcting code for key
distribution and secure communications. The ICSHK scheme
is fully described by Fig. 4. At the transmitter, a binary,
length-n; secret key K is generated uniformly at random,
which is then mapped to a specific permutation IT;. When
the interleaver performs the specified permutation of the input
symbols U™+, the output is a shuffled codeword U; of length
ny. The secret key K and the interleaved codeword U; are
then concatenated and passed on to the Stage 3 encoder. The
Stage 2 encoder can thus be written as

po(u) = [k Ii(w)] = [k w] =0,

where k, u, u;, and v are realizations of the random variables
K, U™, U;, and V™. From this, we can deduce that the
length of the key is ny = (n, — ny).

The Stage 3 code is a powerful systematic binary (n,n,)
punctured block code C. The systematic code is selected to
code the input V" = [K Ui] resulting in [K U; Pb} s
where P, are the parity bits, and the input appears explicitly
in the output, as is true for all systematic codes. Let the
unpunctured rate of this code be denoted R. Then it is not
difficult to show that P is %ﬁn) bits long. This codeword
is then punctured by removing the secret key bits K prior to
transmission, resulting in a hidden key that can be recovered
as long as the Stage 3 decoder operates without error. Let the
Ny X %” generator matrix of C be denoted G, and the Stage 3
encoder can then be written as

2y

¢3(v) = [0G](ny41:72) = T, (22)

where the subscript notation indicates that all but the first ny
bits are kept (not punctured) from the multiplication of v with
G. A new key is generated for each input word u, meaning
ny key bits of information are effectively embedded within
the parity bits P, by the encoding with code C. The codeword
that is finally transmitted over the Gaussian wiretap channel
is then essentially

X"=1[U; P, (23)

meaning that the code rate R of C should be chosen so that

Ty

R = (24)

N ="y + Ny ’
which is determined by analyzing the lengths of the two
vectors that make up X ™. Notice we say that X" is essentially
as shown in (23). This is because technically X" is the

modulated set of symbols that are transmitted over the channel.
If we assume binary phase-shift keying (BPSK) modulation for
this implementation, then the spirit of the encoder is preserved
as 0 and 1 map to +1 and —1, respectively. For this paper,
C is chosen to be a low-density parity-check (LDPC) code of
appropriate blocklength and rate.

The decoder function chosen for Stage 3 is a soft-decision
density evolution decoder, which is known to allow LDPC
codes to approach the capacity of many communication chan-
nels [24], [26]. We assume that both Bob and Eve have access
to this best-known decoder, and define

vs(y) = [k @) =0

to be the output of the density evolution decoder, returning a
vector of soft decoded bits. Although the decoder returns soft
information about both K and Ui, there are no soft-decision
algorithms for deinterleaving a vector. Thus, hard decisions
must be made about K, so as to apply the best estimate of the
inverse interleaver, which achieves the proper shuffling only
when K = K. We thus define the Stage 2 decoder as

o () = I} () = .

At this point, we still have soft information about U™, with
no way to further exploit it since the Stage 1 code is a
secrecy code with no correction capabilities. This scheme
is efficient because it requires only an error-correcting code
and an interleaver. The interleaver is essentially a standard
permutation block (P-box) from cryptography, and can even
be dealt with in hardware [27]. Several efficient error-control
codes exist [24], [25], [26], and it is reasonable to restrict
ourselves to these when designing the three-stage coding
scheme.

(25)

(26)

V. SYSTEM ANALYSIS
A. Three-Stage Encoder

Analysis of the three-stage scheme with codes as defined
in Section IV is not trivial. Consider the encoder, and let
us identify joint distributions between M and signals along
the transmitter chain of Fig. 2 with reference to Fig. 4 for
the specific code types we have chosen to highlight. Recall
that ¢; indicates the Stage ¢ encoder, while ; indicates
the Stage i decoder. If we assume that M is uniform over
M = {1,2,...,2%}, then it is fairly straightforward to
convince ourselves that the output of ¢, U™+, is also uniform
as

1
po(w) = Y pujar(ulm)py(m) = 50— Yu € Fy», 27)

meM

where py|as(u|m) is uniform over the coset corresponding to
the message, and ppr(m) = 2% for all m € M. The joint
distribution between M and U™+ is given by

(28)

( ) 2%, if uHT = m
pPmulm,u) = .
’ 0, otherwise.

The distribution on the output of ¢, V" = [K Ui] , is more
difficult, as there is no guarantee that the key space is large
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enough to allow for all possible permutations of U™~. The
choice of the key size ny = (n, — n,) determines which is
bigger, the total number of keys 2%, or the total number of
permutations over n,, bits (the factorial of n,,, n,,!). No matter
the relationship, however, py (v) is still uniform, because for
every permutation of n, bits, a uniform distribution in U
simply maps to another uniform distribution over the same
space in U;. Since the keys are chosen uniformly at random,
both portions of V™, U; and K, are distributed uniformly.
The joint distribution

puv(m,v) = Z pviv(vlwpmu(m,v), (29
u€ef,™

requires us to know pyy(v|u), which is found by sweeping
the key space K to identify all legitimate (u,v) pairs. This
cannot be uniform in general, but may approximate the uni-
form distribution if the number of keys is close to the number
of possible permutations. For this, we need

ni, ~ logy (1)) (30)

Since the right-hand side of (30) is only rarely an integer,
and since nj grows much faster than n,, in this relationship,
this assignment is undesirable. In practice, n; will likely be
smaller than log,(n,!), and hence, the scheme chooses one
of 2™ possible permutations at the interleaver, uniformly at
random, and a subset of possible permutations are chosen with
probability zero. Clearly the encoder mapping is getting more
complicated, and our ability to express joint distributions in
closed form is beginning to deteriorate.

To make matters more difficult, in practice one may select
one or more of the codes so that the blocklengths at various
stages do not really “fit” each other. For instance, the secrecy
code could be chosen so that n,, is much smaller than it should
be to match sizing constraints with the remaining encoders.
‘When this is done, codewords are concatenated to make blocks
of the proper size for further processing, resulting in encoder
output distributions that are challenging to generalize.

Finally, we consider the distribution on X", and note that it
must be uniform over the codewords since the mapping from
V" to X™ is deterministic, one-to-one, and onto (and hence,
invertible). The joint distribution over M and X" is

pux(mz)= > > pxy(@lv)py v (vlu)paw (m,w),
u€lFy™ veF,”

€1V

where
1, if ¢3(v) ==,

. (32)
0, otherwise.

pX\v(l‘ lv) =
In essence, the three-stage mapping from M to X" for
a fixed m produces a set of possible codewords z, each
one mappable from m for at least one set of randomly
generated (m’, k). Although ¢; and ¢ choose m’ and k,
respectively, uniformly at random, and X" is uniform itself,
however, the joint distribution pps x (m, x) is not uniform and
it preserves the one-to-many mapping as a function of the coset
arrangement in ¢;, and the key space K in ¢9. Since both
pu(m) and px(z) are uniform, then the closer pysx (m,x)
tends to uniform, the closer D(pasx (m, )||par(m)px (x)) =
I(M; X™) will be to zero. The perfect secrecy condition [1]
is achieved when I(M; X™) = 0, indicating that the degree to
which D(parx (m, z)||par(m)px (x)) approaches zero is also
the degree to which the encoding scheme approaches perfect
secrecy.

B. Three-Stage Decoder

The reliability constraint is achieved if the soft-decision
density evolution decoder 3, provides sufficiently error-free
data for Bob. Since the next decoder in the receiver chain is an
error propagator, error events at Bob and Eve will be costly.
Of course, the true goal is to choose the Stage-3 code C to
provide error-free data for Bob, but not for Eve. In practice,
this means that Bob’s signal-to-noise ratio should be tuned to
the code, or vice versa, and that the data can be secured against
Eve if and only if Bob’s channel quality exceeds that of Eve’s.
In other words, the secrecy capacity must be greater than zero
to achieve both constraints, as is true for all physical-layer
security schemes.

The security analysis we wish to complete to verify our
security constraint requires us to know joint distributions
prma(m,a) for A set to each of Z™, Vo Une, and M. After
adding Gaussian noise to the modulated version of X", we
consider pysz(m, z). While px z (z, ) is fairly straightforward
to obtain [19], [28], mapping that relation back to a joint
distribution on M and Z" is more challenging. The varying
design choices in the three-stage encoder make the security
analysis at Eve’s receiver fairly complex. At this point, we
suggest another approach that combines theory and simulation
to check the security constraint for practical eavesdropping
scenarios.



In the next two respective subsections of the paper, we
consider some adaptations on blocklength requirements to
facilitate faster simulation analysis, and adopt a new line of
inquiry that yields greater insights on the problem. This new
direction of analysis addresses the possibility that was brought
up earlier when comparing Figs. 2 and 3. Namely, we consider
that the key-based interleaving and error control coding with
puncturing, collectively known as the ICSHK, along with a
Gaussian channel, may provide characteristics of a DMC for
the eavesdropper and a noiseless channel for Bob, over which
one can employ secrecy coding. This possibility was originally
investigated in [15], but is taken to new levels here.

C. Small Blocklength at the Secrecy Code

In this section, we consider our three-stage encoder when
n, 1S small so as to allow us to perform simulation-based
analysis of the technique over the Gaussian channel. We do
not require n, nor n to be small, so we will allow multiple
codewords at U to be concatenated to form a larger word for
processing at the Stage 2 and Stage 3 encoders. To accomplish
this for fixed m, we simply repeat the message enough times
to do the encoding.

One of the divergences that we wish to measure is
D (py,5(m, @)||lpar(m)pg (@), and the desired outcome is
that the divergence is very small, indicating that the joint
distribution between M and U is “close” to the independent
case. Note that

D oo, 0)pm)p(a) = 3= 3l 1) 1o, P
meM geif

(33)

and that if for every fixed message m € M, pg,, (ilm)

is identical, then this distribution becomes pg,,(a|m) in

general, and likewise becomes p (%), which implies that (33)

is zero. Thus, it is sufficient to show that the distribution on
U does not change for any possible fixed m.

Let us explore this idea theoretically by considering the
expected weight of U given M = m, some fixed message.
The coset-based secrecy encoder randomly selects a message
from the coset that corresponds to the syndrome equal to m.
We will make use of the following fact to deduce approximate
distributions on U;, and U given any fixed m, and hence, also
deduce distributions on Ui and U.

m)

Lemma 1. The sum of the weight of codewords in any coset
of an (n,n — k) binary linear block code is identical, and is
equal to n2n k-1,

Proof. 1t is assumed that the generator matrix G for the
(n,n — k) binary linear block code does not have any all-
zero columns, which is a fair assumption since the addition of
an all-zero column artificially inflates the blocklength without
adding any capability to the code. Consider the ¢th bit in all
codewords. This bit is guaranteed to be zero for the all-zero
codeword, and guaranteed to be one for at least one codeword
¢ since the ith column in G is not all-zero. Consider any other
codeword ¢’ and observe the ith bit. Then recognize that the
ith bit of the codeword (¢ @ ¢’) must have the opposite value

(either zero or one) from the ¢th bit of ¢’. Since all codewords
can be added to c to produce other codewords, a complete
matching of all codewords can be made by considering pairs
of codewords (c1,cz) such that ¢; = ¢ ® ca.

To extend this result to any coset, recognize that a coset of
the linear block code is simply an offset that can be attained
by adding any codeword from the coset to all codewords in
the linear block code. Thus, either the ith bit is flipped for all
codewords in the mapping from the linear code to the coset,
or it is not. Either way, the ith bit is one in exactly half of the
codewords in the coset, and zero in the other half. O

The distribution on the weight of U given m is, therefore,
identical for all m, and when interleaving is considered, as
long as the key is chosen uniformly, then the distribution on
U; is identical for all m, meaning py, |, (us|[m), py|m(v|m),
Px|m(xlm), and p4j,,(alm) for A set to any signal in the
receiver chain of Bob or Eve, are all equal for all possible
m € M. Recognize that in general, this can only be an
approximate result, however, because the key space does not
allow generally for all interleaving mappings to be chosen
uniformly at random.

In Eve’s decoder, as long as the key is not recovered
perfectly, then the wrong de-interleaving mapping will be used.
In [15], it was shown that the distribution in the number of
errors after deinterleaving in the ICSHK scheme is tightly
concentrated around half of the bits when Eve’s SNR is such
that the probability of at least one residual error after the
Stage 3 decoder is close to one, and these bit locations appear
to be randomly distributed throughout the codeword. Thus,
although we still have soft information at ﬁi, we must make
hard decisions on the bits in K to perform the deinterleaving,
and unless the key bits are all correct, the probability that any
bitin U is correct is close to 0.5. The end result is that (33) can
be expected to be very close to zero when the eavesdropper’s
estimate of the interleaving key K is incorrect.

D. Generating a Discrete Memoryless Channel

Although we are not entirely in the dark regarding evalua-
tion of D(para(m, a)||py(m)pa(a)) for A set to the signals
in Eve’s receiver chain, we may ask if the process can be
simplified by analyzing the implications of Figs. 2 and 3. In
other words, could the ICSHK algorithm as shown in Fig. 4
really mimic the statistics of a DMC; in particular, a BSC?
Towards answering that question, we extend our previous
results in [15], [29], where it was noted that for a BSC:

1) bit flips across the channel should occur independently,

2) bit flips should occur with some fixed probability p, and

3) soft information should not be usable at the output of the

channel.
The works of [15], [29] went to some lengths to show through
simulation that these properties were met in practice by the
ICSHK approach. Our analysis here goes further to satisfy the
claim that the ICSHK scheme, properly deployed, generates
an effective BSC for Eve, and an effective noiseless channel
for Bob.

Let us consider the scheme in Fig. 4 within the channel
model illustrated in Fig. 5. In Fig. 5, we show the ICSHK
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Fig. 5. A binary symmetric channel approximation to the eavesdropper’s
inner two stages of coding plus the channel is depicted here. We also present
signal names to aid the reader in the technical analysis.

portion of the three-stage coding system along with the main
and eavesdropper’s channels. We also show an additional
simple channel model, where the probability of a bit flip is
given as p, and we label the output of the BSC(p) as Unu.
The comparison between the eavesdropper’s receiver chain and
the simple BSC model is done by calculating
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Computing this quantity as both uw and u’ vary over all
possible values of U™+ is cumbersome, and results in unusable
calculations without long simulations to accurately estimate
probabilities near zero, as logy § = oo for z # 0. To
prevent this issue, we consider the expression as both u and
u' simply vary over Fa, which is justified by noting the
seemingly independent nature of errors at the output of the
ICSHK system [15], [29]. Since the distribution of the BSC
input/output bits is theoretically known, its simulation is not
necessary; but the distribution of input/output bits for the
ICSHK case is simulated using a computer program.

In Fig. 6 we show calculations of (34) for 16 different cases
of the ICSHK scheme. Gaussian noise in the eavesdropper’s
channel is assumed to have variance 0%, = Nj/2. These cases
are for values of 6.5 dB to 8.0 dB in the Gaussian channel’s
Ey /Ny operating point in increments of 0.1 dB. In each case,
we compute (34) between the target test case for the ICSHK
scheme and all possible distributions based on the BSC(p)
model, i.e., letting p range between zero and 0.5. We note
that Fig. 6 shows a very close match in each case with a
pronounced minimum value of the divergence, and as the SNR
in the Gaussian channels goes down, the matching p value goes
up as expected. These divergence calculations dip below 1076
in the minimum case, indicating very close matches between
the distributions.

Using a simpler technique, we find nearly identical results,
as is also captured in Fig. 6. Suppose, we simply simulate
the ICSHK scheme at a given E} /Ny, and calculate the BER
at that operating point. It turns out that this value matches
the minimizing crossover probability p in the BSC almost
exactly. These strong matches seem to verify our three-stage
encoder/decoder system as an enabling approach for achieving
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Fig. 6. Kullback-Leibler divergence D(py; 7 ||pyy¢7)- Minima in curves show
where the BSC model in Fig. 5 best approximates the ICSHK scheme
operating over the Gaussian wiretap channel with BPSK modulation and
0% = No/2.

pyo(m, ) —— (a) D(pypllpmpg) —— par(m)pg (@)

() Dmollpys) (¢) D(pmpgllprvpy)

Py (m, @) F—— (d) D(pygllpmprg) —— pa(m)pg (@)

Fig. 7. Important distributions for security proofs and their KL divergences.
We wish to make divergence (d) small to guarantee security for the three-stage
coding scheme, as it is equal to the mutual information I(M; U). Divergence
(a) is equal to the mutual information I(M; U). Divergence (b) is simulated
and understood to be small from Fig. 6. Divergence (c) can be shown to be
zero. The implications of these divergences can then be levied on divergence

().
practical security over the Gaussian wiretap model.

E. Coset Coding as the Outer Code

The simulation results in Fig. 6 show very close matches
between the joint distributions of p;,;(u, @) and pyg(u, ) at
certain operating points for the Gaussian and binary symmetric
channels, respectively. We would like to convert this result to
knowledge about D(p,,7|/parpg). Recall, it is this quantity,
and others like it, that allow us to address the security
constraints of our system. Consider Fig. 7, where we note
the following four divergence calculations:

@ D(parollpapo),

() D(prrollpae)s

(©) D(prmpg|lprpg), and

@) D(pprgllpmpy)-
We know that there exist wiretap codes [5], [13] that can make
divergence (a) go to zero as blocklength n,, — oco. This is the
well-known strong secrecy constraint. For a fixed blocklength,
we may write this as

D(pasg|lpvpe) < €as (35)



for some small €, > 0. Divergence (b) can be bounded using
our results in Fig. 6. Recall that these simulations imply that
for a good match of channel parameters, then

D(pygllpvo) < e, (36)

for some small €, > 0. From our simulations, €, appears to
be no bigger than 1075, and this can likely be decreased with
greater precision in the simulation.

Lemma 2. If D(p,5||lppg) < €, then D(p,,5||parg) < €,
when codes are chosen for the three-stage coding scheme as
in Section IV.

Proof. Note that

Porj (W)
ID( pUUHpUU ; ;pUU U, u )10g2 POl ( ,|u) (37)
- ZZZPUUM u,u',m)log, PO 215 m (1], 77)
P|u, m (W [u,m)
(33)
= ]D)(pMUU”p]\/IUU) (39)
> D(pyollpae) (40)
= D(pypllpare) < €, (41)

which completes the constraint on divergence (b). Here
(38) is due to the facts that M — U — U , and that
Pyoi (M, u,u') = 0 when u is not in the mth coset (i.e., when
11(u) # m). The expression in (40) is a direct application of
the well-known equality [19]

D(p(z, y)llg(z,y)) = D(p()llq(x)) + D(p(y|z)|lq(y|))

(42)
and the fact that the divergence between any two distributions
is nonnegative. O

Lemma 3. When a three stage coding scheme is deployed
over an eavesdropper’s Gaussian channel with code choices
as in Section IV, and messages are assumed to be chosen
uniformly at random, then D(prrpg ||[parpg) = 0.

Proof. We first write

D(parpg|lpapg) = Z par(m)pg (u') log, ©

par(m)pg (u')

(43)
Marginal distributions on U and U are both uniform over
the same alphabet by symmetry of the problem, making this
divergence (which is given as divergence (c)) exactly zero. [

At this point, we would like to declare victory; however,
the KL divergence is not a true distance metric in the strictest
sense of the word because it fails symmetry and the triangle
inequality. Thus, it is not true that divergence (d) must be
less than the sum of divergences (a), (b), and (c), and we can
make no clear mathematical statement about divergence (d) as
a function of ¢, and ¢,. However, the KL divergence is like a
distance metric in that D(p(x)||g(x)) = 0 iff p(x) = g(z)Vx.
Since divergences (a), (b), and (c) in Fig. 7 are all very close
to zero, or exactly zero in one case, then we recognize that

Py (m)pg (u')

the distributions must be similar from step to step around the

box of distributions in the figure. Although it is possible for

divergence (d) to be greater than ¢, + €, it is not possible for

it to be much greater, as long as both ¢, and ¢, are very small.
Let us rewrite divergence (a) as

ZZPMU m,u’)

D(ppollpmpe)

pruo(m,u') pyg(m, Ul)]
1 44
o8z {pM (Mpo @) pyggmeay] D
=D(puollpye) + Z ZpMU(mv u')x
Py (M, u')
I —ee 45

The entire expression of (45) is less than ¢, by (35), and the
first term in (45) is less than ¢, by (36). The second term in
(45) can be rewritten as

505 (B g oy

=\ (m, ')

pu(m)pg (W)
(46)
Note that for the simple case where pyp(m,u) =
P (m,u’) for all m, u’, then this term is exactly divergence
(d), and it can then be bounded as a function of ¢, and
€p. Thus, the smallness of divergence (d) is reliant on the
match between the two joint distributions py,i(m,u') and
P (m,u'). Measuring the divergence between the two is a
reasonable approach to imply the closeness of the match.
This provides yet more evidence that D(p,,;||parpy) is
small when wiretap codes are used that make D(p, ;¢ || pi)
small. Note that for this to be a meaningful security metric,
we must guarantee that the eavesdropper’s mapping from 2"
to V™ to U™ includes best possible decoders for 13 and 5.

VI. RESULTS

In this section, we choose specific codes for Stages 1, 2,
and 3 in the three-stage coding scheme, and provide some
simulation results. Let the linear block code at Stage 1 be the
(7,4) Hamming code so that M = {0,1,...,7}, messages
are converted to their three-bit binary representations, and then
encoded into n, = 7 bit secrecy codewords. These length-7

- codewords are buffered 174 at a time as input blocks for Stage

2 encoding. This gives an effective n, value of 1218 bits,
representing 522 message bits per block. The key size for these
simulations was chosen to be 62 bits, yielding 262 possible
unique interleavers at Stage 2. Since finding the correct key is
only part of what is required to correctly decode the message,
this amounts to at least 62 bits of cryptographic strength when
brute force on the key is tried [29], [30], [31]. The confusion
on interleaved message bits provides even greater strength
under such an attack scenario, and may prevent attackers from
recognizing the correct key when it is tried. The shuffled bits of
U; and the key bits are then appended to make input blocks for
the Stage 3 encoder. This yields n,, = 1280 bits, and requires
the Stage 3 encoder to have dimension 1280. We choose a
(1536, 1280) irregular LDPC code as the Stage 3 encoder,
and puncture the bits associated with the key in the systematic
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Fig. 8. The conditional distribution p 7, M—s () as a function of Ep/No
in a Gaussian channel when all three stages of encoding and decoding are
employed. When all conditional distributions of this type are uniform, where
the conditioning can be with respect to any valid message, then Eve’s decoder
has no information about the message. For this case, Eve’s decoder outputs
no information about M when Ej,/Ng < 6.5 dB. The system delivers the
message reliably when E},/Ng > 8 dB.

output prior to transmission. Thus, the total blocklength of the
three-stage encoder is n = 1474, and the rate of the three-stage
encoder is R = 522/1474 ~ 0.3541.

In Fig. 8, we show pjy,_5(m) for the three-stage scheme
over a range of F,/Nj values. Note from Fig. 6 that the
ICSHK scheme generates BSC(p) for p ranging from 0 to
0.5 when E}, /Ny ranges from 6.5 to 8 dB. It is, therefore, not
surprising to see the change in the shape of p NI M=5 (m) in
Fig. 8 occur over the same range of E;/Ny. At E, /Ny below
6.5 dB, the distribution is uniform, while at E} /N, above 8
dB, the true message is found with probability one. This same
shape occurs when conditioning on any message m € M; i.e.,
at F, /Ny below 6.5 dB, Stages 2 and 3 generate an effective
BSC(0.5) channel, which removes information about M, and
at E, /Ny above 8 dB, Stages 2 and 3 generate an effectively
noise-free channel. To see the role of the Stage 2 encoder and
decoder more plainly in confusing the eavesdropper, we also
display the same results when Stage 2 is left out in Fig. 9. Note
here that we do not get the sharp transition in pjy /_s (m)
over a range of 1.5 dB in E} /Ny, but rather information leaks
to the eavesdropper about the message even at 0 dB. While
an interleaver seems to work fine as the Stage 2 encoder, we
suppose that some type of keyed hash function would provide
stronger secrecy guarantees in practice. Note that as p Mlm(rh)
approaches uniform,

D (p(m, m)|[p(m)p(m)) — 0, (47)

indicating no information leakage at the output of 3.
Finally, in Fig. 10, we simply plot the BER for five cases
to gain additional intuition about desirable BER curve shapes
for practical secrecy coding. Note that when all three stages of
coding are employed, we observe an incredibly sharp waterfall
region in the BER curve, as expected, and the sharpness of
the waterfall lessens significantly when Stage 2 encoding and
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Fig. 9. The conditional distribution p | M—s () as a function of Ey/No
in a Gaussian channel when Stage 2 encoding and decoding is left out of the
three-stage coding scheme. The information about the message is not well
hidden, even when Ej/Ng = 0 dB.

decoding is left out of the three-stage scheme. When a smaller
LDPC code is used at Stage 3, the sharpness of the waterfall
also decreases, although not as severely as when Stage 2 is
removed. Both the larger and the smaller LDPC codes are
chosen from the worldwide interoperability for microwave
access (WiMAX) standard IEEE 802.16e [32]. The smaller
code is a (576,480) irregular code, and we choose the key
size to be 24 bits, so that the overall rate of the three-stage
coding scheme is as close as possible to the case with the larger
(1536, 1280) code. The differences in the waterfall regions that
we see from changing the size of the LDPC code at Stage
3 indicate that surface curves like unto Figs. 8 and 9 also
exist for the smaller code case, but they are nearly identical
in shape and form. The only difference is the slope of the
transition from reliable to secure regions of operations in
Ey/Ny. Finally, the uncoded BPSK curve is included as a
reference.

VII. CONCLUSION

In conclusion, we propose a novel three-stage encoding
scheme for physical-layer security over the Gaussian wiretap
channel. While exact information theoretic claims of security
are not given with this technique, practical measures of se-
curity are shown to be possible. We demonstrate how the
KL divergence between several distributions changes as a
function of Fj/Ny over the Gaussian channel, and highlight
the effectiveness of the ICSHK scheme at generating an effec-
tive discrete memoryless wiretap channel, such that operation
at higher E}/Nj duplicates the performance of a noise-free
channel and operation at slightly lower Ej/N, generates a
BSC(p). Stage 1 secrecy coding (e.g., a wiretap code) can
then deliver effectively secure and reliable communications.
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