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ABSTRACT
Location Privacy-Preserving Mechanisms (LPPMs) have been pro-

posed to mitigate the risks of privacy disclosure yielded from lo-

cation sharing. However, due to the nature of this type of data,

spatio-temporal correlations can be leveraged by an adversary to

extenuate the protections. Moreover, the application of LPPMs at

collection time has been limited due to the difficulty in configuring

the parameters and in understanding their impact on the privacy

level by the end-user. In this work we adopt the velocity of the user

and the frequency of reports as a metric for the correlation between

location reports. Based on such metric we propose a generalization

of Geo-Indistinguishability denoted Velocity-Aware Geo-Indistin-

guishability (VA-GI). We define a VA-GI LPPM that provides an

automatic and dynamic trade-off between privacy and utility ac-

cordingly to the velocity of the user and the frequency of reports.

This adaptability can be tuned for general use, by using city or

country-wide data, or for specific user profiles, thus warranting

fine-grained tuning for users or environments. Our results using

vehicular trajectory data show that VA-GI achieves a dynamic trade-

off between privacy and utility that outperforms previous works.

Additionally, by using a Gaussian distribution as estimation for

the distribution of the velocities, we provide a methodology for

configuring our proposed LPPM without the need for mobility data.

This approach provides the required privacy-utility adaptability

while also simplifying its configuration and general application in

different contexts.
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1 INTRODUCTION
Location-Based Services (LBSs) proliferate with the pervasiveness

of mobile devices and connectivity. While useful to the user, sharing

location data with service providers raises privacy concerns that

are beyond physical safety. Specifically, location data may reveal

identity, habits, health conditions and social connections, even if

data is anonymized [18, 31].

Privacy protection has originally and predominantly been em-

ployed by the service providers after the data has been collected.

However, this scenario requires trust from the users that their data

is handled properly, as after the data is collected, the user has no (or

limited) control over it [25]. More recently, mechanisms that protect

privacy at data collection, that is, in an online fashion before the

data is sent to the provider, have been raising research interest due

to empowering users with control over their privacy. This is spe-

cially true for Location Privacy-Preserving Mechanisms (LPPMs),

where a great portion of the recent studies are mechanisms for

online privacy protection [31].

Geo-Indistinguishability has been proposed to design online

LPPMs with provable and rigorous privacy guarantees [3], a prop-

erty inherited from differential privacy [11]. Geo-Indistinguishabil-

ity guarantees that an obfuscated report is generated with (almost)

the same probability regardless of the user-position within a certain

radius. This approach conceals the exact location while allowing

for the same data to be released, and is thus suitable for LBSs.

Geo-Indistinguishability is only effective for the sporadic use

of an LBS as the privacy degrades linearly with the number of

queries (c.f. [3, 7]) and due to the fact that continuous location

reports are highly correlated [7, 38]. This correlation can be used

by an adversary to track users over time and even predict future

locations [18, 21, 40].

Adaptations of Geo-Indistinguishability have been proposed to

the scenario of online continuous release of location data [2, 7, 10].

Such approaches resort to estimations and distance metrics to evalu-

ate the correlation and subsequently apply obfuscation accordingly.

However, using simple estimators such as linear regressions result

in a non-negligible amount of outliers due to time-gaps in reports,

which occur due to failures in the GPS/communications [24]. Addi-

tionally, dynamically adapting the obfuscation requires additional

parameters that a user must configure. This is often challenging [16]

and potentially misleading [8, 20, 29], specially since users are typi-

cally unaware of the privacy risks and privacy-utility trade-offs [1].

https://doi.org/10.1145/3577923.3583644
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Table 1: Desired behavior of a velocity-aware LPPMas a func-
tion of the velocity of the user (𝑣𝑢 ) and of the velocity of re-
ports (𝑣𝑟 ). The symbols ↑ and ↓ denote a high and a low value,
respectively.

Velocity Desired Result
↑𝑣𝑢 ↑𝑣𝑟 Balance Privacy and Utility

↑𝑣𝑢 ↓𝑣𝑟 Favor Utility

↓𝑣𝑢 ↑𝑣𝑟 Favor Privacy

↓𝑣𝑢 ↓𝑣𝑟 Balance Privacy and Utility

Moreover, a misconfigured parameter can result in no relevant

privacy protection [22].

In this work we argue that the correlation between reports can

be estimated by the velocity of the user and the frequency of reports.

Consider the following example as an illustration of this argument:

a user reporting his location every 30 seconds while walking (∼5
km/h) will have a point every ∼ 42 meters. If the same user was

driving in an highway at 120km/h, a point every 1000m would be

reported instead. Even though the frequency of updates is the same,

the correlation between points might be lower in the case of the

highway, as the speed of the user is higher and therefore, the points

are sparser. A similar (yet inverse) effect is observed for a constant

user speed and varying frequency of reports. If the same user in

the highway at 120km/h would instead report every 5 minutes, the

distance between reports would increase to 10km. In conclusion,

the reports become sparser as the velocity of the user increases or

the frequency of reports decreases. Inversely, the reports become

denser as the user velocity decreases or the frequency increases.

The previous example paired with the degradation of privacy

with the increase in the correlation [18, 21, 40] and frequency of

reports [22] lead us to the following conclusion. From the point-of-

view of a privacy-preserving mechanism, high frequency of reports

or a low user velocity should be met with an increase in obfuscation

to increase privacy, and a low frequency of reports or a high user

velocity should be met with a decrease in obfuscation as to increase

utility. Following these desired properties, which are summarized

in Table 1, this work makes the following contributions:

• We generalize Geo-Indistinguishability for effective privacy

preservation under online continuous reports. In this pro-

posal, termed Velocity-Aware Geo-Indistinguishability (VA-

GI), the velocity of the user and the frequency of reports are

used to dynamically adapt the privacy and utility level.

• We devise a VA-GI LPPM that according to our empirically

evaluation with real trajectories, outperforms previous liter-

ature LPPMs regarding the dynamic adaptability between

privacy and utility under different scenarios. Moreover, by

using data in its formulation, the proposed LPPM requires

only two user-set parameters, thus facilitating usability and

mitigating misconfigurations that can lead to no effective

privacy [22]. Furthermore, the considered data can be from

a specific region or from a single person, thus providing an

adaptability to the environment in which it is applied or

personalized to the user.

• We evaluate the feasibility of generalizing the VA-GI LPPM

for wide deployment through an approximation of the for-

mula using publicly available data. We show empirical evi-

dence on the feasibility and effectiveness of doing so. Specifi-

cally, by using data from one location to formulate the LPPM,

and evaluating such formulation on another dataset from a

different location results in relative differences of the config-

ured privacy parameters inferior to 10%.

The remainder of this paper is structured as follows. Section 2

provides a background on location privacy. Section 3 formally de-

tails our proposed mechanism. Section 4 describes the experimen-

tal setup, whose results are presented and discussed in Section 5.

Section 6 presents and evaluates a generalization of the proposed

mechanisms for wide deployment. Section 7 discusses limitations

and future remarks, and Section 8 concludes this work.

2 BACKGROUND
This section provides an overview on location privacy and details

the location privacy-preserving mechanisms (LPPMs), attacks and

metrics used in this work. The reader is referred to [18, 21, 31] for

detailed surveys.

A typical framework to evaluate an LPPM consists of a (or mul-

tiple) user(s) and his real and obfuscated locations, the LPPM, an

adversary which is characterized by its attacks and background

knowledge, and metrics [32]. The following subsections address

each of these elements while detailing the selected LPPMs, attacks

and metrics used in this work to evaluate and compare the effec-

tiveness of VA-GI.

2.1 Location Privacy-Preserving Mechanisms
In this work we focus on online LPPMs suitable to be ran in mobile

devices, as this is also a requirement for our VA-GI proposal. Conse-

quently we focused on the following LPPMs: the Planar Laplace [3],

which was the first proposed geo-indistinguishable mechanism, the

Adaptive [2] and the Clustering [10] Geo-Indistinguishability. The

latter two mechanisms were proposed as an extension of Geo-Indis-

tinguishability for the continuous scenario. The following sections

detail each of these LPPMs.

2.1.1 Geo-Indistinguishability and Planar Laplace. Geo-Indistin-
guishability [3] (Geo-Ind) has been proposed as a formal notion

based on differential privacy [11] to design user-centric LPPMs.

Geo-Ind guarantees that the user location is indistinguishable to

any other nearby location based on the observed (obfuscated) re-

port independently of an attacker’s background information. In

other words, the obfuscated report could have been generated with

(almost) the same probability from any location around the exact

user location.

Geo-Ind is formally defined as follows [24]. Consider a location

privacy mechanism as a probabilistic function 𝐾 (·) that assigns
to each location 𝑥 ∈ X a probability distribution on Z, the set of

all possible obfuscated locations, where X andZ are assumed to

be discrete to simplify notation. A mechanism 𝐾 satisfies 𝜖-Geo-

Indistinguishability iff:

𝑑P
(
𝐾 (𝑥), 𝐾 (𝑥 ′)

)
≤ 𝜖𝑑x (𝑥, 𝑥 ′) ∀𝑥, 𝑥 ′ ∈ X (1)
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where 𝑑x (·) is any distance function and 𝑑P (·) is the multiplica-

tive distance between two distributions, defined as 𝑑P (𝜎1, 𝜎2) =
sup𝑆 ∈S

���log 𝜎1 (𝑆)
𝜎2 (𝑆)

���, where 𝜎1 and 𝜎2 are two distributions on some

set 𝑆 , with the convention that L =

���log 𝜎1 (𝑆)
𝜎2 (𝑆)

��� = 0 if 𝜎1 (𝑆) =

𝜎2 (𝑆) = 0 and L = ∞ if one of the two is 0.

Intuitively, equation (1) states that the probability of reporting

location 𝑧 while standing in location 𝑥 is similar to that of standing

in any location 𝑥 ′. In fact, both probabilities differ at most by the

distance between 𝑥 and 𝑥 ′ factored by a small constant 𝜖 , where

𝜖 may be used to tune Geo-Indistinguishability. Commonly, and

as specified in the seminal work [3], this constant is set to 𝜖 = 𝑙/𝑟 ,
such that for any 𝑥, 𝑥 ′ s.t. 𝑑x (𝑥, 𝑥 ′) ≤ 𝑟 , 𝑑P (𝐾 (𝑥), 𝐾 (𝑥 ′)) ≤ 𝑙 ,

where 𝑑x is an arbitrary metric and 𝑙 is a user defined parameter

termed privacy loss. This enforces that any 𝑥 ′ within 𝑟 distance of
𝑥 discloses at most 𝑙 information. Consequently, the true location

𝑥 is better concealed for closer 𝑥 ′ locations, while allowing higher

dissimilarity for distant locations, thus preserving some degree of

utility.

The Planar Laplace (PL) mechanism was the first proposed mech-

anism to achieve the notion of Geo-Indistinguishability [3] and

consists of adding 2-dimensional Laplacian noise centered at the

exact user location 𝑥 and with PDF [3]:

𝑝 (𝑧 |𝑥) = 𝜖2

2𝜋
𝑒−𝜖𝑑x (𝑥,𝑧) (2)

Obtaining 𝑧 from 𝑥 using equation (2) can be efficiently done using

polar coordinates [3].

2.1.2 Clustering Geo-Indistinguishability. The composability prop-

erty of differential privacy states that the privacy loss is linear with

the number of reports. Specifically, reporting 𝑛 locations under

Geo-Ind results in a privacy loss of 𝑛.𝜖 [3, 7]. Under continuous

reports, this privacy loss becomes prohibitive and correlations be-

tween subsequent reports can be used to improve the efficiency of

potential attacks [21, 40]. Clustering Geo-Indistinguishability [10]

tackles this problem by reducing the number of obfuscations as a

function of the traveled distance. Let 𝑥𝑐 and 𝑟 be the center and

radius of an area, denoted cluster, and 𝑥𝑖 and 𝑧𝑖 the user position

and obfuscated report at timestamp 𝑖 , respectively. Then:

𝑧𝑖 =

{
𝑧𝑖−1 if 𝑑2 (𝑥𝑐 , 𝑥𝑖 ) ≤ 𝑟
𝑝𝑙𝑎𝑛𝑎𝑟𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑥𝑖 , 𝜖) otherwise

(3)

Essentially, if the distance between the center of the cluster 𝑥𝑐 and

the current user position 𝑥𝑖 is higher than a radius 𝑟 then a new

obfuscation 𝑧𝑖 is generated using the Planar Laplace. When this

happens, a new cluster is created by setting the center of the cluster

to the current user position, that is, 𝑥𝑐 = 𝑥𝑖 .

In Clustering Geo-Indistinguishability, the privacy and utility

level can be tuned by the radius 𝑟 . Increasing the radius results in

an increased privacy at the expenses of the utility, and vice-versa

for a decrease of the radius. In the original paper [10], the authors

have used the approach from Geo-Indistinguishability to set the

value of 𝑟 as 𝜖 = 𝑙/𝑟 ↔ 𝑟 = 𝑙 · 𝜖 . Therefore, only two parameters

are required, the privacy loss 𝑙 and privacy budget 𝜖 .

2.1.3 Adaptive Geo-Indistinguishability. While Clustering Geo-In-

distinguishability reduces the number of obfuscated reports to de-

crease the privacy loss, the privacy/utility configuration relies on

the value of the radius 𝑟 , which is static. In contrast, the Adaptive

Geo-Indistinguishability [2] increases the privacy or utility depend-

ing on the correlation between past and current locations at each

report. Specifically, this LPPM uses the Planar Laplace while dy-

namically adjusting the privacy budget 𝜖 to increase privacy if the

correlation is high, and increase utility if the correlation is low. For

measuring the correlation, a linear regression is used to produce

an estimation 𝑥𝑖 of the real user location 𝑥𝑖 at each timestamp 𝑖

using past locations up to 𝑖 . Depending on the Euclidean distance

between the estimation and real location 𝑑2 (𝑥𝑖 , 𝑥𝑖 ), the mechanism

increases either privacy or utility as follows:

𝜖𝑖 =


𝛼 · 𝜖, for 𝑑2 (𝑥𝑖 , 𝑥𝑖 ) < Δ1

𝜖, for Δ1 ≤ 𝑑2 (𝑥𝑖 , 𝑥𝑖 ) < Δ2

𝛽 · 𝜖, for 𝑑2 (𝑥𝑖 , 𝑥𝑖 ) ≥ Δ2

(4)

where Δ1 and Δ2 are thresholds and 𝛼 and 𝛽 two constants with the

following constraints: Δ2 > Δ1, 0 < 𝛼 < 1 and 𝛽 > 1. Fundamen-

tally, if the distance between the estimation and the user location

is lower than a threshold Δ1, then the correlation between past and

current locations is high. Therefore, the mechanism decreases the

privacy budget 𝜖𝑖 to increase privacy. If instead the correlation is

low, signaled by a distance between the real and estimated loca-

tions higher than a threshold Δ2, then the mechanism adjusts for

increasing utility.

As defined in equation (4) and in contrast with previous LPPMs,

Adaptive Geo-Indistinguishability provides a dynamic adjustment

of the privacy and utility by taking into account previous reports.

Note however, that this adjustment comes at the expense of us-

ability. Namely, in addition to setting 𝜖 , the user must also define

four extra parameters: Δ1, Δ2, 𝛼 and 𝛽 . This is a crucial drawback

on the usability of the LPPM, as a misconfiguration may lead to

an ineffective privacy/utility adjustment, as we further discuss in

Section 4.2.

2.2 Attacks
Location data is extremely sensitive, not only because it reveals

whereabouts, but also because it can disclose identity, habits, health

conditions and social connections [18, 31]. In this regard, an adver-

sary can have different objectives and therefore employ different

methods [39]. In this work we focus on the problem of tracking,

that is, finding the location of the user throughout time. This can

be considered the most general type of attack as having exact ge-

olocation data then allows for more specific inferences [12, 14, 17],

such as the extraction of sensitive locations.

For the tracking problem we consider two different approaches:

a Map-Matching (MM) technique from [15] and the optimal lo-

calization attack given an LPPM and a mobility profile [33]. The

following two sections provide a high level overview of each of the

techniques. The reader is referred to the original work for details.

2.2.1 Map-Matching. Map-Matching (MM) is the process of con-

tinuously positioning a vehicle on a road network given noisy

location readings [19]. In traditional map-matching, the noise in

the readings come from the positioning system, such as the GPS.
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However, MM can also be used as a tracking attack by considering

the noisy readings to be originated in the use of an LPPM over the

exact locations [22]. In fact, MM as an attack has the advantage

of using the road network, which can reduce the potential area of

locations where the target can be, and some techniques resort to

Hidden Markov Models (HMM), that have been shown effective in

modeling the temporal correlations of location traces [40, 41].

As LPPMs can generate obfuscations significantly distanced from

the user location, an attacker should use a MM technique that is

robust to noisy and sparse data. Therefore, in this work we consid-

ered the method proposed by Jagadeesh and Srikanthan [15]. This

proposal is based on a seminal MM work [27], with adaptations

to consider extremely noisy readings, as the cellular network po-

sitioning was used instead of the GPS. We refer the reader to the

original work for the full implementation details.

2.2.2 Optimal Localization Attack. Localization attacks have the

objective to locate a target at a certain point in time [32]. Therefore,

in contrast with tracking, this type of attacks do not reconstruct a

continuous trajectory, but instead an estimated location for a given

location report. Nevertheless, these techniques can reconstruct a

discrete trajectory, where each location is a cell grid, instead of the

exact location [33].

For this work we considered the optimal localization attack given

a mobility profile and an LPPM [33]. Formally, the adversary wants

to compute the estimation 𝑥𝑖 that minimizes the expected distance

to the real user location 𝑥𝑖 . Knowing that the user is using an LPPM,

the expectancy is taken over the probability of the user being at 𝑥𝑖
while reporting 𝑧𝑖 :

𝑥𝑖 = argmin

𝑥𝑖

∑
𝑥𝑖 ∈X

𝑝 (𝑧𝑖 |𝑥𝑖 ) · 𝑝 (𝑥𝑖 ) · 𝑑 (𝑥𝑖 , 𝑥𝑖 ) (5)

The probability of the user being at 𝑥𝑖 , 𝑝 (𝑥𝑖 ), is computed from the

adversary prior knowledge. In practice, this corresponds to using

available data to train a mobility profile [6].

2.3 Metrics
In location privacy, numerous metrics can be used to evaluate the

privacy, utility and performance [21, 31]. In this work we focus on

the differential privacy budget 𝜖 and the F1-score as proposed by

the authors of the MM method [15]. This latter metric is computed

as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝐿𝑚𝑎𝑡𝑐ℎ𝑒𝑑

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝐿𝑡𝑟𝑢𝑡ℎ

𝐹1 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(6)

where 𝐿𝑚𝑎𝑡𝑐ℎ𝑒𝑑 is the length of the output path, 𝐿𝑡𝑟𝑢𝑡ℎ is the length

of the corresponding ground truth and 𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the length of the

portions of the output path that overlap with the ground truth

path. Intuitively, the precision and recall measure the length of the

segments that were correctly matched as a fraction of the map-

matching output and the true path, respectively. The 𝐹1-score is

then the harmonic mean between both metrics.

Given the definition in equation (6), the F1-score can be seen as a

privacy metric from the point-of-view of an adversary reconstruct-

ing the original trajectory . It can additionally be seen as an utility

metric from the point of view of a service that requires access to the

full trajectories, such as a navigation service or for traffic statistics.

In this context, a low 𝐹1-score corresponds to a high privacy and

low utility and a higher 𝐹1-score corresponds to a lower privacy

and higher utility.

To complement the F1-score, we additionally consider the adver-

sary error as privacy metric and the quality loss as utility metric.

Empirically, the adversary error at each report is computed as the

distance from the exact user location 𝑥𝑖 and the respective adver-

sary estimation 𝑥𝑖 . The quality loss is the distance from the exact

user location 𝑥𝑖 and the obfuscated reported location 𝑧𝑖 . It is impor-

tant to note that these two metrics of adversary error and quality

loss only consider discrete trajectories, as the error/loss is only

measured at the time of the report. That is, they do not take into

consideration the continuous trajectory that connects the positions

at each timestamp. Therefore, in this work we strongly focus on

the F1-score as it effectively captures the reconstruction of the full

continuous trajectory.

3 VELOCITY-AWARE
GEO-INDISTINGUISHABILITY

In differential privacy, setting the value of 𝜖 is challenging as it

highly depends on the data, specially in the presence of correla-

tions [8, 20]. In fact, in the context of location privacy it has been

shown that there is an upper bound on the value of the privacy

budget necessary to guarantee relevant privacy protection [22].

Additionally, from the composability properties of Geo-Ind, the pri-

vacy loss increases linearly with the number of reports. Therefore,

this notion is only suitable for sporadic reports.

To solve the privacy budgeting problem under continuous re-

ports, we propose a generalization of Geo-Ind termed Velocity-

Aware Geo-Indistinguishability (VA-GI). VA-GI adjusts the privacy

and utility as a function of the user’s velocity and the frequency of

reports in accordance with the desired behavior of a velocity-aware

LPPM as described in Table 1. For this dynamic adaptability, we set

the privacy budget 𝜖 as a function of both velocities. Formally, for

each timestamp 𝑖 , 𝜖 is set dynamically as:

𝜖𝑖 B 𝜖𝑖 (𝑣𝑢,𝑖 , 𝑣𝑟,𝑖 ) (7)

where 𝑣𝑢,𝑖 and 𝑣𝑟,𝑖 are the velocity of the user and the velocity

(or frequency) of the reports at timestamp 𝑖 , respectively. This

formulation leads us to definition 1.

Definition 1. An obfuscation mechanism 𝐾 (·) is Velocity-Aware
Geo-Indistinguishable iff for any timestamp 𝑖 :

𝑑P
(
𝐾 (𝑥𝑖 ), 𝐾 (𝑥 ′𝑖 )

)
≤ 𝜖𝑖 (𝑣𝑢,𝑖 , 𝑣𝑟,𝑖 ) · 𝑑 (𝑥𝑖 , 𝑥 ′𝑖 ), ∀𝑥𝑖 , 𝑥 ′𝑖 ∈ X

Definition 1 states that the difference in the output of a VA-GI

mechanism with input location 𝑥𝑖 or 𝑥
′
𝑖
at timestamp 𝑖 differs at

most by the distance between both locationsmultiplied by a variable

privacy budget that is function of the user and report velocities at

the same timestamp 𝑖 . Note, however that contrary to Geo-Ind, the

privacy bound depends on the bounds of the function 𝜖𝑖 (·), which
we discuss next.

In order to achieve the desired behavior for a velocity-aware

LPPM as described in Table 1, 𝜖𝑖 (·) must increase with an increase

in the velocity of the user or a decrease in the frequency of reports,
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and decrease with the decrease of the user velocity or an increase in

the frequency of reports. Formally, we can describe this requirement

as:

𝜖𝑖 (𝑣𝑢,𝑖 , 𝑣𝑟,𝑖 ) ∝ 𝑣𝑢,𝑖 ∧ 𝜖𝑖 (𝑣𝑢,𝑖 , 𝑣𝑟,𝑖 ) ∝
1

𝑣𝑟,𝑖
(8)

that is, 𝜖𝑖 is directly proportional to the user velocity, and inversely

proportional to the frequency of reports. Towards this goal, we

depart from the standard Geo-Ind [3] where 𝜖 = 𝑙/𝑟 , and set the

privacy budget as:

𝜖𝑖 =
𝜖

𝑚
·𝑚(2·𝑓 (𝑣𝑢,𝑖 ,𝑣𝑟,𝑖 ))

(9)

where 𝑚 is a privacy and utility multiplier (as further discussed

below) with𝑚 ∈ [1,∞[, 𝑣𝑢,𝑖 and 𝑣𝑟,𝑖 are the user and report veloc-

ities at timestamp 𝑖 , and 𝑓 (·) is any function of 𝑣𝑢,𝑖 and 𝑣𝑟,𝑖 , that

holds the proportionalities from equation (8) and with 𝑓 (·) ∈ [0, 1].
Equation (9) corresponds to the exponential regression on 𝑓 (·) such
that the following bounds for 𝜖𝑖 are achieved:

𝜖

𝑚
≤ 𝜖𝑖 ≤ 𝑚 · 𝜖 ⇔ 𝑙

𝑚
≤ 𝑟 · 𝜖𝑖 ≤ 𝑚 · 𝑙, ∀𝑖 (10)

where the multiplier 𝑚 is used to adjust the privacy and utility

bounds. Equations (9) and (10) provide a dynamic balance in where

the privacy and utility levels can be increased or decreased up to𝑚

times the initial 𝜖 value, depending on the velocity of the user and

frequency of reports. As long as 𝑓 (·) provides the proportionality
from equation (8), an increase in the user velocity (𝑣𝑢,𝑖 ) and/or a

decrease in the frequency of updates (𝑣𝑟,𝑖 ) is met with an increase in

the privacy budget 𝜖𝑖 , and vice-versa for a decrease in 𝜖𝑖 . Therefore,

we refer to this VA-GI formulation as (𝑚, 𝜖)-VA-GI. Finally note that,

if 𝑚 = 1, (1, 𝜖)-VA-GI becomes Geo-Ind as 𝜖𝑖 = 𝜖, ∀𝑖 . Therefore,
(𝑚, 𝜖)-VA-GI can be seen as a generalization of Geo-Ind. This result

leads us to Theorem 1.

Theorem 1. (𝑚, 𝜖)-VA-GI satisfies 𝑚𝜖-Geo-Indistinguishability
and guarantees a maximum privacy loss of𝑚 · 𝑙 within a radius 𝑟 .
Namely, for any timestamp 𝑖 :

𝑑P
(
𝐾 (𝑥𝑖 ), 𝐾 (𝑥 ′𝑖 )

)
≤ 𝑚 · 𝑙, ∀𝑥𝑖 , 𝑥 ′𝑖 ∈ X s.t. 𝑑x (𝑥𝑖 , 𝑥 ′𝑖 ) ≤ 𝑟

Proof. The Planar Laplace has been proven to provide Geo-

Indistinguishability by abiding to equation (1) [3]:

𝑑P
(
𝐾 (𝑥), 𝐾 (𝑥 ′)

)
≤ 𝜖𝑑x (𝑥, 𝑥 ′) ∀𝑥, 𝑥 ′ ∈ X

In (𝑚, 𝜖)-VA-GI, the privacy budget 𝜖 varies for each timestamp 𝑖 .

From equation (10) we have that 𝜖𝑖 ≤ 𝑚 · 𝑙, ∀𝑖 . Consequently, from
equation (1) and for any two 𝑥𝑖 , 𝑥

′
𝑖
such that 𝑑x (𝑥𝑖 , 𝑥 ′𝑖 ) ≤ 𝑟 :

𝑑P
(
𝐾 (𝑥𝑖 ), 𝐾 (𝑥 ′𝑖 )

)
≤ 𝑚 · 𝑙, ∀𝑖 (11)

□

3.1 An (𝑚, 𝜖)-VA-GI LPPM
Equation (9) defines the generic formula to achieve (𝑚, 𝜖)-VA-GI,

where any definition of the function 𝑓 (·) ∈ [0, 1] that respects
the desired properties from Table 1 can be used. However, for an

effective privacy and utility balance, the function should respect

the nature of the velocities, specifically their distributions. Unfor-

tunately, the velocities do not follow any unimodal distribution,

and in fact depend on the underlying road features and drivers [35].

Therefore, to design an (𝑚, 𝜖)-VA-GI LPPM one can approximate

or estimate the distributions by using available data. This section

describes such methodology.

Since there is no a priori best choice, we leave the comparison

between VA-GI LPPMs for future work and instead choose a simple

velocity function 𝑓 (·) defined as the average between a function

of the user velocity 𝑓𝑢 (𝑣𝑢,𝑖 ) and a function of the report velocities

𝑓𝑟 (𝑣𝑟,𝑖 ):

𝑓 (𝑣𝑢,𝑖 , 𝑣𝑟,𝑖 ) =
1

2

·
(
𝑓𝑢 (𝑣𝑢,𝑖 ) + 𝑓𝑟 (𝑣𝑟,𝑖 )

)
(12)

Where 𝑓𝑢 (·), 𝑓𝑟 (·) ∈ [0, 1]. To take into consideration the distribu-

tions of 𝑣𝑢,𝑖 and 𝑣𝑟,𝑖 and to favor the variance of 𝑓𝑢 and 𝑓𝑣 near the

typical values of 𝑣𝑢,𝑖 and 𝑣𝑟,𝑖 , we set:

𝑓𝑢 (𝑣𝑢,𝑖 ) = 𝑐𝑑 𝑓 (𝑣𝑢,𝑖 )
𝑓𝑟 (𝑣𝑟,𝑖 ) = 1 − 𝑐𝑑 𝑓 (𝑣𝑟,𝑖 ) (13)

where 𝑐𝑑 𝑓 (·) stands for the Cumulative Density Function (CDF).

With equation (13) we guarantee that the codomain of 𝑓 (𝑣𝑢,𝑖 , 𝑣𝑟,𝑖 )
as defined in equation (12) is in the interval [0, 1] and that the

proportionalities from equation (8) are respected. Additionally, be-

cause the slope of the CDF is higher in the typical values, smaller

deviations from these will have a steeper privacy/utility adjustment.

Combining equation (12) and (13) in equation (9), we reach:

𝜖𝑖 = 𝜖 ·𝑚(𝑐𝑑 𝑓 (𝑣𝑢,𝑖 )−𝑐𝑑 𝑓 (𝑣𝑟,𝑖 ))
(14)

The advantage of using the 𝑐𝑑 𝑓 (·) functions of the user velocities
and frequency of reports relates to the minimization of the required

parameters. By using equations (13) in the (𝑚, 𝜖)-VA-GI privacy
budget equation (9), we limit the LPPM to 2 parameters: the initial

𝜖 value and the multiplier𝑚. This is in contrast with other LPPMs

for continuous report, that either require several parameters to

provide the dynamic adaptability, such as the Adaptive Geo-Ind,

or that have few parameters but do not adapt to the dynamics of

the movement (e.g. Clustering Geo-Ind and the Planar Laplace).

Sections 4.2 and 5 demonstrate these disadvantages of previous

works.

One of the disadvantages of this approach is that the distribution

of the velocities is unknown. To solve this issue, one can use data to

estimate the CDFs using non-parametric density estimation. From

the point of view of the LPPM, this data can belong to all drivers in

a specific city, global or even be personalized to the user, by using

their past data. Regardless of the data used, a better CDF fit will

favor the privacy and utility trade-off. Nevertheless, to faithfully fit

a CDF, a decent amount of data is required. In Section 6 we show

empirical evidence on the effectiveness of generalizing the CDFs to

Gaussian distributions in the context of (𝑚, 𝜖)-VA-GI.
In summary, the (𝑚, 𝜖)-VA-GI LPPM consists of using the PL

mechanism from equation (2) with the epsilon from equation (14).

3.2 Setting LPPM Parameters
One of the challenges in the wide deployment of privacy mecha-

nisms is the configuration parameters. In differential privacy, for

instance, setting the value of 𝜖 depends on the dataset and must

take into account the presence of correlations [8, 20]. This is spe-

cially true for mechanisms that act at collection time, where the

responsibility to properly tune the mechanism lies on the user.
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Figure 1: Diagram of the followed methodology. The LPPM step is repeated for each of the LPPMs and the Attack step is
repeated for each combination of LPPM/Attack.

Statically set parameters such as in Geo-Ind and Clustering fail

at providing effective privacy against continuous, and hence, corre-

lated reports. The Adaptive Geo-Ind provides the dynamic adapt-

ability but introduces four additional parameters. Unfortunately,

misconfigured parameters can result in ineffective privacy/utility

trade-offs (c.f. Section 4.2), or even in no effective privacy [22]. In

contrast, the (𝑚, 𝜖)-VA-GI LPPM only requires the initial 𝜖 value

and a straightforward privacy/utility multiplier𝑚. Setting these

values can take into consideration personal preferences or applica-

tion requirements, such as a minimum required utility. For instance,

one can see the typical range of values from the literature and set 𝜖

to the mid value of such range and then set𝑚 such that 𝜖𝑖 automati-

cally adjusts within the range, so as to either favor privacy or favor

utility, as required by the context at hand. Specifically, with 𝜖 = 16

km
−1
, a value that is commonly used in the context of continuous

reports [2, 22], and𝑚 = 10 we obtain 1.6 ≤ 𝜖𝑖 ≤ 160, a range that

contains values that are used in sporadic scenarios [3] and values

used in the continuous scenario [2, 22].

4 EXPERIMENTAL SETUP
This section describes the conducted simulations by detailing the

datasets and experimental setup. To evaluate the effectiveness of

(𝑚, 𝜖)-VA-GI, our methodology consisted in applying the LPPMs

detailed in Section 2 to the data, followed by each of the attacks.

The results are compared between the output of the attacks and

the original dataset, along with the comparison between the dif-

ferent LPPMs and respective configurations. The diagram in Fig-

ure 1 summarizes the methodology, which is repeated (except the

preprocessing MM) for each pair of LPPM/Attack. The following

subsections detail the dataset and respective preprocessing, and the

configurations/parameters of the LPPMs and attacks.

4.1 Dataset Characterization And
Preprocessing

The dataset used in our experiments was the Cabspotting, a dataset

of taxi trajectories over the city of San Francisco, California, USA.

The trajectories belong to 536 taxis and were collected over a period

of 30 days, containing not only the GPS position and timestamp,

but also whether the cab had a customer at each time [30].

To preprocess the dataset, we first filtered out trajectories with

points outside the bounding-box defined from South and North by

the latitudes 37.600, 37.811, and from West and East by longitudes

−122.517, −122.354 . We additionally removed trajectories without

occupancy, as to avoid trajectories where the cab is waiting for

a client. Finally, public datasets present a significant number of

location/time outliers (c.f. [23]), resulting in spurious trajectories.

Consequently, we applied the data cleaning procedure from [37] by

discarding: 1) trips with duration lower than 1 minute and higher

than 3 hours; 2) trips with total displacement over 100 km; 3) trips

with average velocity lower than 5 km/h or over 120 km/h; 4) non-

smooth trips. Non-smooth trips were removed by using a filter with

a sliding window that detects whether the average velocity between

points is within normal intervals. If more than a defined percentage

of points in each trajectory has abnormal average velocities, then

the trajectory is rejected. The original default parameters were

used for this filter [37]. After this preprocessing, 307983 trajectories

remained from the original dataset.

Because we apply four LPPMs under different configurations and

multiple attacks, we further subsampled the dataset as to reduce

the number of trajectories. In order to evaluate the adaptability of

the LPPMs under continuous reports, we divide the trajectories in

four different sets depending on the average user velocity 𝑣𝑢 and

average report velocity 𝑣𝑟 :

(1) Balance Privacy/Utility 1 (↓𝑣𝑢 ↓𝑣𝑟 ): trajectories with average
user velocity 𝑣𝑢 ≤ 20 km/h and velocity of reports 𝑣𝑟 ≤ 45

reports/h;

(2) Favor Privacy (↓𝑣𝑢 ↑𝑣𝑟 ): trajectories with average user veloc-
ity 𝑣𝑢 ≤ 20 km/h and velocity of reports 𝑣𝑟 ≥ 100 reports/h.

This is the worst case with respect to privacy, as it has the

largest density of reports per distance traveled. Therefore,

and according with the desirable properties from Table 1,

LPPMs should ideally adjust for privacy to account for the

higher correlation between reports;

(3) Favor Utility (↑𝑣𝑢 ↓𝑣𝑟 ): trajectories with average user veloc-

ity 𝑣𝑢 ≥ 100 km/h and velocity of reports 𝑣𝑟 ≤ 45 reports/h.

This scenario has the lowest density of reports per distance

traveled and hence, the lowest correlation between reports.

Therefore, the LPPMs should ideally adjust to improve util-

ity;

(4) Balance Privacy/Utility 2 (↑𝑣𝑢 ↑𝑣𝑟 ): trajectories with aver-

age user velocity 𝑣𝑢 ≥ 100 km/h and velocity of reports

𝑣𝑟 ≥ 100 reports/h. This scenario is similar to the “Balance

Privacy/Utility 1 (↓𝑣𝑢 ↓𝑣𝑟 )" with respect to the density of

reports and therefore to the desired response.

The threshold values were chosen by looking at the speed limits
1

and empirical distributions, which we omit due to space constraints.

Specifically, speed limits in alleys and residential areas are 24 and 40

km/h, respectively, and therefore, a vast number of trajectories will

have an average speed lower to 20. The high user velocity trajecto-

ries, with average over 100 km/h, will correspond to trajectories in

highways, where the speed limit is 105 km/h. For the frequency of

reports, we picked intervals directly from the empirical distribution.

From the four data set divisions, we picked the 100 trajectories

from each partition with lowest standard deviation, to select trajec-

tories where the instant velocities are closest to the filtered mean

1
https://data.sfgov.org/Transportation/Map-of-Speed-Limits/ttcm-fwt2

https://data.sfgov.org/Transportation/Map-of-Speed-Limits/ttcm-fwt2
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Figure 2: Boxplot of the Adaptive estimation errors and the
Δ1 and Δ2 original thresholds.

values. This selection was made to have a strong diversity of tra-

jectories, encompassing scenarios with a high, medium and low

density of reports per trajectory. This density relates directly to

the difficulty of an adversary in reconstructing the real trajectory.

From now onwards, we refer to the selected 400 trajectories as test

data and the remaining cleaned trajectories (307583) as training

data.

To the test data, we apply the map-matching technique detailed

in Section 2.2.1 as to position each location report on the road

network. This preprocessing step cleans these trajectories from

noisy reports, thus forming our ground-truth. For the standard

deviation of the measurement error 𝜎 , we used a typical value

for GPS readings of 𝜎 = 6.86 m [13]. The parameters 𝜆𝑦 and 𝜆𝑧
were estimated following the original map-matching proposal [15].

Namely, using trajectories from the training data with duration

between 1 and 6minutes with at least 2km of traveled distance (4963

trajectories). This resulted in the values 𝜆𝑦 = 0.69 and 𝜆𝑧 = 13.35.

4.2 LPPMs
For the LPPMs, we compare the (𝑚, 𝜖)-VA-GI LPPM from Section 3.1,

which we simple refer to as VA-GI, with the geo-indistinguishable

LPPMs described in Section 2.1, that is, the Planar Laplace [3], which

we refer to as Geo-Ind, the Clustering Geo-Ind [10], referred to as

Clustering, and the Adaptive Geo-Ind [2], or Adaptive.
For the privacy budget, and for all LPPMs, we used multiple

values in the typical ranges of LPPMs for continuous reports [2, 22],

specifically 𝜖 = [16, 32, 64, 128] km−1
. For the Geo-Ind LPPM, this

corresponds to an average obfuscation of [125, 62.5, 31.25, 15.625]
m, respectively. These values of obfuscation range from city block

level distances to parallel streets. For the remaining parameters we

attempted to use the proposed values from the original respective

papers, but we found some problems in the Adaptive as follows.

In the Adaptive mechanism, the privacy budget 𝜖 is adjusted for

privacy or utility depending on the error in estimating the current

location, as described in Section 2.1.3. In accordance with equa-

tion (4), if the estimation error is smaller than Δ1, then privacy is

increased by reducing 𝜖 by a factor of 𝛼 . If the estimation error is

higher than Δ2 the utility is increased by increasing 𝜖 by a factor

of 𝛽 . The authors heuristically proposed setting Δ1 = 0.96/𝜖 and
Δ2 = 2.7/𝜖 . However, for the 𝜖 values used in our work, we found

that these thresholds result in a poor privacy and utility adaptabil-

ity. Figure 2 illustrates this problem by plotting a boxplot of the

estimation errors (𝑑2 (𝑥, 𝑥)) for all points in the training data and

the thresholds for 𝜖 = 16 km
−1
. From this plot it is clear that for
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Figure 3: Empirical and kernel density estimation cumula-
tive density functions of the velocities.

Figure 4: 3-dimensional plot of the value of 𝜖𝑖 as given by
equation (14) as a function of 𝑣𝑢,𝑖 and 𝑣𝑟,𝑖 , with 𝜖 = 16 km−1

and𝑚 = 10.

almost 75% of location reports, the adaptive would adjust for utility,

and only for less than approximately 15% of cases, it would adjust

for privacy. This unbalance is even worse for higher 𝜖 values, as the

estimation errors are the same, but the thresholds would be lower.

In order to have a proper privacy/utility dynamic, we set the Δ1

and Δ2 thresholds to the first (Δ1 ≈ 124.29) and third (Δ2 ≈ 428.56)

quartiles of the boxplot. We refer to this tuned LPPM to as Adap-
tive* and only present the results for this optimized variant of the

original adaptive mechanism. This example illustrates the difficulty

in setting the proper parameters, as discussed in Section 3.2, a prob-

lem that VA-GI solves by using the cumulative density functions,

as previously discussed.

As for the VA-GI, and following the description from Section 3.1,

we use a non-parametric estimation of the Cumulative Density

Functions (CDF) using the training data, specifically, a Kernel Den-

sity Estimation (KDE). Figures 3a and 3b present the empirical and

KDE CDF for the user and report velocities, respectively. From these

images we can clearly see that the lines are mostly coincident in

both cases, thus confirming that the KDE is a good estimator for

the CDF. In summary, for VA-GI, at each timestamp 𝑖 we compute

𝜖𝑖 as defined in equation (14) with the KDE CDFs.

One can plot equation (14) as a function of the velocities of the

users and reports. Figure 4 presents this plot with 𝜖 = 16 km
−1

and

𝑚 = 10. We can observe that as the velocity of the user increases,

the value of 𝜖𝑖 increases as to reduce the obfuscation, and therefore

increase utility, and vice-versa for a decrease in the velocity as
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(b) Optimal Localization Attack

Figure 5: Boxplot of the adversary errors for the Map-matching and optimal localization attack for 𝜖 = 16 km−1.

Favor Utility
(↑ vu ↓ vr)

Balance Privacy
Utility 1
(↓ vu ↓ vr)

Balance Privacy
Utility 2
(↑ vu ↑ vr)

Favor Privacy
(↓ vu ↑ vr)

Dataset Division

0

100

200

300

400

500

600

700

Q
ua

lit
y

L
os

s
(m

)

Geo-Ind

Adaptive*

Clustering

VA-GI

Figure 6: Boxplot of the quality loss for each dataset division
and LPPM with 𝜖 = 16 km−1.

to increase privacy. The velocity of reports has the inverse effect,

which is in accordance with Table 1.

For the remainder of the paper, the results for the VA-GI mecha-

nism were obtained with𝑚 = 10. This value was chosen such that

typical epsilon values (c.f. [2, 3, 22]) were contained within the 𝜖𝑖
bounds defined in equation (10).

4.3 Attacks
For the attacks we consider the optimal localization attack from

section 2.2.2 and the map-matching attack from section 2.2.1. For

the map-matching, while the original authors presented a com-

plex route choice model, the increase in the accuracy was marginal

when compared to using the shortest path [15]. Therefore, in this

work we opted for the simple shortest path to reduce computational

complexity. For efficiency, and similarly to [13], we only consider

candidates nodes within a radius 𝑟 which we calculate using the

inverse cumulative distribution function of the Gaussian distribu-

tion. The radius 𝑟 is computed such that the circle centered at the

observation contains the exact location with 90% probability given

a geo-indistinguishable obfuscation. When this circle contains no

candidates, which can happen due to the use of the LPPM and

selected road network, the nearest road network node is used as

candidate. The road network was obtained from OpenStreetMap

using the OSMnx tool [5] over the San Francisco bay area.

5 RESULTS
This section presents the results obtained following the presented

methodology. Because the findings endure for all epsilon values,

we present the results only for 𝜖 = 16 km
−1
.

Figure 5 shows the adversary error for the map-matching and

optimal localization attack. From this figure we can observe that

Geo-Ind and Clustering have similar adversary error (privacy level)

for the different dataset divisions and for both attacks. However,

the Adaptive* and VA-GI largely vary. Specifically, for the “Favor

Privacy (↓𝑣𝑢 ↑𝑣𝑟 )" division these two LPPMs have greater adversary

errors, and for “Favor Utility (↑𝑣𝑢 ↓𝑣𝑟 )" the lowest. These results
indicate that both the Adaptive* and the VA-GI properly adapt in

accordance with the desired properties of a velocity-aware LPPM,

as described in Table 1. However, the large increase in the adversary

error comes with the consequence of a high quality loss as displayed

in Figure 6. This is the natural and ever present trade-off between

privacy and utility [9].

According to Figures 5 and 6, the VA-GI had the strongest privacy

(highest adversary error) for the “Favor Privacy (↓𝑣𝑢 ↑𝑣𝑟 )" scenario,
while the Adaptive* had the best utility (lowest quality loss) for

the “Favor Utility (↑𝑣𝑢 ↓𝑣𝑟 )" division. However, due to the fact

that the quality loss and adversary error metrics do not take into

consideration the continuous nature of the trajectories, these results

can be inconclusive. Therefore, in the following discussion we focus

on the F1-score metric as it considers not only the user individual

reports but every traversed segment between each location.

Figure 7 shows the F1-score for each dataset division and each

LPPM. From the plot it is clear that the Adaptive* and VA-GI adapt

to both the user and report velocities in accordance with the desir-

able properties of a velocity-aware LPPM, thus confirming previous

results. This is observable from the fact that for the “Favor Utility

(↑𝑣𝑢 ↓𝑣𝑟 )" division these two LPPMs present the highest F1-scores,
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Figure 7: Boxplot of the F1-score for each dataset division
and LPPM with 𝜖 = 16 km−1.

meaning that both LPPMs adjusted for utility, and the lowest F1-

scores for “Favor Privacy (↓𝑣𝑢 ↑𝑣𝑟 )", signaling an adjustment for

privacy. However, the VA-GI outperformed the Adaptive* in both

cases, presenting higher score for the “Favor Utility (↑𝑣𝑢 ↓𝑣𝑟 )" and
lower for the “Favor Privacy (↓𝑣𝑢 ↑𝑣𝑟 )", as desired. Furthermore, it

should be noted that the displayed results for the adaptive mech-

anism were obtained with an improved selection of parameters,

the Adaptive* – the default values would have lead to an ineffec-

tive privacy-utility adaptability, as depicted in Figure 2. Figure 7

also shows that Geo-Ind and Clustering present similar yet smaller

fluctuations in the F1-score for the different dataset divisions. This

is due to the underlying selection of trajectories for the division.

Specifically, the selected traces with high user velocity correspond

to movements in highways, where there is less entropy in finding

the right trajectory with the map-matching, thus resulting in a

higher F1-score. As for lower 𝑣𝑢 trajectories, these correspond to

alleys and residential areas, where the density of the road network

is higher and therefore resulting in a lower F1-score. Nevertheless,

these fluctuations in the scores for the different divisions are infe-

rior to the ones obtained with the Adaptive* and VA-GI, signaling

that the latter two LPPMs effectively adapt to the velocities.

The variations in the F1-score for the Adaptive* and VA-GI origi-

nate from the dynamic adaptability of the 𝜖𝑖 value according to the

velocities as in equation (14). Therefore, it is useful to look at the

distribution of these values to confirm the aforementioned findings.

Figure 8 presents the distributions of the 𝜖𝑖 values for each dataset

and LPPM with 𝜖 = 16 km
−1
. Note that Geo-Ind and Clustering

are a single scatter point as the 𝜖 is constant, while the Adaptive*

presents three possible values as per equation (4). Results for VA-GI

are presented as a boxplot, due to the continuous nature of the

epsilon values obtained. These plots firmly agree with F1-score

results. Namely, both the Adaptive* and VA-GI adapt for privacy

for the “Favor Privacy (↓𝑣𝑢 ↑𝑣𝑟 )" by decreasing 𝜖𝑖 and for utility

for the “Favor Utility (↑𝑣𝑢 ↓𝑣𝑟 )" by increasing 𝜖𝑖 . Notice however,

that while the VA-GI has continuous spectrum of values for 𝜖𝑖 ,

the Adaptive* mechanism considers only three values, resulting

from the application of formula (4). Therefore, the VA-GI is able

to provide a more fine grained privacy/utility adaptability. This is
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Figure 8: Distribution of the 𝜖𝑖 values for each dataset divi-
sion and LPPM with 𝜖 = 16 km−1 in the form of a scatter
plot for Geo-Ind, Adaptive* and Clustering, where the size
of the points is the absolute frequency of the corresponding
𝜖 value, and a boxplot for VA-GI, due to the continuous na-
ture of the epsilon values in this latter LPPM.

relevant as the Adaptive* might erroneously not adapt for privacy

or utility in cases where it should, which is further aggravated by

possibly misconfigured threshold values Δ1 and Δ2 (c.f. Figure 2).

The VA-GI mitigates this problem by using the CDF of the velocities

for defining the system parameters, as previously discussed.

In summary, both the VA-GI and Adaptive* adapt in accordance

to the desired properties of a velocity-aware LPPM. For this dy-

namic adjustment, the VA-GI outperfoms all other tested LPPMs

from both privacy and utility metrics. Although the performance

advantage of VA-GI is more limited with respect to the Adaptive

mechanism, the latter requires setting parameters on demand for

each new context/scenario (see Section 4.2), whereas VA-GI pro-

vides a mechanism for automatic adjustment of parameters and a

finer grained continuous adaptability, while requiring fewer param-

eters, thus mitigating misconfiguration issues that can lead to no

privacy [22].

6 GENERALIZING THE VA-GI LPPM
The VA-GI LPPM requires data to estimate the CDFs of the veloci-

ties, which can limit the wide deployment of such mechanism. This

section addresses this limitation by proposing a methodology to

generalize the VA-GI LPPM for wide deployment by approximat-

ing the CDFs to a Gaussian distribution modelled using publicly

available data.

In order to use the CDF of the velocities for the definition of

function 𝑓 (·) in (12), real mobility data is needed, thus posing a

limitation on the practicability of VA-GI. However, from the CDF

plots for the Cabspotting data illustrated in Figure 3, we can observe

that an approximation to a Gaussian distribution might fit as an

estimation. In this section we do such evaluation, specifically, we

use publicly available data to generate a CDF and measure the

fitness of the approximation to a new dataset. Without loss of

generality, we focus on fitting the CDF of user velocity, since the

same methodology could be used to approximate the CDF of the
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Figure 9: CDF and PDF for the user velocities of the Cabspot-
ting and Porto datasets.

report velocity, with the difference that different applications might

use different sampling frequencies. To solve such dissimilarity, a

normalization of the distribution would suffice.

Vehicular velocities have been previously shown to follow Gauss-

ian distributions in highways [4]. However, urban traffic is more

complex due to intersections, traffic signals, congestions and other

factors [35]. Therefore, in order to visually compare the goodness

of fit of the Gaussian distribution, we use the Cabspotting dataset as

publicly available data to form the CDFs and a second dataset from

a different geographic location to evaluate the goodness of fit. This

second dataset is also composed of vehicular trajectories belonging

to 441 taxis in the city of Porto, Portugal, with a sampling rate of

15 seconds and collected over a full year [26].

Figure 9 shows the obtained CDFs for a subsample of 10000

velocities from the Cabspotting and Porto datasets. From Figure 9a

it can be seen that for the Cabspotting dataset, the distributions

differ considerably. However, for the Porto dataset, Figure 9b reveals

a high similarity between the empirical and Gaussian distributions.

A Kolmogorov-Smirnov normality test confirms that both velocity

sets do not follow a Gaussian distribution for any confidence level

(p-value is 0). Additionally, a two-sample Kolmogorov-Smirnov

goodness-of-fit hypothesis test also discards the possibility of both

velocities following the same distribution (p-value is also 0). Finally,

a Wilcoxon rank sum test and a Mood’s median test reject the

hypothesis that both velocities have the same mean and median,

respectively.

Despite the fact that the velocities follow an unknown seemingly

multimodal distribution, the use of the Gaussian distribution as an

approximation might suffice for the purpose of the function of the

user velocities 𝑓 (𝑣𝑢,𝑖 ). We can see this effect by observing Figure 9c,

where the Gaussian CDF for both datasets is similar, even though
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Figure 10: Relative differences for the 𝜖𝑖 values between each
pair of distributions, with initial 𝜖 = 16.

both cities have different speed limits, and hence different velocity

distributions. In fact, in Figure 9d, the Gaussian CDF obtained from

the Cabspotting dataset is similar to the Porto empirical CDF. This

suggests that using publicly available data, even from different geo-

locations might result in effective approximations. Note however,

that the training data must be diverse, as training with data from

a rural area and applying it to a metropolitan area might result in

poor results.

From the point of view of VA-GI, an approximation of the defi-

nition of 𝑓 (·) will result in sub-optimal velocity awareness, which

can cause the LPPM to overshoot the privacy or utility in certain

cases. In order to measure this unbalance, we use a subsample of

the velocities from the Porto dataset and plot the differences be-

tween the 𝜖𝑖 values obtained using the Cabspotting approximations

and the Porto KDE CDF, which is the baseline reference. In other

words, we use the Cabspotting dataset as public available data,

from which we extract the KDE and Gaussian CDFs, and then apply

these distributions in the form of equation (14) to a subsample of

the Porto dataset. To focus on user velocity, without loss of gen-

erality, we set the value of 𝑐𝑑 𝑓 (𝑣𝑟,𝑖 ) = 𝑘, ∀𝑖 with 𝑘 = 0.5, such

that equation (14) becomes 𝜖𝑖 = 𝜖.𝑚
(𝑐𝑑 𝑓 (𝑣𝑢,𝑖 )−0.5)

, with the bounds

𝜖 ·𝑚−0.5 ≤ 𝜖𝑖 ≤ 𝜖 ·𝑚0.5, ∀𝑖 and𝑚 = 10, as defined previously.

Figure 10a presents the differences between the epsilons obtained

with the Cabspotting KDE and the Porto KDE, while Figure 10b

shows the differences between the epsilons obtained with the Cab-

spotting Gaussian and the Porto KDE, with an initial 𝜖 value of

16km
−1
. A negative value in these plots corresponds to an over-

shoot in the privacy adjustment, as the 𝜖𝑖 in the Porto KDE is higher

than the same 𝜖𝑖 for the Cabspotting estimation, and vice-versa for

a positive value, thus corresponding to an overshoot in the utility

adjustment. From these plots we can clearly see that even though

the velocity distributions might differ, the 𝜖𝑖 obtained using equa-

tion (14) are similar. Specifically, the 𝜖𝑖 values differed less than

10% when using the Cabspotting KDE and up to approximately

5% when using the Gaussian approximation, for both privacy and

utility adjustments. Nevertheless, these results confirm that it is

possible to use publicly available data, even from a different geo-

location with different speed limits, to approximate the function

𝑓 (·) of VA-GI. Furthermore, from a practitioner perspective, the

Gaussian distribution as an estimator can be used in production by
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simply setting the mean and standard deviation parameters, thus

giving a practical benefit over the KDE. Under these configurations,

the user just has to provide the parameters 𝜖 and𝑚 as previously

discussed, where𝑚 can be used to adjust VA-GI for more privacy

or utility, as desired. By configuring two parameters alone, our pro-

posed scheme enables adaptation of the privacy and utility levels

according to the user and report velocities.

7 LIMITATIONS AND FUTUREWORK
The use of correlations between subsequent requests is an impor-

tant venue for LPPMs. In this paper we have used the velocity of the

user and the frequency of reports as a metric for the correlation be-

tween reports, and proposed a particular instance of a VA-GI LPPM.

While our results have shown an effective adaptability we leave for

future work the comparison between different VA-GI formulations.

Furthermore, the use of the velocity of the user and the frequency of

reports might not be an efficient proxy for the correlation between

reports in some cases. For instance, in a highway, the density of

reports can be low, but the correlation might be high due to the

lack of intersections/exits. As future work, we intend to consider

the underlying map in the design of the LPPM, similarly to the

work in [38] but in the context of differential privacy. For example,

the consideration of the road-network in vehicular trajectories or

the density of buildings, can allow for a metric on the adversary

confusion, thus potentially resulting in a more effective privacy

and utility adjustment.

Our scheme requires access to user velocity data that may not

always be available. We have shown in Section 6 how to generalize

VA-GI through approximation to known CDFs, whereby the Gauss-

ian CDF generalized better than the KDE CDF. However, further

validation using other datasets is required to confirm these results.

Inherited from differential privacy, the repeated use of any geo-

indistinguishable LPPM, including VA-GI, results in increasing and

unbounded information leakage, which can be measured through

the composition properties [11]. In practice, one can define a maxi-

mum privacy budget, such that after exhausting it, no more data

is sent to the service provider. Unfortunately, this would result

in not having access to the service. Practical implementations of

differential privacy incur in a trade-off where the privacy budget is

reset after a certain amount of time, thus limiting exposure within

a given time frame, while (misleadingly) considering contributions

between periods independent [34]. This is an active line of research

that could spark future work in LPPMs at data collection.

Finally, location data has been considered personal data un-

der privacy laws such as the General Data Protection Regulation

(GDPR) [36] and the California Consumer Privacy Act (CCPA) [28].

VA-GI preserves location privacy even against the service provider,

thus providing some degree of anonymity. In practice, however,

location-based services require an account, thus identifying even

obfuscated reports. Regardless, the legal requirement to anonymize

the data lies on the service provider, which becomes the data

owner/controller. Therefore, VA-GI provides location privacy, but

not necessarily anonymity. Further anonymization might be re-

quired from the service provider before sharing/storing the data.

8 CONCLUSION
The widespread of mobile and connected devices has lead to the

pervasiveness of Location-Based Services. While vast, the research

on location privacy has fallen behind this development, specially in

Location Privacy-Preserving Mechanisms (LPPMs) that act at col-

lection time. In this context, for effective privacy protection, LPPMs

must take into consideration the potential threat that arises from

the correlation of reports. In this paper we adopted the velocity of

the user and the frequency of reports as metric for the correlation

and proposed a generalization of Geo-Indistinguishability termed

Velocity-Aware Geo-Indistinguishability (VA-GI). Under such no-

tion, we design a VA-GI LPPM that outperforms previous LPPMs in

adapting the privacy and utility under different dynamic scenarios.

The proposed VA-GI LPPM provides a mechanism for automatic ad-

justment of privacy parameters, while requiring fewer parameters

than previous adaptive mechanisms, thus mitigating misconfigu-

ration issues that can lead to no effective privacy protection. This

adaptability of VA-GI can be tuned for general use, by using city or

country-wide data for configuration, or for specific user profiles,

thus warranting fine-grained tuning for specific users/profiles. Fi-

nally, we generalized our proposed VA-GI LPPM by using publicly

available data for defining system parameters, thus facilitating ef-

fective wide deployment using real data to automatically configure

VA-GI.
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