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Abstract—Federated Learning (FL), a distributed learning
mechanism where data is decentralized across multiple de-
vices and periodic gradient updates are shared, is an alterna-
tive to centralized training that aims to address privacy issues
arising from raw data sharing. Despite the expected privacy
benefits, prior research showcases the potential privacy leak-
age derived from overfitting, exploited by passive attacks.
However, limited attention has been given to understanding
and defending against active threats that increase model
leakage by interfering with the training process, instead
of relying on overfitting. This work addresses this gap by
introducing Active Attribute Inference (AAI™), a novel active
attack that encodes sensitive attribute information by making
any targeted training sample leave a distinguishable footprint
on the gradient of maliciously modified neurons [8]. Results,
using two real-world datasets, show that it is possible to
successfully encode sensitive information incurring a small
error in terms of neuron activation. More importantly, on
a practical scenario, AAI* can improve upon a state-of-the-
art approach by achieving over 90% of restricted ROC AUC,
therefore increasing model leakage. To defend against such
active attacks, this work introduces several attack detec-
tion strategies tailored for different levels of the defender’s
knowledge. Including the novel White-box Attack Detection
Mechanism (WADM*) that detects abnormal changes in
weights distribution, and two black-box strategies based on
the monitorization of model performance. Results show that
the detection rate can be 100% on both datasets. Remark-
ably, WADM™ reduces any attack to random guessing while
preserving model utility, offering significant improvements
over existing defenses, particularly when clients are non-IID.
By proposing active attacks against well-generalized models
and effective countermeasures, this research contributes to
a better understanding of privacy in FL systems.

Index Terms—Federated Learning, Data Privacy, Member-
ship Inference Attack, Attribute Inference Attack, Attack
Detection

1. Introduction

Artificial Intelligence (AI) is leading a technological
paradigm shift that impacts several application fields.
Sophisticated machine learning models, driven by data,
hold immense potential for innovation and advancement.
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However, as Al continues to advance, concerns about
data privacy have come to the forefront. The reliance
of these models on vast datasets for training poses sig-
nificant challenges to data privacy [33]. Despite being
especially pertinent in centralized learning, whereby all
data is held by a single entity, privacy concerns may arise
even in distributed frameworks like Federated Learning
(FL), where data is decentralized across multiple devices
and periodic updates are shared to collaboratively train a
model (global model). Clients participating in a federated
learning scheme are exposed to privacy attacks not only
from the central server but also from any other client.

Privacy attacks, such as membership and attribute
inference, try to extract information that was not intended
to be shared. Such knowledge can be about particu-
lar training samples or about properties of the training
data, such as unintentionally encoded biases [24]. In a
Membership Inference Attack (MIA), an attacker with
access to the trained model attempts to infer whether a
given sample was used in the training process, which can
raise severe privacy risks to individuals. In addition to
the potential violation of data regulations (e.g. General
Data Protection Regulation [!]), highly accurate MIAs
are useful to demonstrate privacy leakage [29]. In an
Attribute Inference Attack (AIA), an attacker with access
to the trained model attempts to infer the sensitive attribute
value of a training sample [24]. The level of threat of
AlAs ultimately depends on the destination of the inferred
information, which can be leveraged, for example, to
deliver personalized advertisements to users [13].

Past research primarily focused on passive attacks or
unrealistic scenarios (e.g. required access to individual
gradient updates), leaving a gap in understanding and de-
fending against active attacks, which manipulate models
to extract sensitive information, thus posing a significant
threat to FL systems. These do not require a less accurate
or overfitted model, unlike passive attacks. Instead, it
is only required that the model is sufficiently complex.
Therefore, state-of-the-art defenses, such as differential
privacy and regularization techniques, are ineffective. In
fact, given that active privacy attacks are under-explored,
so are defense mechanisms to mitigate them, namely
defenses that balance the privacy-utility trade-off.

This work addresses this gap by focusing on active
and realistic AIAs over FL models, that do not rely
on overfitting but increase model leakage by encoding



attribute information on model parameters. With these
attacks, the ultimate goal is to identify vulnerabilities of
well-generalized distributed learning models, that often
carry a false sense of security. Additionally, since these
attacks modify the global model, a novel defense mech-
anism is developed to mitigate them while minimizing
model utility loss, resorting to distance-based techniques
to detect malicious modifications of model parameters.
These novel attacks and defense mechanisms are applied
on challenging scenarios, such as FL systems with non-
IID clients and data imbalance problems, showcasing that
these novelties improve upon prior work particularly on
challenging setups. By understanding the risks posed by
active attacks and developing effective countermeasures,
this work aims to contribute to a better understanding of
privacy in FL systems.

The remainder of this paper is structured as follows.
Section 2 presents background concepts and a review
of the state of the art on privacy attacks and defenses.
Section 3 introduces and evaluates novel active attacks
performed by a malicious central server against federated
models trained on several datasets. Section 4 introduces
and evaluates three attack detection strategies tailored for
distinct levels of the defender’s knowledge applied against
attacks evaluated in Section 3. Section 5 discusses the
main findings and presents suggestions for future work.

2. State of the art

Federated Learning (FL), proposed by Google in 2016
[18], is an alternative to centralized training that leaves
private training data distributed on mobile devices and
trains a shared model by aggregating locally computed
updates. An FL system involves a central server (service
provider) that aggregates each participant’s (also referred
to as client) contribution. In this work, only horizontal FL,
referred to as FL, is used. This framework requires private
datasets to have an identical feature space but different
identity spaces, meaning distinct instances described by
the same set of features at each client.

2.1. Privacy Attacks

Attacks on machine learning (ML) models encom-
pass a range of strategies to exploit vulnerabilities and
compromise data privacy. An adversary can have distinct
goals [24], such as membership, attribute, or property
inference, all of which constitute a violation of the pri-
vacy of data owners, leveraged upon a released model or
the adversary’s participation in a model training system.
Adversaries can be described by their level of access and
their effect on the target model (if any), which ultimately
determines the adversarial approach.

2.1.1. Membership Inference Attacks. In an MIA, an
attacker with access to the trained model attempts to
infer whether a given sample was used in the training
process [24] (member). Most MIAs exploit the fact that
the prediction of members is directly optimized (up to a
point) and the non-members’ predictions only hopefully
follow the same trend [4], [O], [21], [26], [31], [32], which
usually leads to a performance gap. Hence, overfitting

is pointed out as the main reason for membership vul-
nerability [32]. Although some MIAs look for high-risk
samples, meaning those that lead to a significant different
output when seen during training, in the lower tail of the
loss distribution, a small loss can be achieved by feeding
a point during training or by naturally easier-to-classify
data points [4]. Analogously, the higher tail of the loss
distribution can have non-members or members that are
naturally harder to classify. Other MIAs look for high-
risk samples among those that have a unique influence
on the model’s behavior regarding the target and related
samples [16]. Such attacks do not require overfitting, as
they exploit local vulnerability, pointing outliers, w.r.t.
statistical properties of the dataset, as high-risk samples.

Even though overfitting is strongly related to member-
ship risk, as it is a sufficient condition, Yeom et al. [32]
claimed that it is not a necessary condition, by proposing
an attack in which a sufficiently complex model leaks pre-
cise membership status by memorizing specific samples,
increasing model leakage without significantly hurting the
target model’s performance. Similarly, Nguyen et al. [22]
developed an attack that forced the model to leak precise
membership status of a sample in a specific neuron’s gra-
dient. Its impressive performance raises awareness about
how dangerous gradient sharing and privileged model
access can be - conditions met in FL.

2.1.2. Attribute Inference Attacks. In an AIA, an at-
tacker with access to the trained model attempts to infer
the sensitive attribute value of a training sample [24].
These attacks usually exploit the correlation between
model performance and the sensitive attribute at the
record level, and can be further divided by the type of
attribute being inferred. AIAs can target predictive fea-
tures [12], [17], [27], [32], whose value can be some-
what encoded in the model’s output or parameters, or
non-predictive features [27], whose information may be
intrinsically learned. Models implicitly learn to recognize
sensitive features that are not part of the learning task. This
phenomenon is referred to as overlearning and may be
unavoidable [27], since it comes from the simplest model
utility (predictions) and not even censoring techniques
can fully prevent privacy leakage, which raises an urgent
need for a balanced privacy-utility trade-off. Addition-
ally, overlearning can be induced by active adversaries
with privileged control over the target model (e.g. central
server), for example by forcing the model to return an
output vector with higher entropy for a sample with the
positive attribute value [17].

Conceptually, AIAs are closely related to MIAs, as
they can be viewed as an extra step of an MIA, i.e. to
determine the sensitive attribute value of a member one
can perform an MIA for every possible attribute value.
In this case, the adversary infers the sensitive attribute
value with which the target sample’s membership prob-
ability was higher [32]. This relationship is theoretically
supported by Salem et al. [25] who state that MIAs and
AlAs are mutually reducible, meaning one can find an AIA
that is as good as any MIA and vice-versa. Ultimately, the
goal of studying this relationship is to improve defenses
against these attacks, as resilience against MIAs implies
resilience against AIAs [25].



2.1.3. Measuring attack performance. Attack evaluation
should carefully measure the extent to which model release
helped adversaries infer private information. In an MIA,
since the adversary is most interested in determining mem-
bers, controlling the number of misclassified non-members
is far more important than controlling the amount of mem-
bers classified as non-members, as reducing this error is
trivial. Accuracy or precision are suitable but sensitive to
class imbalance and depend on a cutting threshold (above
which one classifies the target sample as a member) which
must be optimized by the adversary [4]. The Area Under
of Receiver Operating Characteristics curve (ROC AUC)
is the probability that a classifier will be more confident
predicting the positive label for a member than for a non-
member, which is an adequate metric that overcomes the
aforementioned limitations. Accounting for larger false
positive rates (FPRs) can be a problem, so the curve can
be restricted accordingly (restricted ROC AUC). Other
metrics have been proposed, namely adversarial advantage
[32] (TPR —FPR), which depends on the adversary’s abil-
ity to find the threshold that maximizes the true positive
rate (TPR) while minimizing FPR.

In its turn, an AIA succeeds if it correctly deter-
mines the sensitive value of training data records. Their
evaluation is even more challenging, as these attacks
often require stronger adversarial knowledge, namely prior
knowledge about the sensitive attribute. As argued by
Jayaraman et al. [12], ATA performance should be com-
pared to data imputation' to determine the extent to which
model release improved the adversary’s ability to infer the
sensitive attribute (attribute leakage).

2.2. Defenses

This overview of ML privacy highlights a trend re-
garding the literature on this topic: there is a tendency
to focus on developing attacks, leaving defenses under-
explored. Even though identifying new vulnerabilities is a
relevant research topic, developing defense mechanisms to
address those vulnerabilities is as important, particularly
with adversaries that evolve faster than countermeasures.

2.2.1. Preventive Defenses. Most defenses found in the
literature are preventive, as the goal of reducing adversar-
ial advantage is part of the training process by default.
Regularization techniques, such as dropout, L1 and L2-
regularization, early stopping, and data augmentation, are
among the most common against MIAs. These are fre-
quently applied outside the scope of privacy protection
to decrease overfitting. Albeit effective at improving gen-
eralization, these are frequently ineffective at protecting
data privacy [9], [28], as they only slightly reduce attack
performance. Additionally, Differential Privacy (DP) is
a privacy-preserving technique that reduces a sample’s
contribution to the trained model by carefully adding noise
while preserving statistical properties. Despite the pow-
erful theoretical guarantees, DP is frequently associated
with high model utility loss [9]. Furthermore, adversarial
training is the most common defense against AIAs, which
involves a combined loss function to reduce the main task

1. Process of replacing missing features by leveraging prior knowledge
about their relationship with the remaining known features.

error and the adversarial advantage simultaneously. The
intuition behind this approach is to penalize main task loss
with adversarial advantage. However, it can be ineffective
[28] or incur high model utility loss [27].

All of these defenses are applied over the model’s
response/parameters regardless of the suspicion of any
dishonest behavior. Although relevant to deal with passive
attacks (in which the adversary follows the protocol),
these are expected to affect model utility significantly
as, in some cases, the task of reducing the advantage
of a potential adversary leads the whole training process,
leaving the main task to the background.

2.2.2. Reactive Defenses. Contrary to the aforementioned
approaches, reactive defenses only mitigate attacks when
an alarm for suspicious activity is triggered. Examples of
this type of defense (attack detection) are common in the
context of cybersecurity attacks [5], [11].

Regarding privacy attack detection, a very under-
explored defense mechanism, a major distinction among
these approaches is that they may target malicious users,
by detecting malicious queries, or malicious partici-
pants/servers, by detecting malicious modifications to the
target model. This distinction is motivated by the need to
have each approach tailored for a specific type of attack
regarding its impact on the target model. Ko et al. [14]
developed a passive attack detection mechanism to detect
label-only MIAs and model inversion attacks through ma-
licious query detection. A query is classified as malicious
if its dissimilarity measure, against past queries, is below
a preset threshold. The intuition is that malicious queries
tend to be semantically similar, as attackers usually gen-
erate a sequence of queries that are slight variations of
each other [6], [23], whereas benign queries are usually
dissimilar since they typically represent a broader range
of natural variations [14].

2.3. Limitations

This systematic review of prior work highlights that
privacy attacks are often inadequately measured [4] and
that the study of the connection between different attacks
is mostly disregarded, as well as how realistic these
attacks are, especially in FL settings (e.g. by requiring
unrealistic access to individual gradients of all clients
[21]). Moreover, attacks, namely MIAs, have been applied
over extremely overfitted models [26], which are far away
from the best models trained on those public datasets,
which suggests that only overfitted models are vulnerable
to attacks, or at least considerably more vulnerable. In
other words, it is expected that well-generalized models®
may provide some level of security against these threats.
However, this may be a false sense of security as attacks
that do not rely on overfitting (e.g. active MIA [22])
should be able to infer sensitive information regardless
of the target model’s generalization.

Furthermore, defense mechanisms are under-explored,
often ineffective [22], or incur a high model utility loss to
be effective [9]. Particularly, preventive defenses lead to
a poor privacy-utility trade-off. Reactive defenses are far

2. Models that can generalize the learned relation between input
features and main task label to unseen data (opposite of overfitted).



less studied, however, they may be the key fo reduce model
utility loss, as only suspicious behaviors are affected. In
fact, there has been little research on active attacks due
to their potentially strong impact on the target model,
which would be easy to detect. However, there are no
approaches to detect active privacy attacks (as far as the
author’s knowledge goes).

2.4. Contributions

To address the aforementioned limitations, the contri-
butions of this paper are the development and evaluation
of the following methods:

o A novel Active Attribute Inference attack (AAI*), an
adaptation of AMI [22] to increase attribute leakage
of well-generalized federated models.

o An adaptation of a state-of-the-art MIA to perform
AIA (MIA2AIA), which is used as baseline for AAI*.

« A novel White-box Attack Detection and Mitigation
(WADM*) based on abnormal changes in the weights
distribution to reduce adversarial advantage while pre-
serving model utility.

o Black-box Attack Detection methods based on Accu-
racy and ROC AUC (BADAcc and BADAUC) inspired
by drift and anomaly detection, to serve as a baseline
for WADM*.

Experiments are conducted on two real-world datasets,
covering cases of non-IID and IID clients, showcasing
the effectiveness and robustness of the novel attack and
defense. By comprehensively exploiting under-explored
vulnerabilities in FL with AAI* and developing WADM*
to ensure an appropriate privacy-utility trade-off while
defending against AATI*, this research contributes for a
better understanding of privacy-preserving FL systems.

3. Novel Active Attacks

Privacy attacks are a significant threat, particularly
relevant for systems thought to be privacy-preserving by
default, such as FL systems. While it avoids data central-
ization for training, FL also introduces additional vulner-
abilities compared to centralized learning. Participants are
exposed to powerful active attacks that modify model pa-
rameters and exploit model complexity rather than relying
on overfitting [22]. Precisely by not relying on overfitting,
this threat model encompasses a larger range of realistic
models. This section introduces and evaluates active AIAs
aiming to demonstrate that well-generalized models carry
a false sense of security, as they are exposed to these
threats. The remainder of this section is structured as
follows. Section 3.1 details adversarial goal, knowledge,
and capabilities, Section 3.2 outlines the methodology of
active attacks, and Sections 3.3 and 3.4 explain details of
each proposed attack. Finally, Section 3.5 presents results
of applying these attacks on two real-world datasets and
Section 3.6 summarizes the contribution of this section.

3.1. Threat model

The proposed attacks are performed by the central
server in an FL system composed of (presumably) honest
participants, implying that the adversary can modify the

global/target model, but cannot access individual gradient
updates. Given incomplete knowledge about the target
sample (i.e. the whole input vector is known except the
sensitive attribute), the adversary aims to encode attribute
information in model parameters. With these attacks, the
adversary seeks to improve inference by forcing an in-
crease of model leakage, instead of training data imputa-
tion models, that require a lot of data, to determine the
sensitive (and missing) attribute.

For instance, if the adversary has access to the embed-
ding representation of an image containing a person’s face
and additional information (e.g. if the person is young or
has a big nose), then it can leverage its role on the FL
system to infer the gender of the person. Besides inferring
sensitive information, the adversary takes advantage of
model leakage w.r.t the gender and determines the sam-
ple’s membership status, as only target samples that are
members will leave a footprint on gradients. Note that the
assumption of having access to the embedding may seem
unrealistic, but embeddings are commonly shared instead
of real images, as they apparently protect privacy. The
additional information can be obtained from other sources
(e.g. social networks). Thus, this threat model poses a
realistic privacy concern.

3.2. Attack Overview

Figure 1 illustrates the general methodology of these
active attacks. On the top of this figure, a common FL
system is represented in which several participants locally
train a global model that was previously sent by the
central server, presumably a benign model. After local
training, each client sends its local model to the central
server. However, Secure Aggregation prevents the cen-
tral server from receiving individual local models (also
called gradient updates) by calculating an aggregate value
through individual gradient contributions of each party
with privacy guarantees [2]. These local models are all
aggregated privately, such that the central server does not
have access to individual updates, as illustrated by the
Aggregation step node.

After aggregating, the newly updated global model
is sent back to clients, thus completing a round. This
process repeats until convergence or indefinitely (e.g. on
streaming applications operating in periodic batch mode).
At some point, the malicious central server performs
an active attack in which it locally changes the global
model to leak information, as illustrated at the bottom
of this figure. Firstly, a neuron from the second fully
connected (FC) layer is selected (outlined as a red circle
node) whose weights/edges will be the initialization of
the next step. Note that by selecting a neuron from that
layer, weights/edges connecting the input layer to the
first fully connected layer are also collected. Secondly,
starting from that initialization, an adversarial network
is trained, with a shadow dataset, to leak membership
or attribute information about a target sample. Then, it
replaces benign weights/edges (from the first and second
FC layer) by these maliciously trained weights/edges (in
red). This global model is sent to clients which in turn
send it back to the central server (after local training).
Information leakage occurs in this step when the central
server observes the difference (gradient update) between



the previous (malicious) and the current global model,
particularly in the selected neuron (node filled in red). This
type of attack exploits model complexity because if the
dimension of the first two hidden layers is lower than the
original input space, then the attack fails since these layers
cannot encode more information than the original input
space needed to encode membership/attribute information.
This attack can target several samples by selecting
more than one neuron from the second FC layer. Due to
the increase of the size of the adversarial network, time
complexity scales quadratically with the number of target
samples, but it is executed in powerful central servers, and
since it does not require any additional communication
among parties, there is no communication overhead.

‘ Federated Learning System ‘

[ Ciemz ] Clents ]
Local  model Local  model Local 1 model
Malicious ‘
global model Aggregation step
Malicious LGIObal model Malicious
global model Central Server global model

(adversary)

‘ — Attack Methodology o ‘

Benign global model Adversarial network Malicious global model

Replace benign with
malicious weights

Select neuron to
encode information

Size: 25
— Train adversarial network ——

Figure 1. Overview of novel active attacks performed by the central
server on a FL system.

3.3. MIA2AJA: Attribute Inference based on
Membership Inference

Active Membership Inference (AMI) is an MIA, pro-
posed by Nguyen et al. [22], that follows this methodology
and classifies a target sample as a member if the mali-
ciously modified neuron’s gradient is not null. The key
idea is to overfit the malicious neuron towards the target
sample such that, if it passes through the model during
training, then it will leave a distinguishable footprint on
the gradient. AMI requires the target model to have at least
2 FC layers and use RELU as the activation function, but
since the adversary is the central server, model architec-
ture can be tuned conveniently. Moreover, the adversary
requires access to the target sample, although not to its
label, and it must have a shadow dataset with which the
neuron’s weights are trained to be deactivated. Adversarial
knowledge is limited to the shadow dataset, therefore any
statistical information (e.g. distribution of an attribute)
is calculated with this set, hopefully not significantly
diverging from clients’ data. However, the adversary does
not require access to individual gradient updates, nor it
imposes local training restrictions regarding the batch size
and the number of local epochs. Due to these fair and
attainable assumptions, AMI is a realistic attack, and, in
contrast with some state-of-the-art approaches, it works
regardless of the use of secure aggregation.

Building upon the state-of-the-art MIA proposed by
Yeom et al. [22] (called AMI), this work proposes
MIA2AIA, an active white-box AIA based on AMI, per-
formed by the central server, which can be considered a
metric-based attack’, like AMI. In this case, the adversary
has the whole input vector except the sensitive attribute,
which it will try to infer by performing MIA2AIA. The
intuition behind this attack is to perform an MIA for
every possible attribute value of each target sample. For a
binary sensitive attribute, the adversary applies AMI to
two samples resembling the target one, each of which
with a distinct attribute value. The target sample’s attribute
value is the one for which its neuron was activated, pre-
sumably the only one. Although the MIA-based approach
is from the state of the art, proposed by Yeom et al. [32],
MIA2AIA is actually a new attack as it is based on a
different - and much more powerful - MIA than previous
AlAs sharing the same methodology.

The major difference between AMI and MIA2AITA
methodology is in the inference phase, as MIA2AIA
can have three different outputs: correctly or incorrectly
inferred attribute value and inconclusive attack. The first
two outputs are self-explanatory, and the last one includes
the possibility of a target sample, during FL training, acti-
vating more than one neuron. When more than one neuron,
in the set of neurons dedicated to a single target sample, is
activated, the adversary still does not know which attribute
value to predict. Instead, it only knows that the target
sample is a member, in the best-case scenario in which
no other sample activates that neuron. In those cases, the
attack itself fails, falling back to data imputation, i.e. the
adversary uses its prior knowledge about the training data
to estimate the attribute value. Therefore, the adversary
predicts that the attribute value is the most frequent value
in the shadow dataset. However, MIA2AIA performance
is now based on AMI and also on data imputation, as
the adversary may only accurately determine the sensitive
value due to a highly imbalanced attribute distribution.

3.4. AAT**: Active Attribute Inference

Following the same methodology, AAI* builds upon
AMI to encode attribute information. The intuition behind
this attack is to encode attribute information of each target
sample in a specific neuron, which should be decoded
in its gradient update by analysing its sign. The selected
neuron’s weights are trained such that it takes a different
value according to the sensitive attribute and such distinc-
tion must hold in the gradient update, enabling attribute
inference. AAI* is a realistic attack for the same reasons
as AMI, however instead of the RELU activation function,
the target model must use ELU with a negative parameter
a. Additionally, the adversary needs the main task label
of each target sample, contrary to MIA2AIA. If the label
is not available, it could use the target model (ideally a
sufficiently accurate one) to infer.

The major difference between AMI and AAI* is in the
way this adversarial network is trained and, consequently,
its inference phase. A modified neuron only leaks the

3. Attack in which the adversary uses the distribution of a metric (e.g.
loss) to infer information based on a preset threshold.
4. The * superscript identifies novel methods proposed in this work.



target sample’s attribute value if different logits/activations
correspond to different gradients, particularly one needs
to have three clearly distinctive gradient values. AMI
only required two: zero and non-zero gradients. But AAT*
requires three to distinguish between non-targets, targets
with positive and targets with negative attribute values.
Therefore, one must infer the target sample’s attribute
value based on the sign of gradient updates - positive,
negative, and null.

The procedure of AAT* is an ML task that trains the
malicious neuron to overfit the target sample such that it
has a large and positive logit/activation when the target
sample has a positive attribute value; negative and close
to zero logit/activation when the target sample has a nega-
tive attribute value; and large but negative logit/activation
when non-target samples pass through it. The next set of
equations explains the reason behind these choices, where
Eq. (1) show the derivative of ELU, and Eq. (2) how to
encode a binary attribute through the gradient’s sign.
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o
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Where x is the logit of the selected neuron ¢ for sample
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>0 >0

OELU

9 <0 <0 )
~0 zx0

Note that the choice of training non-target samples to
have a logit as far from zero as possible (to the negative
side) is not arbitrary. Most samples will be non-target,
so one must ensure that their influence on the selected
neuron’s gradients does not harm attribute inference. How-
ever, they will only have zero influence if their gradient is
null, which only happens in practice due to finite precision
number representation. Furthermore, it is important to
guarantee that the gradient computation from subsequent
layers (which affect the malicious neurons’ gradient) does
not change the sign, by defining a condition on how to
select the malicious neuron or how to change the weight
connecting it to the output layer (Appendix A).

3.5. Evaluation and Analysis

To show that AAT* improves upon the most common
state-of-the-art approach based on AMI (MIA2AIA), this
section presents an evaluation of these attacks with two
real-world datasets encompassing standard and challeng-
ing scenarios. The ultimate goal is to show that well-
generalized models carry a false sense of security by
being vulnerable to these novel active attacks. To ensure
the robustness and reliability of findings, all experiments
conducted in this study were repeated 32 times, and a
confidence interval of 90% confidence was calculated,
providing a rigorous statistical guarantee. Regarding the
target sample selection, these experiments are balanced
with respect to both membership and attribute value. The
remainder of this section is structured as follows: setup
details and evaluation metrics are explained in sections
3.5.1 and 3.5.2, respectively; empirical results are pre-
sented in sections 3.5.3 and 3.5.4, the impact of the

sensitive attribute on these results is commented in Section
3.5.5 and the performance recovery after active attacks is
presented in Section 3.5.6.

3.5.1. Setup. For generalization purposes, experiments
are conducted on a mostly categorical and on another
real-valued dataset. First, CelebFaces Attributes Dataset
(CelebA) is a large-scale face attributes dataset with more
than 200K celebrity images of over 10K distinct iden-
tities, each with 40 binary attribute annotations. CelebA
is used for several tasks, namely attribute classification
[15] and face recognition [14]. Among other well-known
real-valued datasets, particularly in the image domain,
that are frequently used to access attack performance,
CelebA is the most suitable given that each image has
a vector of 40 binary facial attributes (e.g. Attractive,
Male, Young). Thus, the image paired with some of these
annotations composes the input of federated models used
throughout these experiments. Second, the dataset from
the COP-MODE project [20] is comprised of approxi-
mately 65K permission requests, manually answered by
93 users which accepted 66% of them, captured from a
runtime permission manager in Android [19]). To evaluate
the robustness against non-IID cases, CelebA is randomly
partitioned into IID clients and COP-MODE is partitioned
by user leading to a case of non-IID clients.

To show that these attacks are effective against well-
generalized models, models are trained on a simulated
federated learning system in a single device (see Appendix
B for more details). Specifically, CelebA models, trained
to predict one of the annotations (Attractive), achieved an
average ROC AUC around 88% and an accuracy of 79%
on both training and testing sets. COP-MODE models,
trained to predict user response [3], [19], achieved around
83% of ROC AUC and an accuracy of 77% on both
training and testing sets. Furthermore, these attacks target
several attributes to evaluate the effect of the sensitive
attribute on attack performance. For this purpose, in each
figure, the proportion of the most frequent value is indi-
cated below (in the x-axis).

3.5.2. Evaluation Metrics. Active attacks are evaluated
in two distinct ways: theoretical (Section 3.5.3) and practi-
cal (Section 3.5.4). TPR and FPR are used to measure the
theoretical performance as these attacks are not threshold-
dependent, since the nullity/sign of gradient updates does
not depend on a threshold. Thus, TPR denotes correct
neuron activation, meaning each target sample activates
its corresponding neuron, and FPR denotes non-target
samples that incorrectly activated the neuron. On a set
of completely random samples, a dummy classifier would
be accurate as many times as the expected number of
samples with the majority value, but these experiments
are balanced with respect to the attribute value. Therefore,
TPR should be compared to 50% as a baseline.
Nevertheless, the comparison between this baseline
and TPR unrealistically implies the assumption that FPR
does not influence inference. However, an adversary may
not be able to succeed due to the effect of false positives.
An adversary conducting MIA2AIA must not expect the
malicious neuron’s gradient to be exactly zero every time
the target sample does not have the corresponding attribute
value or every time AAI* targets a non-training sample.



Instead, it must allow for some variability, since not
only the target sample activates the malicious neuron, but
also its neighborhood. Furthermore, since the adversary
is looking to determine the missing value of a sensitive
attribute, it is expecting that the target sample paired with
the incorrect value belongs to the meaningless part of
the feature space, thus it must be poorly represented in
the training set, as well as its neighborhood. Therefore,
the malicious neuron’s gradient can be taken as the ad-
versary’s confidence in the target sample’s membership
status when paired with each possible attribute value, as
illustrated in Appendix D. As a threshold-dependent infer-
ence phase (defining the allowed amount of variability),
ROC AUC is used to measure the extent to which both
gradient distributions are separated. To remove from the
equation unacceptable FPR values, ROC AUC restricted
to a maximum FPR of 25% is presented separately for
members and non-members to bound attribute leakage of
an ML model.

3.5.3. Theoretical evaluation. After proper hyperparam-
eter tuning, Figures 2 and 3 illustrate TPR and FPR of
single-target AAI* and MIA2AIA, respectively for the
CelebA and COP-MODE datasets, for several attributes
(x-axis). Results from these figures show that both active
attacks achieve great attack performance in terms of TPR.
Particularly, TPR is nearly 100% for AAI* and both
versions of MIA2AIA® over COP-MODE models. Over
CelebA models, AAT* tends to outperform MIA2AIA,
even more evidently when compared to MIA2AIA without
data imputation, as the latter can be random guessing
when targeting a few attributes.

Regarding FPR, conclusions differ according to the
use-case but not to the target attribute. Over CelebA mod-
els, AAI” significantly outperforms MIA2AIA, as FPR is
nearly 0.0% for AAI*, versus an average close to 10%
for MIA2AIA. Over COP-MODE models, FPR is always
below 3.5% and MIA2AIA is statistically better than in
previous experiments (CelebA) but not significantly better
than AAT* in COP-MODE experiments.

Regardless of the use-case, these experiments show
that AAI* and MIA2AIA can infer sensitive information
from well-generalized models about their training data,
always improving upon the baseline (blue dashed line)
in terms of TPR.

3.5.4. Practical evaluation. An extensive set of experi-
ments, to build a confidence interval of restricted ROC
AUC, revealed that under gradient uncertainty (caused by
false positives) these active attacks can pose a real threat
to FL systems, namely through the AAI* attack. Figures 4
and 5 present restricted ROC AUC of single-target AAI*
and MIA2AIJA attacks over CelebA and COP-MODE
models, respectively. Results from these figures show that
AAT" improves upon MIA2AIA regardless of the use-case
and the degree of that improvement may vary according
to the target attribute. On the members’ set, differences
are statistically significant when targeting every binary
attribute from the CelebA dataset, as MIA2AIA is almost
always random guessing (compared to the baseline of

5. The best version of MIA2AIA falls back to data imputation, while
the other version (MIA2AIA w/ imputation) does not.
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Figure 3. Single-target AAI* and MIA2AIA TPR and FPR on COP-
MODE models for several sensitive attributes.

50% in Figure 4). Remarkably, in this use-case, AAI* can
exceed an average of 90% of restricted ROC AUC, being
always close to or above 80% for all attributes. On COP-
MODE experiments, AAI* tends to outperform MIA2AIA
on the members’ set, by reaching restricted ROC AUC
above 70% but only for a few target attributes.

On the non-members’ set, AAI* is not significantly
different from random guessing (the same holds for
MIA2AIA), for all CelebA attributes. Compared to the
respective performance on the members’ set, AAI* can
increase attribute leakage, as it can leverage having access
to the model to improve inference on the training set.
However, in COP-MODE experiments, AAI* on the mem-
bers set can statistically improve on the non-members’ set,
but only slightly and for a single attribute (isWeekend).

The performance of AAI* in this setting is attributed
to its theoretical TPR (Figure 2), as its theoretical FPR is
not significantly different from 0.0%, whereas MIA2ATA
ineffectiveness is due to its excessive theoretical FPR
which prevents the adversary from succeeding. But this
error is not the only reason that explains the superiority of
AAT~, as it is still able to improve upon MIA2AIA even
when both register the same amount of error (e.g. over
COP-MODE models). In fact, the effect of false positives
differs per active attack, as in AAI* some of these samples
may cancel out the gradient of others, since false positives’
gradient can have either a positive or a negative sign, as
well as a smaller absolute value, according to Eq. 2.
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According to Yeom et al. [32] and judging by figures
4 and 5, MIA2AIA does not increase target model leakage
regardless of its theoretical FPR, since it apparently cannot
leverage having access to the target model to improve
inference about training samples. Only AAI* can do so
but depending on the amount of error. Additionally, the
theoretical FPR registered on COP-MODE experiments
coupled with the data augmentation technique used to
train those models (explained in Appendix B) might be
the reason why none of these attacks can increase model
leakage about its training data, as both members and
non-members’ neighborhood is equally represented on
the training set, besides the apparent similarity between
training and testing distributions.

3.5.5. Impact of the sensitive attribute. Regarding the
effect of the sensitive attribute, theoretical results suggest
that, for a sufficiently small theoretical FPR (Figure 3),
the distribution of the sensitive attribute does not play a
role in theoretical TPR. Only for greater theoretical FPR
values (Figure 2), the choice of the sensitive attribute may
have an influence, judging by how MIA2AIA without data
imputation behaves in some cases, as an attack that does
not fall back to data imputation can be random guessing.

Nevertheless, the degree of imbalance of each attribute
does not affect results monotonously, therefore other sta-
tistical characteristics, such as the relationship between the
attribute and the rest of the input vector (assumed to be
known by the adversary), may also have an impact. Prac-
tical results corroborate this insight, given that the same
couple of theoretical TPR and FPR values yielded signif-
icantly different performances in terms of restricted ROC

AUC. Particularly in COP-MODE experiments, AAT* that
targets isTopApp requestingApp and category COMMUNI-
CATION have the same theoretical FPR, however, ROC
AUC is around 50% and 70%, respectively. Information
gain, i.e. the reduction in entropy (degree of disorder),
from knowing the input vector partially explains this
discrepancy, as the greater the information gain the better
the attack performance (correlation of 33%). The intuition
behind this insight is that information gain measures how
much the input vector tells about the target attribute. Thus,
if information gain is large then the neighborhood of a
given input vector will tend to have the same attribute
value (which activates the malicious neuron correctly).
Analogously, if information gain is small then there is
some disorder in the target sample’s neighborhood, hin-
dering attribute inference.

3.5.6. Recovery from active attacks. Reduction of model
utility loss is one of the pillars of the evaluation of defense
mechanisms. However, if the target model cannot recover
from active attacks, then there is no utility to preserve.
This section aims to show that model performance is
partially recoverable after a few training rounds, ulti-
mately demonstrating that active attacks may occur in FL
systems without major long-term model utility loss, which
enhances the real threat of these attacks since their nega-
tive impact soon becomes undetectable. This section also
motivates the need for defense mechanisms that preserve
model utility, as the latter is partially recoverable.

To evaluate model recovery, the attacked target model
keeps training for a few training rounds. CelebA models
fully recovered their performance on the train and test
set, regardless of the targeted attribute, reaching close to
87% and 88% after AAI* and MIA2AIA, respectively,
given the great performance and fast convergence of these
models before any attack. However, COP-MODE models
take longer to converge. Figure 6 shows their ROC AUC
on the train set after training for 10 rounds after both
attacks. Results show that ROC AUC approaches the
baseline along the subsequent training rounds, converging
significantly faster after MIA2AIA (in less than 3 rounds
compared to at least 10 to fully recover from AAI*).
Recovery on the test set, presented in Appendix E along
with further explanations for this discrepancy, reveals that
recovery on this set is significantly harder. Hence, models
can only partially recover from active attacks.
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for the average ROC AUC before any attack.



3.6. Summary

This section introduced novel active attribute inference
attacks, namely AAI* that outperforms state-of-the-art al-
ternatives (MIA2AIA) by reducing FPR in terms of neuron
activation, increasing its performance on a practical setting
and improving attribute leakage, namely when the number
of false positives is nearly 0%. Both attacks are equally
strong in terms of TPR on both datasets, but MIA2AIA
without data imputation (to deal with inconclusive attacks)
can be ineffective. Particularly over CelebA models, TPR
is often over 80% on average, and over COP-MODE
models is not significantly different from 100%. The
effectiveness on both use-cases shows that these attacks
are effective on challenging settings (i.e. non-IID clients).
Furthermore, results from Appendix C show that these
novel active attacks are scalable, meaning they can target
more than a single sample, but only up to point, with
AAT” significantly improving on MIA2AIA.

Even though the relationship between the theoretical
and practical evaluation is clear - the overlap between
the gradient distribution of positive and negative samples
(w.r.t. the sensitive attribute) depends on FPR. What is not
so clear is the amount of FPR that still allows for a suffi-
ciently accurate inference. In this setting, AAI* improves
upon MIA2AIA, by achieving over 80% of restricted ROC
AUC, due to incurring significantly less FPR. Even when
FPR is slightly higher on AAT* (or statistically the same),
the adversary can still improve upon MIA2AIA.

A study about the impact of active attacks on model
performance and about recovery from this impact shows
that it is possible to partially recover model performance
after a few training rounds, ultimately demonstrating that
active attacks may occur in FL systems without major
long-term model utility loss.

These results suggest that traditional countermeasures
(to improve generalization) do not mitigate these novel
active attacks, as they do not rely on overfitting. Thus,
effective defense mechanisms are needed, ideally reducing
model utility loss, as it is partially recoverable.

4. Attack Detection Mechanisms

From the previous section, it is clear that these novel
active attacks pose a real threat to FL systems. However,
these are not being addressed by the community as no
effective defense mechanism has been proposed. Partic-
ularly, Local Differential Privacy (LDP), a decentralized
approach of adding noise to ensure standard differential
privacy guarantees [30], is not effective against AMI [22],
since the adversary can adapt the methodology to account
for perturbed versions of the target sample, therefore
evading the defense. Even LDP based on gradient clipping
is ineffective against these attacks because the gradient
of a neuron that is only activated by a single training
sample, and its close neighbourhood, is small in absolute
value, hence it is not clipped. Furthermore, strategies to
improve model generalization are not expected to defend
against attacks that do not exploit overfitting. Instead,
detecting and responding to ongoing attacks presents a
viable alternative, especially since the performance is
partially recoverable after a few training rounds (Ap-
pendix E), therefore minimizing model utility loss. The

remainder of this section is structured as follows: Section
4.1 outlines the methodology behind the proposed and
baseline defenses, Sections 4.2 and 4.3 further detail each
strategy, and their efficiency is commented in Section 4.4.
Finally, Section 4.5 presents empirical results to validate
the effectiveness of these approaches and Section 4.6
summarizes the contribution of this section.

4.1. Defense Overview

Figure 7 illustrates the general methodology of defense
mechanisms applied by each client in a FL system. The
top of this figure represents a common FL system in which
the role of the central server is to join the aggregated
contribution from each training round to the global model
from the previous round, sending it back to clients to start
another training round. At some point, the central server
performs an active attack (Figure 1), illustrated by the
red arrows connecting the central server to each client,
which receives a malicious global model. However, each
client must apply a defense mechanism locally, since it
cannot trust the central server to collaboratively defend
against these attacks. The bottom of this figure explains
how these strategies work according to the knowledge of
the defender (black-box or white-box). Each defense is
divided into a detection phase (indicated by a yellow tri-
angle) and a mitigation phase (indicated by a red triangle).

A defender with black-box access can detect active
attacks by comparing train or test performance using
the current and the previous model received from the
central server. The most limited type of black-box access,
i.e. access to the predicted class only, allows to compare
accuracy, whereas access to the output vector allows to
compare ROC AUC. On the other hand, if the defender
has white-box access, i.e. global model parameters are
accessible, then it can detect maliciously modified neurons
(used to leak precise attribute information) by comparing
the current and the previous weights distribution of each
neuron. In this figure, the benign weights distribution
is associated with a bell-shaped histogram, whereas the
malicious is associated with a skewed one. This link-
age is supported by empirical evidence, as explained in
Appendix G.1. Note that these detection strategies are
employed before local training starts at the beginning of
a new round, as locally training a malicious model can
reduce the probability of detecting an ongoing attack by
reducing the drop of evaluation metrics, or the distortion
of weights distribution. If an alarm is triggered, the miti-
gation phase is applied in which a client using a black-box
defender must leave the system, while one using a white-
box defender can still participate in this training round
after replacing the malicious by the benign neuron.

4.2. Black-box Attack Detection Strategies

Black-box attack detection strategies are based on
well-known drift detection and statistical control algo-
rithms. Even though the approach is not new, these are,
for the first time, applied in this context and are used as
a baseline for the novel defense mechanism (proposed in
Section 4.3). As strategies based on model performance,
data heterogeneity, referred to as non-IID clients and main
task imbalance play an important role, namely the latter
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determines the best set to monitor (i.e. train or test set).
The way data imbalance affects attack detection varies
per strategy, which is explained throughout this section,
whereas the effect of data heterogeneity is empirically
studied in Section 4.5.

4.2.1. BADAcc: Black-box Attack Detection based on
Accuracy. Inspired by Statistical Process Control (SPC)
[71, BADAcc is a statistical-based approach that uses the 3
standard deviations (3-sigma) rule and detects an ongoing
attack if local accuracy drops more than expected, mean-
ing if there is a deviation from the mean of more than
3 times the standard deviation of the previous training
round, which is equivalent to falling out of the 99.7%
confidence interval, approximately. The intuition is that
under an active attack, model behavior is perturbed and
the error increases significantly, resulting in a significant
accuracy drop.

Other than working under the most restricted model
access (from the defender side), one of the advantages of
this approach is that it guarantees statistical properties,
by detecting abnormal drops in accuracy using confi-
dence intervals. Moreover, its precision can be adjusted
as needed, for example reducing the in-control margin
from 3 standard deviations to 2 (approximately 95% con-
fidence). However, this strategy is user-dependent, as the
dataset size and local accuracy from previous rounds may
influence attack detection, other than a possibly different
precision level per user. Results presented in Section 4.2.2
are from monitoring train performance, as BADAcc can be
less effective by monitoring test performance, given that
this set can have class imbalance, thus leading to a higher
baseline for accuracy (of a random classifier) without the
model being necessarily accurate.

4.2.2. BADAUC: Black-box Attack Detection based
on ROC AUC. Similarly to BADAcc, BADAUC is a
distance-based approach that identifies a significant per-
turbation to the expected convergence of ROC AUC,
specifically if the difference (in absolute value) between
the current and previous round is greater than a preset
threshold. The sensitivity of the baseline of accuracy to

class imbalance and the fact that it is threshold-dependent
are the reasons behind the choice to monitor ROC AUC.
Particularly, accuracy can hide a significant drop in model
performance because the baseline is too high (on class
imbalance problems), or it can increase false alarms due
to an inadequate threshold choice.

This approach works under restricted model access,
but it is threshold-dependent. This hyperparameter may be
tuned, previously or adaptively during training, according
to the use-case. Different clients may choose different
thresholds and, in case of an adaptive threshold during
training, each client must tune this hyperparameter based
on local information, since it cannot trust the central
server for a collaborative tuning. Moreover, it is also user-
dependent, as local ROC AUC from previous rounds may
influence attack detection, other than a different threshold
per user. For comparison purposes, BADAUC monitors
train performance, but it could be applied to the test set.

4.3. WADM*: White-box Attack Detection and
Mitigation

Black-box attack detection mechanisms may result in
significant false alarms, especially for non-IID clients.
To avoid this user-dependency and improve robustness,
an alternative is to use the global model’s weights, as
these are a product of the aggregation of the updates
from all participants. Additionally, a user leaving the
system after detecting an ongoing attack incurs the highest
model utility loss, despite effectively protecting users’
privacy. WADM* emerges as an alternative to BADAcc
and BADAUC to overcome the aforementioned issues by
identifying malicious neurons and changing their distribu-
tion instead of abandoning the training process.

The intuition behind this approach is to detect sig-
nificant distortions of the weights distribution between
consecutive training rounds. WADM* is divided into two
phases: detection and mitigation. In the detection phase,
KL-Divergence is used to measure the difference between
the current and previous weights distribution of each
neuron, as in Equation (3).
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where ¢ ranges across the number of bins used to represent
both distributions. Note that to account for distribution
shift (as illustrated in Figure 22 from Appendix G.1),
one must represent both distributions on the same range,
determined by the maximum and minimum of both sets of
weights. Since KL-divergence is not a symmetrical metric,
the minimum between both directions is taken to be extra
cautious. A neuron is flagged as malicious if this value
exceeds a preset threshold, therefore being a distance-
based approach. From equation (3), one can see that if
a bin from the distribution X.,, has O frequency, then
KL-Divergence is infinite. Besides taking the minimum
between both directions, this can be avoided by choosing
an adequate number of bins to represent the weights
distribution, possibly reducing false alarms. Therefore, the
detection phase depends both on the threshold and the
number of bins. In the mitigation phase, the defender



changes the current weights to the previous weights of any
neuron flagged as malicious, discarding the most recent
ones. A benign neuron keeps its weights and the previous
ones are updated.

This strategy depends on a threshold whose tuning
depends on the use-case and, similarly to BADAUC, may
be set a priori or change throughout the training process
according to local information. Moreover, users may have
different concepts of sensitive data, therefore WADM* can
apply a threshold selection policy that takes into account
user’s preferences, as some of them may value model
utility more than they value their privacy.

4.4. Efficiency of defense mechanisms

The application of these defenses on a practical sce-
nario, and in every training round, raises concerns about
the consumption of computational resources. The com-
putational complexity of WADM™* is linear with the size
of the second FC layer, whereas black-box strategies are
constant with respect to the same variable. Since they
are performed locally, meaning that they do not depend
on communication among parties, there is no additional
communication overhead. Moreover, the spatial complex-
ity of WADM™* is linear with respect to the size of the
second FC layer, since it requires the storage of this
layer. When this requirement is not met, instead of storing
the complete distribution of the weights, the defender
can store only what is necessary to compute the KL-
DIVERGENCE, usually a histogram of much smaller size,
then replace the malicious weights by a sample from this
histogram. In general, these defenses are efficient, even
though WADM* requires a higher computational capac-
ity which is compensated by the expected improvement,
therefore balancing the efficiency-efficacy trade-off.

4.5. Evaluation and Analysis

To show that WADM* improves upon black-box
strategies, commonly applied on predictive systems for
a variety of purposes, this section presents results for
BADAcc, BADAUC, and WADM* applied to the same
couple of datasets with which attacks were previously
tested. Similarly, to ensure the robustness and reliability
of findings, all experiments conducted in this study were
repeated 32 times, and a confidence interval of 90%
was calculated, providing a rigorous statistical guarantee.
Regarding the target sample selection, these experiments
are balanced w.r.t both membership and attribute value. It
is important to note that, contrary to black-box strategies,
WADM* is evaluated per training round, as it does not
force the client to leave the system. Thus, results presented
below are from applying WADM* on the training round in
which an attack occurs, latter WADM* is applied on early
training rounds (Section 4.5.4). Results of BADAUC and
WADM* assume an optimal threshold choice, meaning
one that minimizes W.

The remainder of this section is organized as follows:
Section 4.5.1 explains evaluation metrics, Section 4.5.2
and 4.5.6 presents detection and mitigation results, Section
4.5.3 comments about the user dependency, Section 4.5.6
and 4.5.5 presents false alarms triggered by WADM*

on early training rounds and under a threshold-selection
policy that minimizes FPR, respectively.

4.5.1. Evaluation metrics. To access the performance of
the detection phase, one must use TPR (detection of an
ongoing attack) and FPR (false alarm, i.e. a benign round
classified as malign). Additionally, Missed Attacks stands
for the probability of failing to detect an ongoing attack,
and it is such that summing it with TPR and FPR yields
100% for black-box strategies. For this reason, it is omit-
ted from figures but it is relevant to study user dependency
in Section 4.5.3. For black-box strategies, these metrics
are evaluated in the domain of users, i.e. each user will
contribute exclusively to a single metric, either to TPR,
FPR, or Missed Attacks.

Given that WADM* detects malicious neurons, its
TPR, denoted as "WADM™* (neuron)”, stands for the prob-
ability of successfully detecting a malicious neuron and
FPR stands for the rate of benign neurons that are mis-
classified. However, detection of MIA2AIA is successful
if at least one neuron is detected®, therefore "WADM?* (at-
tack)” is evaluated instead, and it stands for the probability
of at least one neuron being detected (per attack). This
metric allows a fair comparison between black and white-
box strategies by evaluating all defenses in the domain of
the attack. Furthermore, the theoretical attack performance
(TPR and FPR) after the mitigation phase is used to
evaluate the mitigation phase of WADM*. However, this
evaluation is irrelevant for black-box strategies, since the
client leaves the system as soon as it detects the attack,
thus preventing leaky gradients from being shared with
the central server.

4.5.2. Attack Detection. Figures 8 and 9 illustrate the
detection rate (TPR) of all three defense mechanisms,
applied against single-target AAI* and MIA2AIA, on
CelebA and COP-MODE models, respectively. These re-
sults show that all attack detection mechanisms effectively
detect both active attacks, as TPR is always significantly
better than the baseline (50%). Additionally, attack de-
tection does not depend on the targeted attribute, which
suggests that these active attacks greatly impact accu-
racy/ROC AUC and weights distribution regardless of the
attack performance.

Regarding black-box strategies, BADAUC is signifi-
cantly better than BADAcc, particularly when applied to
CelebA models, as TPR is always 100%. This discrepancy
is a consequence of the threshold-dependency of accuracy.
When applied to COP-MODE models, BADAUC detects
both active attacks about 90% of the time. Nevertheless,
close to 85%, or more, of the users detect AAI* with
BADACcc, regardless of the use-case. However against
MIA2AIA, the performance of BADAcc depends on the
use-case, as it can detect close to 100% on Cebel A models,
but only up to 80% on COP-MODE models. This diver-
gence is explained by the stability of model convergence
on early training rounds, as explored in Section 4.5.3.

In its turn, WADM~* detects almost all active attacks,
as TPR is not significantly different from 100%, regardless
of the attack and use-case. Particularly when applied

6. The adversary would notice an excessively high gradient, sign that
FPR increased considerably, disabling any inference.



to COP-MODE models, WADM* is the best detection
strategy, considering that it significantly improves upon
the best black-box strategy, and, on CelebA models, it is
as effective as BADAUC. However, WADM™ can detect
neurons used for AAI* significantly better than those
used for MIA2AIA, meaning that the distortion of the
weights distribution is greater when performing AAI*.
However, this behavior might also be explained by the
threshold choice, as it depends on the benign evolution
of the weights distribution, which determines FPR and
conditions the optimal threshold selection.
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tion strategies.

These results show that both WADM* and BADAUC
are the best defense mechanisms in terms of detection rate.
However, the overall conclusion must take into account
false alarms (FPR) and their cost, which is explored
throughout the rest of this section.

4.5.3. User dependency of BADAcc and BADAUC.
Black-box strategies rely on the local monitorization of
model performance to detect ongoing attacks, thus it is
expected that local features play an important role in at-
tack detection, especially local accuracy/ROC AUC (prior
to the attack) and training dataset size.

Experiments on COP-MODE models show that the
training dataset size is positively correlated with the prob-
ability of incurring a false alarm (FPR), specifically 12.0%
and 10.6% depending on the type of model, as the safety

margin (determined by standard deviation) becomes nar-
rower as the local training dataset becomes larger. There-
fore, any small decrease in accuracy may fall out and be
incorrectly classified as an ongoing attack. Although, this
correlation is small and does not fully explain BADAcc
FPR. On the other hand, the dataset size is not correlated
with the FPR of BADAUC. Instead, local ROC AUC
before the attack is negatively correlated with BADAUC
FPR, specifically —47.7% and —41.1%, given that the
smaller the previous ROC AUC the lower the difference
between a benign and malicious situation. In fact, the
FPR of both strategies is mainly caused by a few users
that are considerably more prone to that error, and the
reason is attributed to an abnormally unstable evolution of
the evaluation metric on early training rounds (hopefully
before any attack).

As for the probability of missing an ongoing attack,
local accuracy/ROC AUC before the attack is strongly and
negatively correlated with this error (over —50%). Given
that accuracy/ROC AUC drops to a random guessing level,
it becomes natural that the greater the local accuracy/ROC
AUC the greater the drop, therefore the easier the detec-
tion. Experiments on CelebA models revealed that FPR is
0.0% for both black-box strategies, but Missed Attacks,
particularly AAT*, can be close to 13% on average with
BADAcc. This observation is explained by the cutting
threshold (to compute accuracy) and its inadequacy in
certain situations, hiding an abnormal drop in accuracy.

In general, average model performance tends to con-
verge and have a stable evolution. However, in a practical
scenario, some users may have a sufficiently different data
distribution to make their local performance less stable
or accurate, i.e. clients are non-IID (e.g. COP-MODE).
Hence, user dependency is expected to impact black-box
strategies in a real-world case. This insight is empirically
supported by these results, as users play an important role
in COP-MODE experiments but not in CelebA, as in the
latter case users are IID.

4.5.4. False alarms on early training rounds. Along the
training process, and particularly on early training rounds,
model parameters are expected to change considerably.
Thus, the defender must distinguish benign from mali-
cious neurons while the model converges to reduce the
impact of WADM™* on the training process. As a threshold-
dependent strategy, WADM™ triggers an alarm every time
KL-DIVERGENCE exceeds this threshold. Therefore, the
key to balancing FPR and TPR relies on fine-tuning this
parameter. To show that it is possible to adapt the thresh-
old along the training process without affecting TPR sig-
nificantly, Figure 10 shows WADM™* FPR on early training
rounds (before any attack)’. This figure shows that an
adequate threshold choice yields a small amount of FPR.
Particularly, a selection policy that gradually decreases
the threshold and yields 0.1556 as the one to use after 5
training rounds (when the attack occurs) simultaneously
reduces FPR and matches the optimal selection policy as
presented in the next section 4.5.5.

Furthermore, as training evolves so does FPR to the
point of it becoming 0.0%, or within a negligible range,

7. Note that these experiments are restricted to COP-MODE, as
CelebA models only trained for 2 rounds (before the attack), therefore
not allowing for a proper study of the same evolution.
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Figure 10. WADM* FPR evolution along the first benign training rounds
of COP-MODE models used for AAI* and MIA2AIA.

after a few rounds. Additionally, WADM* incurs a signif-
icantly lower number of false alarms when the model is
used for AAT* compared to models used for MIA2AIA, at
least for smaller thresholds. This observation is explained
by the fact that the former type of models (used for AAI*)
converged faster than the latter, which was observed dur-
ing the experimental phase of this work.

Tuning this threshold depends on the use-case, as
well as on the target model’s architecture, therefore a
methodology to fine-tune this threshold for several use-
cases is left as future work.

4.5.5. Attack detection under FPR minimization. Pre-
vious results were obtained assuming an optimal threshold
choice to maximize W knowing that FPR
was under control on the training round in which the
attack occurred, as the model converged to a stable state. A
suitable solution to reduce FPR on early training rounds
is to adapt the threshold along the training process, as
explained in Section 4.5.4%. However, a good selection
policy not only reduces false alarms on early training
rounds (Figure 10) but also must match the TPR of other
selection policies, such as the optimal one (Figure 9).

Figure 11 illustrates attack detection for a fixed thresh-
old (0.1556) according to the supra-mentioned selection
policy (in Section 4.5.4). The comparison between this
figure and Figure 9 show that both policies match in terms
of attack detection. Although, regarding the detection of
malicious neurons from MIA2AIA, WADM* can be sig-
nificantly worse, with this threshold, against attacks that
target isWeekend (AAT* detection is also statistically worst
in this case but for a small margin). However, to mitigate
MIA2AIA, one only needs to detect and mitigate one of
the couple of neurons, which is measured by the "WADM*
(attack)” metric. Thus, besides the fact that significantly
more neurons from MIA2AIA pass by undetected, attack
detection results still match those obtained with the op-
timal threshold. All in all, these experiments show that
even under false alarm minimization on early training
rounds, WADM* effectively detects both active attacks,
while improving upon black-box strategies by improving
FPR and TPR (in some cases).

4.5.6. Attack Mitigation. Given that WADM™* success-
fully detects malicious neurons used for these active

8. Similarly to Section 4.5.4, this study is restricted to COP-MODE,
as CelebA models converged too fast.
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Figure 11. Detection of single-target AAT* and MIA2AIA over COP-
MODE models with several attack detection strategies (0.1556 was the
threshold used for both cases by WADM*).

attacks (Figures 8 and 9), one must expect that both
AAT* and MIA2AIA are reduced to random guessing.
Figures 12 and 13 illustrate attack performance after
the application of WADM* over AAI* and MIA2AIA
targeting CelebA and COP-MODE models, respectively,
meaning after detecting and switching the malicious neu-
ron’s weights. These figures show that both AAI* and
MIA2AITA are reduced to random guessing (or even less
than that), in terms of theoretical TPR, regardless of
the use-case. Besides that, FPR increases considerably
(namely for AAT* which is over 90%). As expected,
with this amount of FPR the adversary is no longer
able to overcome its effect on the gradient. For ex-
ample, AAT* and MIA2AIA over COP-MODE models
achieve [49.73%,55.08%)] and [48.81%,52.86%)] of re-
stricted ROC AUC on members when trying to target
selectedSemanticLoc Home.

4.6. Summary

This section introduced three attack detection mecha-
nisms, namely WADM* that outperforms standard moni-
torization of model performance, i.e. black-box strategies,
by improving attack detection and successfully mitigating
both attacks while preserving model utility loss. Particu-
larly, it can detect malicious neurons perfectly (100%),
namely the ones used for AAI*, and the detection of
an ongoing MIA2AIA is also nearly perfect. Regarding
black-box strategies, BADAUC significantly outperforms
BADAcc, which is clearer in the detection of AAI* on
CelebA models, for which BADAcc missed close to 13%
of attacks on average. But the greatest improvement upon
prior work is in terms of FPR, as WADM” incurs nearly
0% whereas BADAcc and BADAUC incurred close to
8% and 3% on COP-MODE models respectively, which
showcases the superiority of WADM* on challenging
settings (i.e. non-IID clients). Particularly, false alarms of
black-box strategies are mainly due to user-specific char-
acteristics,i.e. training dataset size and local performance
before any attack. Remarkably, WADM* FPR is not user-
dependent and, on early training rounds, can be reduced to
a negligible range if the threshold is properly tuned to the
use-case and adapted along the training process, without
significantly affecting TPR.
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Regarding attack mitigation, black-box strategies force
the client to leave the system, whereas WADM™ effec-
tively reduces any attack to random guessing without
leaving the system. Although with a black-box strategy,
a client may use the previous box/model (for predictions
only) until it has the guarantee that the newly received box
is benign, therefore reducing the excessive cost of FPR.
However, besides preserving the ability to train, WADM*
improves upon this baseline by reducing user dependency,
as every client receives the same global model, even
though each user can set its own threshold.

5. Conclusion

This work introduced novel active attribute inference
attacks, namely AAI* that outperforms state-of-the-art
alternatives based on membership inference (MIA2AIA)
by reducing FPR (in terms of neuron activation). More
importantly, AAT* improves upon prior work particularly
in a practical setting, where it overcomes the effect of false
positives and increases attribute leakage. Both theoretical
(neuron activation) and practical (gradient uncertainty)
evaluation methodologies target a limitation of prior work
by adequately measuring attack performance and bound-
ing model leakage. This study shows that well-generalized
models are vulnerable to these active attacks, contrasting
with past research that mainly targets extremely overfitted
models [26]. These attacks pose a real threat to FL sys-

tems, as the adversary does not require unrealistic condi-
tions to succeed and model performance is partially recov-
erable in a few training rounds. This study suggests that
traditional countermeasures (to improve generalization) do
not mitigate them, as they do not rely on overfitting.
Furthermore, this work introduced attack detection
mechanisms that effectively, and efficiently, detect and
mitigate both active attacks. The effectiveness of black-
box strategies showcases that these attacks are easily de-
tected while monitoring evaluation metrics on the training
set. However, some users may systematically be forced
to leave the system in a benign situation, while others
may constantly be exposed to both attacks, as a conse-
quence of false alarms and missed attacks, respectively.
A novel defense mechanism based on the detection of
abnormal distortions of the weights distribution (WADM™)
significantly reduces false alarms (both in probability and
respective cost), while matching the TPR of other defense
mechanisms. Notably, WADM* reduces user dependency
by monitoring model parameters, instead of model perfor-
mance, which is critical when clients are non-IID. Most
importantly, WADM* overcomes a major state-of-the-art
limitation - reduced model utility loss. By switching ma-
licious neurons’ weights by the previous set of weights, a
client can reduce any active attack to a random guess.

5.1. Limitations and Future Work

From this work, some relevant future directions arise,
namely improving the scalability of these attacks and
how to balance attack performance and interference on
model parameters through subtle parameter changes. This
could lead to an adversary that can evade detection by
reducing the distortion of the weights distribution and
the drop in model performance. Moreover, performance
monitorization is a common practice, outside the scope of
attack detection, and abnormal drops may not necessarily
be attributed to active privacy attacks. Thus, BADAcc and
BADAUC would most likely require additional steps to
distinguish benign model performance reduction from a
malign one. Similarly, further research is needed to fine-
tune the threshold of WADM* to minimize FPR while
preserving efficacy, for several use-cases. Furthermore,
according to this research, these defenses may be con-
sidered attack agnostic, as they are successful against
several active attacks, although, it needs to be validated
in future work. Moreover, as these are applied in every
training round, further research may be needed to reduce
the consumption of computational resources.
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Appendix A.
Theory behind AAT*

Section 3.4 explained how the adversary modifies
the malicious neuron, however no guarantees were given
regarding whether the gradient computation preserves the
information encoded by the activation. To establish some
notation, Figure A shows an example of a network. Let
the red node denote the malicious neuron, s; denote its
activation (Zi Wi *s; +by), and wy, denote the weight of
the link to the output node (s,,¢). Recall that an adversary
performing AAI* trains s to be positive whenever the
target sample passes through the model with a positive
attribute value, negative (closer to 0) with a negative
attribute value, and negative (as far away as possible from
0) otherwise. Additionally, Equation (4) shows how to
compute the gradient (g;) of the malicious neuron, se-
lected from the second fully connected layer, as illustrated
in Figure A, using the chain rule. This expression assumes
the network has the same architecture as the one used
for COP-MODE experiments. Equations (6), (8), and (10)
present each part of the expression from Equation (4).
Finally, Equation (11) shows the gradient computation,
obtained by replacing each fraction of Equation (4) by its
respective expression.
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Figure 14. Tllustration of the target model with annotations.
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From Equation (11), an adversary conducting AAI*
has the guarantee that the gradient sign leaks the desired
information only if the rest of the components (of the gra-
dient computation) do not change its sign. This guarantee
is given by an alignment of the sign of wy with the sign
of the derivative of the loss with respect to the model’s
confidence, which depends on the target sample’s main
task label, as shown in Equation (6). It is important to
remark that the derivative of the model’s confidence with
respect to S,y 1S never negative and is most likely not
null (given that the target model is reduced to random
guessing right after both active attacks), which does not
change the adversary’s inference.

Appendix B.
Data and experiment details

This section presents more details about each dataset
(COP-MODE and CelebA) and how they are used in these
experiments, as well as a clear statement on the data and
code availability.

B.1. Data and code availability

Attack and defense mechanisms performance was ac-
cessed with two real-world datasets. The CelebA dataset,
often used in the literature, is fully available at https:
//mmlab.ie.cuhk.edu.hk/projects/CelebA.html. The COP-
MODE dataset [19], collected in the NGI Trust project
COP-MODE’, is made available to researchers, partic-
ularly an anonymized version of the collected dataset.
Code to reproduce experiments with the CelebA dataset
is available at [8].

B.2. Experiments with COP-MODE: details

Regarding the COP-MODE dataset [19], recall that
it has approximately 65K samples of manually answered
permission requests from which 66% were accepted and
33% denied. This dataset is used to train models to
predict user responses to permission requests. To feed this
dataset into a neural network (NN), categorical features
are converted to their one-hot-encoding form, and numeri-
cal features are normalized. This preprocessing step yields
an input size of 53, meaning each sample (user answer)
is characterized by 53 features, most of which are 0’s
(expressing the absence of that attribute).

To train an FL model with this dataset, each client rep-
resents a user whose data is composed of the permission
requests he answered. However, some users have small
datasets, few of which with a single label (practically),
meaning they accepted or denied almost all requests. As a
result, most clients’ data, as well as the centralized version
of the dataset, is imbalanced with respect to the target

9. https://cop-mode.dei.uc.pt/cm-npm



variable. To overcome such limitations, one can apply
local random oversampling'®.

Furthermore, the question of how to measure the
model’s ability to predict users’ answers may be addressed
differently according to the business objective, meaning
depending on whether there is a target label (grant or
deny permission) that one is most interested in predicting
correctly. Since there is no preferred label, ROC AUC
is used to measure the probability of classifying a real
positive sample more confidently than a real negative
sample. That is, it measures how confident the model is in
accepting a previously accepted request than a previously
denied one.

B.3. Experiments with CelebA: details

Regarding the CelebA dataset [15], experiments of
these active AIAs, assume that the adversary has access
to a vector representation of the image obtained after
passing the matrix representation for a series of inter-
polated convolutional and max-pooling layers (common
practice on this type of learning task). This representation
is also called feature embeddings, and to obtain them a
pre-trained Resnet-18 model from Img2Vec2!' was used
to get a vector of 512 entries. Ideally, the adversary
must also have access to all binary attributes used as
predictors except for the sensitive attribute, of the target
sample(s). To perform AAT*, it must also have the main
task label, or be able to estimate it using the target model.
The FL system was composed of 10 randomly sampled
clients, therefore their local datasets may be considered
independent and identically distributed (IID).

Note that the assumption that the adversary has access
to target feature embeddings may seem unrealistic at first,
but these embeddings may be shared (instead of images)
as they seem to protect users’ privacy. In fact, privacy-
preserving face embeddings have been a relevant research
topic as leakage from these can raise severe privacy risks,
e.g. they can be leveraged to reconstruct the original
face image [10]. Additionally, one could argue that if
the adversary has access to those embeddings then it
could train a classification network to predict the binary
sensitive attribute. However, the adversary would need a
large labelled dataset for that purpose. Thus, it is best to
use the target model, instead of training a network from
scratch. Moreover, one must not forget that, more than
inferring about the sensitive attribute, the adversary would
be, ideally, inferring about the target sample’s membership
status, as a perfect attribute inference over an ML model
would only improve the adversary’s knowledge about
training samples, that is ideally it would increase target
model leakage.

Appendix C.
Scalability of attacks

Given great results of single-target attacks, in terms of
theoretical performance, it is relevant to see how attack

10. This is a sort of data augmentation technique to balance training
data with respect to the target variable and it consists of randomly select-
ing samples from the minority class (with replacement) and artificially
add them to the training dataset.

11. https://github.com/christiansatka/img2vec

performance behaves with an increase of the number of
target samples, meaning if the attack model can overfit
several target samples to the point of leaking attribute
information. Figures 15 and 16 show multi-target AAT*
and MIA2AIA, after proper hyperparameter tuning, on
CelebA and COP-MODE models, respectively. From Fig-
ure 15, it is clear that the scalability of MIA2AIA over
CelebA models is limited, as TPR is not significantly
better than random guessing, even though FPR signifi-
cantly decreases, which means that the neuron activation
rate decreased. This observation can be explained by the
challenging nature of these target samples (real-valued
input vectors of size 518) paired with insufficient model
complexity (first two FC layers of size 1024 and 512,
respectively) to overfit several target samples. Notably,
AAT* TPR only slightly decreases (on average) with an
increase in the number of target samples but significantly
improves upon its alternative. On a less challenging type
of input, Figure 16 shows that AAT* and MIA2AIA can
effectively target an increasing number of samples coming
from the COP-MODE dataset, although TPR can decrease
on average. Neither the number of target samples nor the
target attribute strongly affects FPR. However, FPR sig-
nificantly increases in AAI* experiments, as it was already
larger on average compared to MIA2AIA on single-target
attacks.

These results are particularly relevant to show how
threatening these novel active attacks could be by re-
vealing that an ambitious adversary, with multiple target
samples, succeeds at his malicious inference, naturally
depending on the combination of the type of input and
model complexity (parameter assumed to be controlled
by the adversary).
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Figure 15. Multi-target AAT* and MIA2AIA theoretical TPR and FPR
on CelebA models for several sensitive attributes.

Appendix D.
Inference under gradient uncertainty

To show how gradients leak membership and attribute
information, Figure 17 illustrates the gradient distribution
of members and non-members of the malicious neuron
selected for AMI (left plot) and positive and negative
members of the malicious neuron selected for AAT* (right
plot), for a few models. Recall that MIA2AIA is based
on AMI, thus this figure shows what to expect from the
gradient of a single neuron used for MIA2AIA. From this
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Figure 16. Multi-target AAI* and MIA2AIA theoretical TPR and FPR
on COP-MODE models for several sensitive attributes.

figure, one can see that the gradient of members tends
to be larger than non-members, similarly, the gradient
of positive members tends to be larger than negative
members. Despite having no overlap, in this case, it is ex-
pected a small overlap, but note that gradients of negative
members are, according to the theoretical inference phase,
always negative. In this practical scenario and as evident
in this figure, the adversary must relax that assumption.
Intuitively, an increase of FPR, in terms of neuron ac-
tivation, will lead to an increase in the absolute value
of gradients which is expected to reduce the difference
between distributions, as they are already affected by false
positives, otherwise, the gradient of negative members
would be always negative. Therefore, the previous theoret-
ical evaluation aimed to maximize TPR while minimizing
FPR, which is expected to lead to greater ROC AUC
(equivalent to reduced overlap) in a practical scenario.

It is important to note that the expectation that gra-
dients of members are higher than that of non-members
is only with respect to the malicious neuron, as they
were trained to be only activated by the target sample
which only does if it passes through the model during the
training process. This observation does not contradict the
intuition behind passive MIAs, which expected the loss
(or gradient) of members to be smaller, given that these
attacks infer membership status over the gradient of the
whole network (or just part of it), but most importantly
they do not perturb the optimization process.

Besides decreasing FPR, through an increase of the
number of epochs to train malicious weights (as shown by
Nguyen et al. [22] with AMI over CelebA models), the
degree to which an adversary can distinguish a member
from a non-member also depends on the target sample’s
local density. When local density is measured by Local
Reachability Density'? (LRD), results of membership in-
ference, with AMI, greatly improve just by assuming that
members have a higher local density. In fact, local density
is moderately, and positively, correlated with the absolute
value of gradients (34% on average). However, to improve
model generalization, model trainers may increase the
training sample’s local density through data augmentation

12. LRD of a point is the inverse of the average reachability distance
of its k nearest neighbors, where reachability distance is the maximum
distance between the point and its neighbours and that point’s k-distance.
A greater average reachability distance (equivalent to a small LRD)
means that even the nearest neighbors are far away

techniques (by oversampling it), thus increasing member-
ship risk. Given the relation between membership and
attribute inference [25], [32], also exploited in this work,
one must expect that attribute inference risk also increases
as a side-effect of some data augmentation techniques,
which is a statement that needs further research.

Appendix E.
Recovery from active attacks

One of the promises of WADM™* is that it can reduce
model utility loss comparing to black-box strategies by
enabling users to keep training while mitigating the attack.
But active attacks are expected to greatly impact model
performance, hence the satisfactory results of black-box
strategies in terms of attack detection (Figures 8 and 9).
Howeyver, if the model cannot recover from that interfer-
ence, one may argue that keep training is no longer worth
it. Perhaps keep using the previous state of the system
(box) for predictions only (therefore only loosing the abil-
ity to train) is a better option if the model cannot recover
its performance. This section aims to show that model
performance is partially recoverable after a few training
rounds, ultimately demonstrating that active attacks may
occur in FL systems without major long-term model utility
loss, which enhances the real threat of these attacks since
their negative impact soon becomes undetectable. This
section also motivates the need for defense mechanisms
that preserve model utility, as it is partially recoverable.

To evaluate the target model’s ability to recover from
single-target AAI* and MIA2AIA after a few training
rounds, the same system keeps training after the malicious
attack. Note that the ability to recover is measured with
ROC AUC, as the initial target model performance. Re-
garding CelebA models, these were able to fully recover
their performance both on the train and test set, regardless
of the targeted attribute, reaching close to 87% and 88%
after recovering from AAT* and MIA2AIA, respectively,
and on average. This observation is explained by the great
performance and fast convergence of these models, before
any attack, as these models only trained for 2 training
rounds, and the improvement from the first to the second
round was negligible.

Regarding COP-MODE models, for which attacks oc-
cur after the first 5 training rounds, as their convergence
required a higher number of rounds, it is also reasonable
to expect that these models require more rounds to re-
cover. Thus, Figures 18 and 19 show ROC AUC of these
models in the following 10 training rounds (after AAI*
and MIA2AIA, respectively). The baseline (dashed black
line) stands for the average ROC AUC before any attack.
Results show that ROC AUC approaches the performance
before any attack along with an increase in the number
of training rounds that proceeded the attack. Moreover,
there is a significant difference between recovery from
AAT* and MIA2AIA. Particularly on the training set,
models can fully recover from MIA2AIA in less than 3
rounds, but recovery from AAI* only happens after 10
rounds. Additionally, model recovery does not depend on
the targeted attribute.

The observed difference between the recovery process
from both active attacks can either be due to a distinct
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Figure 17. Gradient uncertainty illustration.

impact right after the attack or a different activation
function used in each of these models. In fact, ELU
activation function (used for AAI*) is known to prevent
the vanishing gradients problem, meaning exponentially
small gradients that halt the training process. By allowing
small updates even when the logit is negative (cases for
which RELU would return null gradients), ELU allows
the training process to continue instead of stopping at an
upper bound, as suggested by Figure 18.
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Figure 18. Recovery (ROC AUC evolution) from single-target AAI* on
train and test set over 10 training rounds.
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Figure 19. Recovery (ROC AUC evolution) from single-target MIA2AIA
on train and test set over 10 training rounds.

However, these results reveal that after any attack,
COP-MODE models present some train test gap, as con-
vergence on the test set is significantly more difficult.
As a result, these models might be more exposed to
passive attacks that exploit this gap. Also note that these
experiments included all clients but the capacity to recover
from active attacks could change significantly if not every
client is training. Particularly, if clients are free to choose
a defense mechanism, and, assuming some applied black-
box, they most likely left the training process in the
meantime.

Appendix F.
Black-box Attack Detection based on Accu-
racy

As explained in Section 4, BADAcc works by moni-
toring accuracy, or equivalently 0 — 1 loss. In this section,
BADAcc is presented in Algorithm 20 and explained in
detail below.

Given that the 0 — 1 loss of a sample follows a
Bernoulli distribution, the 0 — 1 loss of a set of samples
follows a Binomial distribution. For a sufficient number
of samples, Binomial approaches Gaussian distribution,
thus one can fully describe the error distribution with
only 2 sufficient statistics: average and standard describe
the convergence of the error distribution, 2 statistics are
kept in memory: the error rate p,,;, and its standard
deviation s,,;,. Their role is to represent the lower and
narrower error interval, which represents the best stage
of the model’s error so far. The full BADAcc algorithm
is presented in Algorithm 20, where these variables are
updated at the beginning of each training round (lines
10-11). At every training round, a defender receives the
current error and number of samples and calculates p
(expected error probability) and s (respective standard
deviation) which are compared to the lower and narrower
error interval (lines 12-16). This interval is updated at the
end of this function (lines 17-20). Then the defender calls
the function DETECT (lines 22-29) to detect whether there
is an ongoing attack.

Appendix G.
WADM*: White-box Attack Detection and
Mitigation

This section presents details about the intuition behind
WADM™ and its algorithm, as well as the WADM* detec-
tion rate under FPR minimization, respectively in sections
G.1, G.2, and 4.5.5.

G.1. Motivation

The difference between a benign and a malicious
neuron relies on the evolution (between training rounds)
of their weights distribution. Figures 21 and 22 illustrate
the evolution of the weights distribution of a standard
neuron and the change in weights distribution of a neuron
selected to leak membership/attribute information, respec-
tively. From Figure 21, one can see that the weights
distribution of a standard neuron is expected to vary



BADACcc algorithm: Monitor accuracy over time.
1: Parameters:

2:  n: Total number of samples observed
3:  e: Number of incorrectly predicted samples
4 DPmin: Minimum error probability observed (initial-

ized to < 1)

5. Smin: Minimum standard deviation of the error
probability (initialized to < oc0)

6: Initial State:

ik Pmin = 1

8: Smin = OO

9: function UPDATE(n, €)

10: p+e/n

11: s+ +/p(1l—p)/n

12: if p+ 5> pmin + 3 * Smin then

13: status < alarm

14: else

15: status < normal

16: end if

17: if p+ s < pmin + Smin then

18: Pmin < mzn(p7pmzn)

19: Smin < \/pmin(l _pmin)/n
20: end if

return status
21: end function

22: procedure DETECT(n, €)

23: status < UPDATE(n, e)
24: if status is alarm then
25: Leave system

26: else

27: Continue

28: end if

29: end procedure

Figure 20. BADAcc algorithm

little between training rounds, at least when the model
has converged. However, both active attacks perturb this
small variation, causing a significant change in weights
distribution, as observed in Figure 22. Particularly, both
attacks extend the range in which weights fall in, going
from [—0.2,0.35] and [—0.25,0.15] to [—0.7,1.3] and
[—7.0,2.75], respectively. Furthermore, these attacks also
distort the shape of the weights distribution of a malicious
neuron, which goes from close to Gaussian/bell-shaped
(right plot) or slightly biased (left plot), in Figure 21, to
remarkably biased, in Figure 22. Therefore, to distinguish
standard from malicious neurons one should summarize
this clear distortion of weights distribution into a single
metric (to automate the detection process), for example
using KL-Divergence.

G.2. Algorithm

The procedure of WADM* in Algorithm 23 (lines
23-26) is divided into 2 phases: detection (lines 6-15)
and mitigation (lines 17-23). In the detection phase, KL-
Divergence (line 9) is used to measure the difference
between the previous (line 7) and current (line 8) weights
distribution of each neuron, as shown in equation (3). Note
that to account for distribution shift, one must represent
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Figure 21. Evolution of the weights distribution of a standard neuron,
computed from the fifth and sixth training round, once the model has
converged. Each plot represents a different type of model (trained with
ReLU and ELU respectively).
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Figure 22. Change in weights distribution of a malicious neuron (after
single-target attacks), computed from the fifth and sixth training round,
once the model has converged. Each plot represents a different type of
model (trained with ReLU and ELU respectively).

both distributions on the same range, determined by the
maximum and minimum of both sets of weights. Since
KL-divergence is not a symmetrical metric, the minimum
between both directions is taken to be extra cautious, and,
for the same reason, weights distributions are represented
on a space of much smaller dimension (n4;,s). Results
were obtained by setting this parameter to 5 for robustness.
A neuron is flagged as malicious if this value exceeds a
preset threshold (lines 10-14), therefore being a distance-
based approach. In the mitigation phase, the defender
changes the current weights to the previous weights of any
neuron flagged as malicious, discarding the most recent
ones (line 18). A benign neuron keeps its weights and
the previous weights are updated (line 20). The procedure
(lines 23-26) shows how a defender combines both phases.



WADM~ algorithm: Monitor neuron weights over time.

1
2
3:
4

W

R

: Parameters:

Wprev: Previous set of neuron weights

Wewr: Current set of neuron weights

Npins: Number of bins to represent weight distribu-
tions

threshold: Threshold for KL-DIVERGENCE to
trigger an alarm

: function DETECT(Wprev, Weur, Nbins, threshold)
DiStprev = hiStOgram(Wprevv nbins)
Dist ey = histogram(Weyr, Npins)
div = min( K LDiv(Distprey, Disteyr),
KLDiv(Disteyy, Distpres) )
if div > threshold then
status < alarm
else
status < normal
end if
return status
: end function

: function MITIGATE(Wcy, Weur, status)
if status is alarm then
Wcur — Wpre’u
else
Wprev <_ WC’IJ,T’
end if
return Wprem Wewr
end function

: procedure WADM(W ey, Weyr, threshold)

status <= DETECT(Wprew, Weur, 5, threshold)
Worew, Weur < MITIGATE(W ey, Weyy, status)
: end procedure

Figure 23. WADM* algorithm



