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Abstract—We propose a coding scheme based on the combi-
nation of interleaving with systematic channel codes for secrecy.
The basic idea consists of generating a random interleaving key
that is used to shuffle/interleave information at the source. The
message and the interleaving key are then both encoded with
a systematic code and the part related to the interleaving key
is removed/punctured before being sent to the channel, hence
operating as a hidden key for any receiver (legitimate or not)
that needs to deinterleave the message. Successfully obtaining the
original message then depends on determining the interleaving
key, which can only be done through the parity bits that result
from jointly encoding the interleaving key and the message.
We provide a method to determine the necessary signal-to-noise
ratio difference that enables successful reception at the legitimate
receiver without the eavesdropper having access to the message.
In addition, we provide evidence that this scheme may also
be used to turn a realistic channel into a discrete memoryless
channel, thus providing a first practical implementation of an
abstract channel that can be employed with a wiretap code to
provide information-theoretic security guarantees.

Index Terms—wireless, secrecy, coding, interleaving, physical-
layer security.

I. INTRODUCTION

The resurgence of physical-layer security, after early con-
tributions from the seventies stemming from information-
theoretic security concepts [1], is tied to recent advances
related to wireless networks and coding techniques. While
some works have looked to the effect of intrinsic wireless
phenomena such as fading [2] on the secrecy level of these
networks, other works consider active approaches whereby
cooperative users (either relays [3] or friendly jammers [4])
are available to improve security by providing an advantage
over eavesdroppers, an underlying assumption of most works.

In terms of coding for secrecy techniques [5], it was already
shown by Wyner in 1975 [6] that there exist codes (wiretap
codes) simultaneously guaranteeing reliable communication
to Bob and secrecy against Eve. A great amount of work
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has recently been developed to provide code constructions
that satisfy information-theoretic security constraints [7], [8].
However, these code constructions exist only for discrete
memoryless wiretap channels, and require either a noiseless
channel for Bob or a degraded wiretap channel for Eve [5].
In order to utilize these code constructions in real-world
scenarios, it becomes relevant to design coding schemes that
aim to produce an effective wiretap channel over which these
codes can be applied.

Explicit constructions for more realistic channel models
include puncturing for secrecy [9], where Klinc et al. propose
a coding scheme in which messages are transmitted over
punctured bits to hide information from eavesdroppers, thus
leading to a small security gap (i.e. the ratio between Bob and
Eve’s channel quality required to achieve a desired level of
physical-layer security). It was later proposed [10] to avoid
directly exposing the secret information bits by using scram-
bling techniques over blocks of concatenated frames under the
assumption that the eavesdropper’s channel is noisier than the
legitimate communications channel. When Eve’s channel is
not worse than Bob’s channel, a feedback automatic repeat
request (ARQ) mechanism is shown to provide secrecy at the
cost of retransmissions and increased latency.

For more simplistic channel models, codes have been de-
veloped/evaluated with traditional information-theoretic mea-
sures, such as equivocation, mutual information, secrecy ca-
pacity, and variants thereof. While these metrics provide strong
secrecy guarantees, information-theoretical analysis over more
realistic channel models in short blocklength regimes is in
general intractable. This has led to more operational secrecy
metrics, such as the bit-error rate and its security gap [9]
variant that are applicable to more realistic scenarios, yet
do not satisfy information-theoretic security requirements. We
proposed [11] the use of two metrics that strengthen the BER
analysis by considering the entire distribution (cumulative
distribution function (CDF)) of possible errors. The bit-error
CDF (BE-CDFbc) analyzes the probability of error before a
code (hence the superscript bc) while the bit-error rate CDF
(BER-CDFac) does the same, but after decoding.

In this work, we present a coding scheme that relies on
keyed interleaving and channel encoding for the transmission
of secret information. In essence, the key and the interleaved
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Fig. 1. A concatenated coding scheme may be utilized to emulate a binary
symmetric channel (BSC) over which known secrecy codes may operate for
information-theoretic security.

message are concatenated and then encoded into a single sys-
tematic codeword, whereupon the systematic bits associated
with the key are punctured prior to transmission over a Gaus-
sian wiretap channel. We show that this scheme can be used
for secret communication, and also highlight an additional
use case where the scheme can be used to turn a realistic
wiretap channel (i.e. the Gaussian wiretap channel) into an
effective discrete memoryless wiretap channel. This coding
scheme can then be concatenated with a wiretap code that
can achieve strong secrecy (in the information-theoretic sense)
over a discrete memoryless channel (e.g. [12]) to effectively
provide information theoretic security over the realistic wiretap
channel without the need for a degraded channel model or a
noise-free legitimate communications channel, as implied by
Fig. 1.

The rest of the paper is organized as follows. First, we de-
scribe our system setup and more thoroughly describe relevant
metrics in Section II. We then describe our coding scheme
and resort to relevant metrics to assess its performance in
Section III. In Section IV we show how this scheme effectively
models a BSC for use with wiretap codes, and Section V
concludes the paper.

II. SYSTEM MODEL

We consider a wiretap channel system model, where the
transmitter Alice wants to send a message M to the legiti-
mate receiver Bob while an eavesdropper Eve is overhearing
information. It is assumed throughout that M is a random
binary message with equally likely independent and identically
distributed bits, although in practice, the scheme may still be
useful for real messages. As proposed in [13], an interleaving
key K is used at the encoder to shuffle data before being
appended to the interleaved message and encoded using a
systematic code. Much of the codeword is then transmitted
through a Gaussian wiretap channel to Bob and Eve.1 however,
the interleaving key K is not transmitted and, hence is hidden

1Our scheme enables the exact determination of the needed advantage
between Bob and Eve (example in Section III);

from the receivers (both Bob and Eve). The only information
transmitted about the key is given indirectly through the parity
bits in the transmitted codeword. Additional details of the
encoders and decoders are given in Section III.

Let Ẋ represent a block of data X that has been de-
coded once. Mm represents a message of size m, while
Mm

i corresponds to its shuffled/interleaved counterpart. Shuf-
fling/interleaving is performed with a key Kk of size k, and
Pb corresponds to the parity bits of an encoded message.
Estimates of a message M after decoding are represented by
M̂ and M̃ .

We consider an eavesdropper with the same type of soft-
decoder as the legitimate receiver, as described in Section III.

A. Metrics
Due to the difficulty in the analytical study of coding

schemes for secrecy over realistic channel models [14], se-
curity evaluation typically comes in the form of either bit
error rate (BER) or security gap. In terms of BER, it is
desirable to reach a low enough level (e.g. 10−5) to the
legitimate receiver, while assuring a BER as close as possible
to 0.5 for the eavesdropper. The security gap [9] measures
the required signal-to-noise ratio (SNR) advantage over an
eavesdropper to operate at prescribed BER levels for Bob
and Eve. It is calculated as the ratio between the minimum
SNR threshold that achieves an acceptable reliability error rate
for transmission to Bob SNRB,min, and the maximum SNR
threshold at which Eve operates with a minimum error rate
level SNRE,max.

While these more operational metrics simplify system
analysis and design over practical (short blocklength)
channels, high error rates to the eavesdropper do not
necessarily mean that information has not been leaked.
Therefore, rather than calculating simple averages (as in the
BER), we make use of knowledge of the entire distribution
of BER values to make stronger guarantees about the
performance of codes in the short blocklength regime [11].
Moreover, instead of using these metrics for secrecy purposes,
we do it to emulate a BSC with as high an error probability
as desired. For that we will resort to the bit error-cumulative
distribution function (BE-CDF) and bit error rate-cumulative
distribution function (BER-CDF) so as to make lower bound
probabilistic guarantees on error rates over short blocklengths
both preceding and following a given code, as depicted in
Fig. 2. These metrics are defined as follows.

Definition 1 (Bit Error Cumulative Distribution Function
[11]): The bit error cumulative distribution function, BE-
CDFbc(t, SNR, Sm, Ci), gives the probability of having t or
less errors, Pr(E ≤ t), as a function of the SNR for a message
of size Sm, encoded with a code Ci (refers to the inner code).

Working with the distribution of the number of errors
allows us to overcome some of the shortcomings of the BER.
For example, simply assuming a uniform error distribution
and using the BER measured before the outer decoder to
evaluate the likelihood of decoder failure is not a reliable
method because, when the blocklength is short, errors are not
guaranteed to occur so uniformly.
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The BE-CDFbc provides useful information when choosing
possible SNR operation points for the legitimate user and
the eavesdropper, by evaluating the effect of the channel. On
the other hand, if Bob and Eve are expected to operate at
given SNR values, this metric can also be used to provide
information about which t-error correcting codes (of the BCH
class for example) could be used as an outer code, to fit the
given restraints [13].

Definition 2 (Bit Error Rate Cumulative Distribution Func-
tion [11]): The bit error rate cumulative distribution function,
BER-CDFac(δ, Eb/N0, Sb, C) is the quantity

Pr(P̂b > 0.5− δ) (1)

calculated over Sb estimated message bits for a code C as
a function of the energy per bit to noise power spectral
density ratio Eb/N0, where C may be the concatenation of
an (optional) inner code Ci and an outer code Co, and P̂b is
the proportion of errors measured over Sb message bits at the
output of the outer decoder.

This BER-CDF metric measures the probability of having
a decoder failure that generates a BER close to 0.5 in the
estimated message bits. In some sense, it can also be used to
estimate a lower bound on the possible error rate at the output
of the decoder over Sb bits, i.e. if Pr(P̂b > 0.5− δ) ≈ 1, then
a BER below (0.5 − δ) over Sb bits occurs with probability
approximately zero.

Note that the BER-CDFac is actually the complement of
the CDF, but the nomenclature is chosen to be consistent with
that of the BE-CDFbc. Also, because we are calculating this
metric after the decoder, it makes sense to use Eb/N0, rather
than SNR, although the conversion can be made if desired. The
superscripts bc and ac indicate that the metrics are measure
respectively before and after the outer decoder.

The two presented metrics can be applied as a pair to help
in the design of systems that aim to provide both reliability
and secrecy. The BE-CDFbc can be used to identify regions
of operation for Bob, in terms of SNR, that provide a high
probability of decoding success and therefore, reliability. It
also provides information of acceptable regions of operation
for Eve that guarantee a high probability of decoder failure.
The BER-CDFac can then be used to evaluate the contribution
of the outer code in terms of generating a considerable
BER when decoder failure occurs, which is desired at the
eavesdropper’s receiver.
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Ṁi

Ci

Outer coder

[K Mi Pb]

BE-CDF bcBER-CDF ac

Puncturing
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channel. Pb refers to the parity bits of the codeword at the output of Ci.

III. INTERLEAVED CODING SCHEME WITH A HIDDEN KEY

Figure 3 illustrates our proposed scheme. At the beginning,
a word Kk is randomly generated and used as a permutation
key to interleave the message Mm, giving origin to a shuffled
message Mm

i . Then, the key is concatenated to the interleaved
message and coded by the inner coder, a systematic code Ci

of size (n, k+m). This scheme allows each length-m message
to have it’s own separate key. After the encoder process, only
the last n−k bits from the obtained codeword are transmitted
onto the channel. This means that the bits of K, from the
codeword at the output of the encoder Ci, are not transmitted,
and hence hidden from both Bob an Eve. Information on those
bits is only present within the transmitted parity bits. This can
be seen as a limiting case of the scheme proposed in [13]
where intentional friendly jamming was used only when data
associated with K was transmitted so as to hide information
about the key from eavesdroppers. If we consider an infinite
jamming power over the key, then we ensure an eavesdropper
obtains no information about K, just as in this case where
the key is not transmitted. On the decoder end we apply a
state-of-the art soft inner decoder followed by a deinterleaver,
as depicted in Fig. 3. The goal of the inner code is to strike
a balance so that the punctured key bits can be retrieved over
Bob’s channel, but not over Eve’s channel.

A. Performance analysis

Let us consider, for illustration purposes, a powerful system-
atic inner LDPC code of dimensions (1536,1280), that resorts
to the sum-product algorithm for decoding. To identify regions
of operation for Bob and Eve as a function of the SNR and
the size of the key (k), we consider the BE-CDFbc applied
over the bits of K at the output of the inner decoder. Since
we are interested in assessing the likelihood of Bob and Eve
retrieving the key without errors, we consider the parameter
t = 0, and therefore, Fig. 4 represents Pr(E = 0), where E
is a random variable that indicates the number of errors in the
decoded key bits at the output of the LDPC decoder.
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Examining Fig. 4, it is easy to identify, for each curve, the
SNR region that displays a probability close to 1 of obtaining a
key with errors, and the SNR region where getting an errorless
key is guaranteed with high probability. These will be the
regions of operation for Eve and Bob, respectively. The gap
(≈ 2.5dB) between the thresholds of these regions of SNR
corresponds to a rough estimation on the minimum advantage
Bob needs to possess over Eve in terms of channel quality,
which seems to not vary much with the key size according
to the results in the figure. The security criteria could be
made stronger by enforcing that Eve is affected by a minimum
number of errors N , i.e. Pr(E < N) → 0, which would
widen the required SNR gap to Bob, but would make it harder
to correct errors by exhaustively testing all possible error
patterns.

The BE-CDFbc gives us an idea on the advantage in terms
of SNR Bob needs to maintain over Eve. In order to get a more
precise value for this gap of SNR and have more closure on
the security brought by this scheme, we will analyze the BER-
CDFac and BER, depicted in Fig. 5. For illustration, we picked
the cases in which the key is composed of 60 and 100 bits.
We also consider the transmission secure if the eavesdropper’s
decoding generates a Pr(P̂b > 0.45) ≥ 0.999, i.e. the security
restriction would be fulfilled if Eve operates at Eb/N0 ≤ 5.5
dB for k = 60, and at Eb/N0 ≤ 6 dB for k = 100. This
restriction could be made closer to P̂b = 0.5 and with greater

M

ALICE

Binary Symmetric Channel

1 1

0 0

p

p

1 � p

1 � p

Decoder M̂1

BOB

m
BOB

M̂1

EVE

M̂2

AWGN Channel
(SNR  SNRE,max)

AWGN Channel

(SNR � SNRB,min)

M̂2Decoder

EVE

Encoder

ALICE

M

Fig. 6. Using the encoder and decoder from Fig. 3 a perfect channel is
emulated for Bob when having a AWGN channel and operating at a value
of SNR ≥ SNRB,min. For Eve a BSC is emulated when having a AWGN
channel and operating at a value of SNR ≤ SNRE,max.

probability with a corresponding reduction in the acceptable
Eb/N0 level for Eve. If we recognize the transmission as
reliable if the BER over the message bits is below 10−5, Bob
would have to operate at Eb/N0 ≥ 8 dB and Eb/N0 ≥ 8.6
dB for keys of size 60 and 100, respectively. From here on
we will refer to SNRB,min and SNRE,max as the threshold
values of SNR that limit the regions of operation of Bob and
Eve, respectively.

With Bob and Eve operating at SNRB,min and
SNRE,max, respectively, of the previously defined operating
regions, the advantage of Eb/N0 (or SNR) Bob needs over
Eve for assuring reliability and security is 2.5 dB for k = 60
and 2.6 dB for k = 100. The similarity of these values is
interesting, because it introduces the notion of selecting the
most appropriate key size (i.e. the one that assures reliability
and has the highest possible value of SNRE,max), when
applying this security scheme to a scenario where Bob’s
expected SNR is characterized.

IV. GENERATION OF A DISCRETE MEMORYLESS CHANNEL

Now that we have an idea of how this scheme performs
in terms of acceptable SNR thresholds for Bob and Eve, let
us move on to a possible use case, which is the concept of
using our coding scheme to emulate a discrete memoryless
channel, more specifically, a BSC. The availability of an error-
free channel to the legitimate receiver and a discrete memo-
ryless channel to the eavesdropper enables the applicability of
existing wiretap code constructions [5], [11].

We will now make the necessary deliberations for showing
that the previously introduced scheme can emulate this sit-
uation, when Bob and Eve receive data through an AWGN
channel with a SNR greater than SNRB,min and less than
SNRE,max, respectively, as illustrated in Fig. 6.

Let us start by defining the bounds for the emulated
channels. For illustrative purposes, Bob’s channel will be
considered as perfect if the probability of having errors on
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the message bits after the decoding of a block is at least
fewer than 10−4, i.e. 1 − P (EX = 0) ≤ 10−4, where EX

represents the number of errors in the message bits. The BER-
CDFac with δ = 0.5 allows us to evaluate this probability, i.e.
1 − P (EX = 0) = Pr(P̂b > 0). On a similar fashion, Eve’s
channel will be considered as a BSC, if the probability of it
possessing the properties of a BSC, for the transmission of a
block, is at least 0.9999.

The properties that need to be verified for considering that
Eve’s channel is modeled as an effective BSC are:

1) the probability p of flipping each bit over the channel
should be identical for all bits;

2) each bit should be flipped independently from all other
bits;

3) soft information about bit values should be unavailable
to attackers.

The key ingredient that provides the first two properties
of the BSC is interleaving. The first property is true due to
the keyed interleaving of the scheme. Since each codeword
possesses its own interleaving key, as long as the interleaving
keys are uniformly random, this property is guaranteed. The
second property can be guaranteed by adding an additional
interleaving operation prior to the inner code as in [15] and
many other sources, where one bit from each of several
interleaved message blocks is grouped at the input of the
inner code. Thus a block error at Ci’s decoder gives bit errors
throughout several message blocks, and neighboring groups
of message bits are independently in error at the output of
the final deinterleaver. Finally, the third property has been
shown in [11], where the Kullback-Leibler divergence between
distributions of LLRs for bits in error and correct bits is
shown to go to zero as the SNR in the channel degrades,
indicating that the soft information becomes worthless for
detecting errors.

We provide simulation results of some of these phenomena
by considering the example from the last section, i.e. using
a LDPC(1536, 1280) code as the inner code and considering
the key sizes of 60 and 100. Figure 7 represents the BER-
CDFac for this scenario as a function of the SNR. The values
of δ = 0.1 and δ = 0.5 were chosen for evaluating Eve’s
and Bob’s performances, respectively. The vertical dark red
lines indicate the minimum values of SNR, (7 dB for k = 60
and 7.56 dB for k = 100), that satisfy the previously stated
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Fig. 8. Probability of error of a bit from a decoded message, Pe, as a function
of n, which represents the position of the bit on the message word of size
1280− k.

requirement for considering Bob’s channel as perfect. The
values of SNRE,max, (4.5 dB for k = 60 and 5 dB for
k = 100), marked by the vertical dark blue lines, are the
maximum SNR values that guarantee Pr(P̂b > 0.4) ≥ 0.9999.
Recall that P̂b is the proportion of estimated message bits in
error over a single block of data, so this guarantee indicates
that all blocks maintain at least a 40% error rate.

We will evaluate the first property for considering that Eve’s
channel is a BSC, when Eve operates at SNR ≤ SNRE,max,
through the analysis of the probability of error of each message
bit, for SNR = SNRE,max. In Fig. 8, we see that for both
cases, the probability of flipping each message bit over the
channel is approximately identical for all message bits, with
value p ≈ 0.5. This result verifies the first stated property, and
indicates that the effect of the deinterleaver on error-prone
data is significant enough to drive the average error rate of
any single bit to 0.5.

The second property can be given by inter-block interleaving
as already specified, but we wish to see if the scheme may
still provide the property in the absence of the additional inter-
leaver. However, evaluating if each bit is flipped independently
from all other bits proves to be a more difficult challenge. Let
EX be the random variable that defines the number of errors
on a word of size m, received through a BSC with probability
of flipping a bit Pf . Then, due to the errors being independent,
EX ∼ Bin(m,Pf ), with Bin(·) representing the Binomial
distribution with parameters m and Pf . Then, the probability
of having x errors on a received word is given by:

Pr(EX = x) =

(
m

x

)
Pf

x(1− Pf )
m−x. (2)

When Pf = 0.5, which corresponds to the value of p we
identified on Fig. 8, (2) can be simplified into:

Pr(EX = x) =

(
m

x

)
0.5m. (3)

In Figs. 9 and 10 the PMFs that model the number of errors
on the decoded message bits are obtained through simulation.
For comparison, the two cases we are considering (k = 60
and k = 100) are depicted against the PMF of EX for the
respective values of m and Pf

2. Although this comparison

2Due to the complexity of calculating (3) for large values of m, the curves
on Figs. 9 and 10 were obtained by approximation to a normal distribution.
The central limit theorem states that for large values of m and/or Pf close to
0.5, EX ∼ B(m,Pf ) approaches EX ∼ N (m× Pf , m× Pf (1− Pf )).



0 200 400 600 800 1000 1220
0

0.005

0.01

0.015

0.02

x

P
r(

E
X
=

x
)

 

 

histogram

Bin(1220,0.5)

Fig. 9. Probability of having x errors on the decoded message, for the scheme
presented on Section III when the inner code is a LDPC(1536, 1280), k=60
bits and the SNR is 4.5 dB. The curve from (3) when m = 1220 is shown
for comparison.

0 200 400 600 800 1000 1180
0

0.005

0.01

0.015

0.02

x

P
r(

E
X
=

x
)

 

 

histogram

Bin(1180,0.5)

Fig. 10. Probability of having x errors on the decoded message, for the scheme
presented on Section III when the inner code is a LDPC(1536, 1280), k=100
bits and the SNR is 5 dB. The curve from (3) when m = 1180 is shown for
comparison.

is not enough to claim that the second property is verified
without the additional interleaver, it serves as an indicator of
how our coding scheme approaches the behavior of a BSC for
the example parameters evaluated, even without the addition
of an inter-block interleaver.

It is well known that the mutual information over a BSC
with p = 0.5 is zero and, therefore, if the probability of a
flipped bit can indeed be assumed to be 0.5, then this scheme
could provide secrecy by itself. However, we feel that the
proper approach to achieving secrecy in practice is to apply a
wiretap code on top of the emulated BSC, while assuming
the lower bound of the error rate over smaller blocks of
p = 0.5 − δ, (p = 0.4 in this case) given by the BER-
CDFac. Any secrecy codes appended to our system would then
be designed to provide information-theoretic security on this
lower bound p value, and would thus provide it in practice
on every (possibly short) secrecy codeword since we have
designed for the worst case error rate over a single small block
of data.

We also point out that these results are more general than the
specific code outlined in this section, and any code that leads
to similar properties (steep waterfall region) could be applied
to our scheme with the accompanying analysis to identify the
required SNR gap between Bob and Eve.

V. CONCLUSIONS

We proposed a coding scheme that relies on a hidden
interleaving key and a given signal-to-noise ratio advantage
to conceal information from an eavesdropper. Through a sys-
tematic code, the interleaving key is encoded with the original
message, but punctured/hidden before being sent through the
channel, meaning that for any receiver the only information
about the key is in the transmitted parity bits. The systematic
code needs to be powerful enough and have enough parity
bits to allow a receiver with a favorable signal-to-noise ratio
to obtain an errorless key to decode and deinterleave the
original message. Our methodology allows us to determine the
exact signal-to-noise ratio advantage needed for a legitimate
receiver to obtain the key (and consequently the message)
without an eavesdropper being able to do so. We have also
outlined arguments and given evidence for using this scheme
to generate an effective discrete memoryless channel from
a Gaussian wiretap channel. Therefore, the scheme can be
concatenated with existing wiretap codes that require such a
channel to provide information-theoretic security guarantees.
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