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Abstract—By leveraging the advances in wireless communi-

cations networks and their ubiquitous nature, sensing through

communication technologies has flourished in recent years. In

particular, Human-to-Machine Interfaces have been exploiting

WiFi IEEE 802.11 networks to obtain information that allows

Human Activity Recognition. In this paper, we propose a clas-

sification model to perform Person Identification (PI) through

Body Velocity Profile time series, obtained by combining Channel

State Information containing gesture knowledge from multiple

Access Points. Through this model, we investigate the impact of

different gestures on PI classification performance and explore

how informing the model about the input gesture can enhance

classification accuracy. This information may enable the network

to adjust to the absence of features capable of adequately

characterizing the desired classes in certain gestures. A simplified

stacking model is also presented, capable of combining the

softmax outputs of K previously proposed individual models.

By having the individual models’ evaluations of a gesture and

the gesture information relating to it, the number of gestures

considered was shown to significantly improve the performance

of the PI classification task. This enhancement increased 17% of

the average F1 scores when compared to the individual model

tested on the same data.

Index Terms—Joint-Communication and Sensing, Human Ac-

tivity Recognition, Person Identification

I. INTRODUCTION

As wireless communications technologies progress and be-
come more widespread new challenges emerge, including the
persistent physical limitations of the electromagnetic spectrum.
However, some opportunities also arise. A prominent tech-
nique in this regard is the Joint-Communication and Sensing
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(JCAS), also known as Integrated Sensing and Communi-
cations (ISAC), where sensing performance is included in
the normal operation of wireless systems to enable multiple
benefits [1], [2].

While there isn’t a specific form of JCAS, various authors
have proposed different modes for this technique, with each
mode giving different weights to the communication and sens-
ing segments. A common proposition has been the application
of the IEEE 802.11 networks, i.e., WiFi, to sense the sur-
roundings using Machine Learning (ML) models trained from
data extracted from transmission metrics, such as the Received
Signal Strength (RSS), Angle-of-Arrival (AoA), Channel State
Information (CSI) or even beamforming feedback information
[3] present in network packet data.

Through these metrics, a diverse array of environmental
information can be estimated. Authors in [4]–[7] have shown
that it is possible to count the number of people inside
a room using communication-based sensing techniques with
high accuracy. In other examples, works perform localization
estimation [8], [9], recognition of performed activities [10],
[11] and small gestures [12], [13], and even achieving people
identification [14].

Human Activity Recognition (HAR) and Gesture Recogni-
tion (GR) have garnered particular interest due to their impact
on Human-to-Machine Interface (HMI) systems which have
seen significant progress in recent years. Person Identification
(PI) also plays a crucial role in these systems, primarily by
introducing soft access control layers. This involves identify-
ing the person performing the action and gestures to block or
permit the resulting action, allowing for multi-user input in
parallel tasks. For example, in a scenario where two users are
in the same room, a similar gesture may be used by one person
to control the blinds while the other controls the television
volume.

Most WiFi-based PI techniques have been focused on gait
patterns, due to these being easily obtainable and recognizable
metrics that are variable from person to person. However, such
methods often fail to perform adequately in scenarios where
individuals stand still while performing an HMI input gesture
or perform a different activity other than walking.



To this end, authors in [15] have proposed a framework
capable of being trained over Body-coordinate Velocity Pro-
files (BVPs) [12], generated by combining CSI data obtained
over multiple Access Points (APs). These enable simultaneous
recognition of gestures and users while also enabling the
recognition of new classes using transfer learning with a new
set. The work proposed in [16] shows that WiFi-based Gesture
Recognition (GR) and PI can be used simultaneously and made
to work in real-time systems while taking inputs that require
less computationally intensive processing as inputs to their
proposed network.

An important characteristic to consider regarding JCAS
is that, while it is described as a less intrusive sensing
mechanism compared to a camera-based monitoring system,
the ubiquitous nature of communication devices capable of
implementing these capabilities can raise concerns regarding
potential privacy and security issues. The concerns may stem
from both unregulated and malicious usage of this technology.
The ability to perform GR, PI, and passive user localization
with the accuracy described in various works [10], [15], [16]
can arguably compromise the privacy of users in the envi-
ronment users as the presence of video feed. Moreover, due
to the ubiquitous of wireless communication and regulation
against these techniques, not only is a legitimate user of HMI
affected but so are bystanders that happen to enter the sensed
environment without prior knowledge.

This work analyzes the privacy impact of gesture recog-
nition in person identification. In particular, the effect that
apriori knowledge of the gesture performed has in identifying
its performer and establishing an understanding of privacy and
security concerns that can be raised or eased based on the
usage of these sensing techniques.

This paper is organized as follows: Section II briefly
presents the Methods. Section III explains the proposed model
and methodology. Section IV presents the performance results.
Section V concludes this paper.

II. METHODS FOR PERSON IDENTIFICATION THROUGH
MOTION ANALYZES

One of the biggest challenges in JCAS-aided HAR and GR
is the creation of domain-independent techniques. The same
characteristic that makes most JCAS sensing methods rely
on CSI also imposes a heavy restriction on these techniques.
As the communication channel is heavily affected by the
environment any changes, e.g., moving background objects,
different persons being sensed, clothes, and even humidity in
the air, can make it difficult to train generalist models. Thus,
models using data from a given domain (person, environment,
day) suffer a major performance loss when applied to other
domains.

Authors in [10], [12] focus on this challenge by provid-
ing processing mechanisms capable of removing background
effects in the collected CSI samples and creating a better-
defining input for a given activity or gesture. While these
techniques imply the loss of some user-specific information in
trade for more generic and easily classifiable data, the analyses

of the performance of a gesture classification network based on
training data from different users made [12], show that while
some users perform a gesture in a very standard way, others
make distinctive enough movements such that the network is
incapable of generalizing. Thus, it is expected that there still
exists a high enough degree of correlation between a given
gesture performed by the same user that can be used to identify
them.

The goal of this work is to understand how the knowledge of
the performed activity or gesture can improve the performance
of a PI task and analyze how each gesture performs at this task.
Thus, we evaluate the impact of allowing the end device to
consider only the differences in each activity. Note that this
assumption of knowledge can be deemed realistic and achieved
under the application of a gesture classification framework,
such as the one presented in [12], [13], where the activity
is identified before the end, or in scenarios where a specific
movement is expected from the user.

A. Gesture-based Person Identification

Fig. 1: Structure of the gesture performer identification model.

We establish the Neural Network (NN) defined in Fig 1
based on the BVP dataset to classify the user performing the
gestures captured. The BVP is a two-dimensional vectorial
representation of user movements with a gesture being char-
acterized by a temporal series of BVPs, as seen in Fig 2.
We use a CNN composed of a simple Conv2D layer and a
Max Pooling Layer together with a bidirectional Long Short-
Term Memory (LSTM) to deal with the spatial and temporal
dimensions respectively. The output layer of the model is a
fully connected layer with N output values, each representing
one of the N possible users, given by the following softmax,
�(xi), activation function

�(xi) =
exi

PN
j=1 e

xj

for i = 1, 2, . . . , N (1)



(a) t = 1 (b) t = 8

(c) t = 15

Fig. 2: A Body-coordinate Velocity Profile time series of
a person performing a gesture of drawing a triangle at a
frequency resolution of about 10 Hz. Based on [12].

to obtain a probability distribution for all the classes. The
loss calculation is then given by the categorical cross-entropy
function, such that

CE = � log(�(xi)) = � log

 
exi

PN
j=1 e

xj

!
, (2)

where exi represents standard exponent function of xi vector.
As the input and objective of the network share some

parallels with video classification tasks, we improve our model
performance by adding a Luong-style attention [17] module
to our model. The idea behind this addition is that some part
of the movements and how they change timewise has more
impact than others in defining the user performing a gesture.
Thus, we use the attention module to stand out these features
that better define the user and make the model rely more on
them during the PI task.

We aim to analyze the capability PI performance through
the performance of a gesture, with the usage of cross-domain
techniques. Since we assume that the gesture being performed
is known, we add this information as an input to the ML
model expecting it to learn the different characteristics that
differentiate the users based on the activity that is being used
as input. To do this, the activities present in the training set
are each attributed a value ranging from 1 to the number
of activities considered, which in this case was six, and
posteriorly converted into a vector through one-hot encoding.
This vector is then added before the temporal modeling section
by concatenating it with the result from the spatial feature
extraction, as seen in the model diagram in Fig. 1.

Predicted Label

Concatenate

Gesture 1 BVP Timeseries 1

One Hot
Encoding

Singular
Gesture
Module

Concatenate

Gesture K BVP Timeseries K

One Hot
Encoding

Singular
Gesture
Module

Fully Connected Softmax

Fig. 3: Structure of the Person Identification stacking ensemble
for K gestures.

B. Number of Gestures for Person Identification

Besides analyzing how the knowledge of the gesture affects
the performance of the PI task, we also aim to understand the
impact of considering multiple gestures in the performance of
PI.

Our proposed analysis is based on two factors. Firstly, it is
intuitive that some gestures hold more information significant
to the PI task than others. Secondly, gestures for HMI are
rarely done in an isolated form. Thus, to understand the
impact of considering a higher number of gestures while
training a network and using a model, we decided to analyze
the improvement occurring when considering two cascaded
gestures.

The model designed to study the impact of the number
of gestures, K, is a stacking ensemble using the previously
proposed model as individual models, herein called sub-
models. Thus, it is simply a singular gesture model repeated
K times with a fully connected softmax layer connecting the
outputs of each singular gesture module and outputting a final
result. Due to the first factor presented, the gesture information
is once more concatenated to the output of each sub-model,
allowing the final layer to adapt its weights to this information.
The diagram for the final ensemble can be seen in Fig. 3.

III. IMPLEMENTATION

To evaluate the proposed model and methodology presented,
we used a dataset composed of 6 activities and 4 users in
up to 2 different environments [12] with each environment
containing 5 different possible positions and orientations. In
total, there were used 1375 samples of BVP time series (6
users × 5 positions × 5 orientations × 6 gestures × 5 to 20
instances). While the dataset created is balanced in relation to
the gestures, it is imbalanced concerning the samples per user.
A train-to-test ratio of 0.9 was used and the results presented
herein were obtained through K-fold cross-validation with
K = 10. Additionally, the length of the time series is defined



as TMAX = 30 for all tests, as the BVP sequences are zero-
padded to it. The PI classification model hyperparameters used
are present in Table I.

TABLE I: Hyperparameters values for the PI classification
model.

Loss Function Categorical cross-entropy
Learning Rate 10�3

Batch Size 32
Optimization Function Adam [18]

Number of Epochs 30
Dropout Ratio 0.5

Conv2 Hidden Layers 16
Number of LSTM Hidden Layers 128

A. Datasets and Assumptions
This work is based on a public dataset that includes CSI

data for both small motions, i.e. gestures, in various domains,
i.e., multiple people, spaces, and days.

The dataset [19] contains CSI data from routers work-
ing with IEEE 802.11n WiFi standard and describing hand
gestures obtained from 75 different domains through Linux
CSI Tools, as well as, processed samples in the form of
Doppler Frequency Shifts (DFS) and BVP. The authors apply 6
receivers to obtain data for people in 5 different positions and
orientations to jointly apply the obtained data to recognize the
performed gesture. All positions are in a 4 square meter area
with the transmitter and receivers placed nearby outside this
area (0.5 meters away from the borders) and in Line-of-Sight
(LOS) to the user performing the gestures.

The computation of BVPs [12], produced through the men-
tioned work of the same users and used in this work, and
based on this dataset share some limitations with it. First, since
the gestures are significantly small-scale movements, LOS is
required between the sensing target and the receivers to gather
enough information to characterize the gesture. Similarly, it
also has a strong requirement of knowing the position of
transmitters, receivers, and even the torso to estimate the
velocity profile associated with the small-scale movement
properly. Regarding the number of receivers, while not all
are simultaneously used when considering the positions of the
targets and receivers it’s safe to assume that for any given
combination of position and orientation, the data obtained
from at least four of these receivers is needed and being
used. Additionally, it’s relevant to notice that while BVPs
can characterize gestures quite accurately, they require a
considerable processing time, which makes them less adequate
for real-time WiFI-based HAR than simpler inputs such as
DFS spectrograms.

Our work is focused on the performance of people identi-
fication techniques associated with HAR and gesture recogni-
tion implementations. This is done under the assumption that,
in the initial stage, the extracted CSI information from multiple
APs is segmented into samples containing gestures being fully
done and then joined together and processed into BVPs which
are then used to predict the gesture being performed and the
person doing it. Since the method we propose to study is
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Fig. 4: Bar graphs with accuracy and macro-F1 scores for
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gesture information. The dashed horizontal line is the mean
Macro-F1 score value for the models using a specific gesture.
The error bars in the Macro-F1 scores represent the standard
deviation obtained from the different classes evaluated.

based on the correlation between a gesture and its performer,
we assume that gesture recognition is completed before the
beginning of the PI pipeline, at both the training and testing
stages, through methods such as the ones presented in [12],
[13].

The models we presented in this paper for PI are based on
supervised learning, therefore it’s important to notice that it
cannot inherently deal with the presence of users that are not
present in the training dataset.

IV. EVALUATION

In this section, we analyze the results of PI based on
single and multiple gestures. The results shown are presented
using both accuracy and macro-F1 scores. The accuracy is the
measure of all the correctly identified classifications calculated
through

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

where the TP are true positives, TN are true negatives, FP are
false positives and FN are false negatives. F1 scores represent
the harmonic mean of Precision and Recall, thus presenting
a better metric of both correct and incorrect cases, especially
with imbalanced datasets. Their calculation goes as follows

F1 =
2 ⇤ Precision ⇤Recall

Precision+Recall
=

2 ⇤ TP
2 ⇤ TP + FP + FN

.

(4)

A. PI Based on Single Gesture
The proposed single gesture model architecture in Fig. 1

was trained and tested on all 6 gestures together both with
the gesture information, being passed to the model through
one-hot vector encoding, and without it, aiming to study
the performance improvement of this knowledge. Similarly,
the model was also tested over every gesture separately and
trained and tested solely on that single gesture, to observe the
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Fig. 5: Confusion matrices with F1 scores for the person
identification model trained and tested over a specific gesture.
(a) Trained with the drawing ”Slide” gesture. (b) Trained with
the drawing ”N” gesture.

variability in performance between the gestures considered.
These results can all be seen in Figures 4 and 5, respectively.

Fig. 4 presents the results for the various model configura-
tions tested, with each two bars representing one of those, with
the vertical axis indicating the probability associated with the
accuracy and macro-F1 scores. It is noticeable that providing
the gesture information to the network (”All Gestures w/
Info”) slightly improves the PI task performance. Observing
the results obtained from testing over the different gestures
separately allows us to understand the reason for this im-
provement. In fact, from the confusion matrices in Fig. 5, one
can see how some gestures provide better F1 scores over all
classes, i.e. all users considered, while others generally fail to
classify some users, i.e. presenting a higher classification bias.
Notice that, while some of this behavior could be attributed
to the imbalance in the dataset, since all gestures have the
same number of samples for every user, this difference should
not be substantially smaller or bigger in a given gesture, if
not for the inherent characteristics of this gesture. Thus, by
knowing the gesture being performed the network’s weights
can be better trained to deal with such cases, providing a boost
in performance.

Regarding the overall effectiveness of the network trained
over a specific gesture, it can be seen that some of the gestures
allow for the model to achieve a much better performance than
the one achieved by relying on all gestures, both with and
without gesture information. However, by accounting that any
given gesture has the same probability of being performed, the
overall accuracy of the PI classification is best when a single
model is trained with the added gesture information.

B. Number of Gestures for Person Identification

To evaluate the accuracy performance of increasing the
number of gestures considered, we trained a model, i.e. a
single fully connected output layer with a softmax activation
function, fed with the output from two 1-gesture classification
sub-models. The sub-models studied were both trained with a
single specific gesture and trained with all gestures simulta-

Fig. 6: Bar graphs with average accuracy and F1 scores for
meta-models with different numbers of gestures. The two
leftmost bars refer to a one-motion sub-model, the middle bars
refer to a two-motion model where each 1-gesture sub-model
was trained only in a specific gesture, and the two rightmost
bars refer to a two-motion model with sub-model trained with
all gestures. The standard deviation between multiple classes
gives the error bars in the F1 Scores.

neously. Similarly to stacking ensembles, the sub-models here
are only being tested on new data and the new layers are being
trained on the outputs of these. The results of this experiment
can be seen in Fig. 6.

As can be observed by comparing the one-motion model to
the two-motion model with sub-models trained by all gestures,
increasing the number of gestures taken into account appears
to result in a relevant performance improvement over the
sub-models classification, when the proposed multiple-gesture
model is used. In this case, with a simple base model, the
accuracy and average F1 score show improvements close to
17%.

When the two-motion model uses sub-models trained for a
specific gesture, the accuracy increases even higher, however,
it also leads to a lower F1 score and relatively high variance
between the different considered classes due to the higher
disparity in F1 score in classes on the sub-models used, as
shown in the previous subsection. Additionally, since the two
sub-models used are trained on different datasets, the output
combining layer needs to be trained for every combination of
motions, which brings a much higher computational burden.

V. FUTURE WORK

Although the proposed models allowed for an improvement
in the PI classification task, the presented final results could
be further enhanced. A limitation of the proposed work is
its limitation to using only BVPs as model inputs. Thus we
lack the understanding of how this knowledge would improve
considering other inputs, such as DFS or denoised CSI images
as proposed in [20]. The performance of the number of
gestures considered should also be further evaluated adding
the computational cost of training a stacking ensemble over
this number, especially on outputs of different complexities.



VI. CONCLUSION

This article proposed a Machine Learning model for Person
Identification which was used to explore the impact of know-
ing the performed gestures and the number of gestures in the
privacy of the user under a JCAS sensing environment.

It was shown that a system could benefit from having
different models trained for each single gesture. However, a
singular model trained for all gestures and fed with infor-
mation of the gesture being inputted is expected to perform
better under equiprobable gestures. Using a simplified stacking
ensemble, we showed that the accuracy of the PI result can be
improved by increasing the number of gestures being evaluated
simultaneously.

The proposed design was shown to have some limitations
concerning it, namely regarding the dataset used, due to the
extensive computational power and receivers needed. Further-
more, the proposed work evaluated the impact of knowing
the gesture being done, thus for a real-world application, it
requires the usage of a gesture recognition module beforehand.
Nevertheless, this could be improved by considering a dual-
task classification model where gesture and user are classified
in parallel with a combined loss.
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