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The N -point discrete Fourier transform (DFT) is a cornerstone for several signal processing applications.

Many of these applications operate in real-time, making the computational complexity of the DFT a

critical performance indicator to be optimized. Unfortunately, whether the O(N log2N) time complexity

of the fast Fourier transform (FFT) can be outperformed remains an unresolved question in the theory of

computation. However, in many applications of the DFT – such as compressive sensing, image processing,

and wideband spectral analysis [1] – only a small fraction of the output signal needs to be computed

because the signal is sparse. This motivates the development of algorithms that compute specific DFT

coefficients more efficiently than the FFT algorithm. In this article, we show that the number of points

of some DFT coefficients can be dramatically reduced by means of elementary mathematical properties.

We present an algorithm that compresses the square index coefficients (SICs) of DFT (i.e., Xk
√
N ,

k = 0, 1, · · · ,
√
N − 1, for a square number N ) from N to

√
N points at the expense of N − 1 complex

sums and no multiplication. Based on this, any regular DFT algorithm can be straightforwardly applied

to compute the SICs with a reduced number of complex multiplications. If N is a power of two, one can

combine our algorithm with the FFT algorithm to calculate all SICs in O(
√
N log2

√
N) time complexity.
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COMPRESSING SQUARE INDEX DFT COEFFICIENTS

Consider the classic DFT computation Xk (k = 0, 1, · · · , N − 1) of the input signal xn (n =

0, 1, · · · , N − 1) in which the complex exponential ej2π/N is denoted by WN , i.e.,

Xk =

N−1∑
n=0

xnW
−kn
N . (1)

In what follows, we will demonstrate that the number of points in (1) can be reduced from N to
√
N

for the SICs at the expense of N − 1 complex sums. As we will see later, these DFT coefficients have

several practical applications.

Let us assume N is a perfect square number. In this case, the input sample xn can be placed at the

l-th row and c-th column of a
√
N ×

√
N square arrangement such that

n = l
√
N + c, (2)

for l = 0, 1, · · · ,
√
N − 1 and c = 0, 1, · · · ,

√
N − 1. This idea is illustrated next for the computation of

the coefficient X0 considering N = 16 (i.e., W−0·n16 = 1).

X0 = x0
√
16+0 + x0

√
16+1 + x0

√
16+2 + x0

√
16+3 +

x1
√
16+0 + x1

√
16+1 + x1

√
16+2 + x1

√
16+3 +

x2
√
16+0 + x2

√
16+1 + x2

√
16+2 + x2

√
16+3 +

x3
√
16+0 + x3

√
16+1 + x3

√
16+2 + x3

√
16+3. (3)

By applying (2) to (1) one gets

Xk =

√N−1∑
c=0

√
N−1∑
l=0

xl
√
N+cW

−k(l
√
N+c)

N

 . (4)

Note that the positions of the summation symbols in (4) are interchangeable due to the commutative

property of summations. The order we choose is for the convenience of our proof next.

Let us consider the case of SICs, i.e., output coefficients Xk
√
N , k = 0, 1, · · · ,

√
N − 1. In this case,

Eq. (4) rewrites as,

Xk
√
N =

√N−1∑
c=0

√
N−1∑
l=0

xl
√
N+cW

−k
√
N(l
√
N+c)

N

 . (5)

Since W
√
N

2

N results in a root of unity (i.e., W−kl
√
N

2

N = 1), and W−k
√
Nc

N =W−kc√
N

, (5) simplifies to

Xk
√
N =

√N−1∑
c=0

√
N−1∑
l=0

xl
√
N+cW

−kc√
N

 . (6)
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Note that the complex exponential in (6) is independent of l. Based on this, it results

Xk
√
N =

√N−1∑
c=0

W−kc√
N

√
N−1∑
l=0

xl
√
N+c

 . (7)

By denoting the inner summation of (7) as

x̂c =

√
N−1∑
l=0

xl
√
N+c, (8)

Eq. (7) rewrites to

Xk
√
N =

√
N−1∑
c=0

W−kc√
N
x̂c, (9)

Note that (9) is a compressed version of the original DFT (1) for SICs. In other words, by performing (8)

(for c = 0, 1, · · · ,
√
N ) on the N -point input signal array x = {x0, · · · , xN−1}, one gets the compressed

√
N -point input signal array x̂ = {x̂0, x̂1, · · · , x̂√N−1} at the computational cost of only N −1 complex

sums. To compute the output array of coefficients X̂ = {X̂0, X̂1, · · · , X̂√N−1}, a
√
N -point DFT on x̂

will vary k from 0 to
√
N−1. Thus, the obtained coefficients match the

√
N SICs of the original input x

following the correspondence Xk
√
N = X̂k. Next, we exemplify how to perform the DFT of SICs based

on the compressed DFT signal (9).

NUMERICAL EXAMPLE

Consider the following example of a N = 9-point signal,

x = {11 + 11j, 22 + 22j, 33 + 33j,−5− 5j,−6− 6j,−7− 7j, 9− 9j, 10− 10j, 11− 11j}.

The first step consisting in computing the multiplierless summation (8). It results from adding the samples

of x at every
√
9 = 3 step to get the smaller vector x̂ = {x̂0, x̂1, x̂2}. This yields,

x̂0 =

√
9−1∑
l=0

xl
√
9+0 = 11 + 11j − 5− 5j + 9− 9j = 15− 3j, (10)

x̂1 =

√
9−1∑
l=0

xl
√
9+1 = 22 + 22j − 6− 6j + 10− 10j = 26 + 6j, (11)

x̂2 =

√
9−1∑
l=0

xl
√
9+2 = 33 + 33j − 7− 7j + 11− 11j = 37 + 15j. (12)
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Fig. 1. Butterfly diagram for the computation of the 9-point DFT coefficients X0
√
9, X1

√
9, and X2

√
9 of the input signal

x = {x0, · · · , x8}. Firstly, x is compressed into the signal x̂ = {x̂0, x̂1, x̂2} according to (8). Then, a
√
9-point DFT on x̂

results in the coefficients X̂ = {X̂0, X̂1, X̂2} such that Xk
√
9 = X̂k (k = 0, 1, 2).

A DFT on x̂ will produce the output signal vector X̂ = {X̂0, X̂1, X̂2}. Note that Xk
√
N = X̂k, as we

mentioned before. Therefore, by performing a DFT on x̂, one gets

X0
√
9 = X̂0 =

√
9−1∑
c=0

W−0·c√
9
x̂c ≈ 78 + 18j, (13)

X1
√
9 = X̂1 =

√
9−1∑
c=0

W−1·c√
9
x̂c ≈ −24.2942− 3.9737j, (14)

X2
√
9 = X̂2 =

√
9−1∑
c=0

W−2·c√
9
x̂c ≈ −8.7058− 23.0263j. (15)

Fig. 1 illustrates the above steps in a summarized form based on the well-known butterfly diagram of

DFTs. Note that getting {x̂0, x̂1, x̂2} from {x0, · · · , x8} based on (8) dispenses the FFT’s twiddle factors.

A regular DFT implementation is employed to compute the DFT X̂ of the
√
N -point compressed signal

x̂.

For inverse FFT (IFFT) implementations that apply a normalization factor K to the inverse DFT

(IDFT) coefficients, it is important to consider the impact of the signal length on K. For example, if an

IFFT implementation normalizes the coefficients by the reciprocal of the signal length (i.e., K = 1/N ),

then an input signal of length
√
N will be normalized by K = 1/

√
N . Therefore, by performing an

FFT on the
√
N -point signal compressed by our algorithm (instead of on the original N -point signal),

the resulting DFT coefficients will be normalized by K = 1/
√
N rather of K = 1/N , as required.

To address this, one can multiply the obtained IDFT coefficients by an additional normalization factor
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Algorithm 1 SIC DFT Compression Algorithm.
1: Input: x (vector), N (length of x)

2: allocate the vector x̂[0, · · · ,
√
N − 1]← 0;

3: for c = 0 to
√
N − 1 do

4: x̂[c]← 0;

5: for l = 0 to
√
N − 1 do

6: x̂[c]← x̂[c] + x[c+ l
√
N ];

7: end for

8: end for

9: return x̂;

K̂ = 1/
√
N so to achieve the desired final normalization of 1/N , since K̂K = (1/

√
N)(1/

√
N) = 1/N .

Similarly, if normalization K = 1/
√
N is considered by an FFT implementation to comply the Parseval’s

theorem and preserve the signal energy after the transform, then K̂ should be set to
√

1√
N

, so that

K̂K = (1/
√√

N)(1/
√√

N) = 1/
√
N , preserving the signal energy.

THE TRICK FOR FAST COMPUTATION OF DFT SICS

In Alg. 1, we present the SIC DFT compression algorithm (9). The algorithm takes an N -point signal

x as input and gives its corresponding
√
N -point compressed signal x̂ as output. The trick consists

in preceding a regular DFT implementation with Alg. 1 to achieve faster computation of SICs. Note

that the algorithm performs no complex multiplication and consists only of N − 1 complex additions.

Indeed, the number of iterations in each loop of the algorithm is
√
N , therefore its overall asymptotic

complexity O(
√
N) · O(

√
N) = O(N) complex additions. After employing our algorithm, any regular

DFT implementation can be used for the calculation of the output coefficients. If the DFT implementation

has a complexity of T (N), then preceding it with our algorithm will result in a complexity of T (
√
N)

for the computation of all SICs.

Consider, for example, the employment of the classic DFT formula (1). To compute N coefficients

of N points each, one gets a computational complexity of O(N2) multiplications. If only the
√
N SICs

are desired, the resulting asymptotic complexity is O(
√
N) · O(N) = O(N

√
N), since each SIC has

N points. With the assistance of our algorithm, the number of points reduces to
√
N and the number

of multiplications improves to O(
√
N) · O(

√
N) = O(N). This provides flexibility for the efficient

computation of specific frequencies within a spectrum, as is often required for harmonic signals. We will

demonstrate a practical example of this later.
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If N is a square power of two, executing an FFT on the signal compressed by our algorithm will

produce all square index coefficients in O(
√
N log

√
N) time complexity. This complexity is optimal if

the FFT algorithm is proven to be the fastest algorithm for the DFT problem, a question that remains

open and has implications for important fundamental limits of science, such as the DFT lower-bound

complexity [2] and the capacity limits of DFT-based communication signals [3].

PRACTICAL CONSIDERATIONS

The speedup achieved by Algorithm 1 depends on two main conditions: the input signal length N

must be a perfect square and only DFT coefficients indexed at multiples of
√
N need to be computed.

Next, we discuss how these conditions can be met to facilitate the practical application of our algorithm.

The widespread adoption of the FFT algorithm favours the requisite for signals of perfect square

length. This happens because FFT requires N to be a power of two and any power of two raised to

an even number is also a perfect square1. Therefore, by meeting the FFT requirement in these cases,

several digital systems also satisfy the requirements of our algorithm. This is the case, for instance, with

telecommunication standards like 5G and IEEE 802.11 (WiFi), that adopt values like 64, 256, 1024, and

4096 for certain setups. For cases where N is not a perfect square, the input signal can be padded with

zeros so that N becomes a perfect square. This is similar to the common practice of padding the FFT

input with zeros to meet its power-of-two requirement. In our case, the number of zeros required can

be calculated as (d
√
Ne)2 −N , where dφe denotes the ceiling function that returns the smallest integer

greater than the real number φ.

Another requirement of our algorithm is to compute only frequencies that are multiples of
√
N . In

other words, all frequencies of interest in the observed spectrum must be multiples of a common value.

A notable example of this is the harmonic signals, which have a broad range of applications in fields

such as telecommunications, acoustics, power transmission, control theory, etc. In a harmonic signal, the

frequencies of interest – known as “harmonics” – are all integer multiples of a fundamental frequency

f0. Therefore, if f0 is a multiple of
√
N then all other harmonics are also multiples of

√
N , and our

algorithm suits. To accomplish this, one can conveniently adjust either the frequency resolution or the

sampling rate. We illustrate the practical application of our algorithm with a case study in the next section.

1Indeed, since even numbers are of the form 2m, where m = 0, 1, 2, . . . , raising 2 to the power of 2m results in the perfect

squares with roots given by
√
22m = 2m.
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CASE STUDY: SPECTRAL ANALYSIS OF THE A440 PIANO KEY

Musical instruments are well-known generators of harmonic frequencies. The A440 piano key (a.k.a.

“middle A”, “concert pitch”, and “A4”), for example, has a fundamental frequency f0 = 440 Hz and

emits fading harmonics at frequencies 880 Hz, 1320 Hz, and so on2. Fig. 2 illustrates a spectral analysis

of the A440 piano key up to the 6th harmonic. The Matlab script and the audio file from the experiment

are publicly available in the corresponding author’s ‘Github’ repository3.

The red curve in Fig. 2 corresponds to an 8192-point FFT on a wave file sampled at 38720 Hz, yielding

a frequency resolution of 38720/8192 ≈ 4.72 Hz. The blue bars represent the magnitudes computed by

our SIC DFT algorithm. Despite some unexpected frequencies near the 4th, 5th, and 6th harmonics –

possibly due to characteristics of the piano instrument considered – our algorithm accurately reveals the

higher magnitude frequencies expected for an A440 piano key, as shown in the figure. To achieve this,

we conveniently set the input length for our SIC DFT algorithm to the perfect square 882 = 7744. This

gives a frequency resolution of 38720/7744 = 5 Hz, which is nearly the same as the 8192-point FFT.

Additionally, the fundamental frequency of 440 Hz in our experiment is a multiple of
√
7744 = 88,

consequently all frequencies of interest are also multiples of 88.

Under this setup, our algorithm calculates the 88-point compressed signal x̂ = {x̂0, · · · , x̂87} from

the 7744-point input signal x = {x0, · · · , x7743} with a computational cost of 7743 complex addi-

tions and no complex multiplication. As previously demonstrated, the DFTs of x̂ and x, denoted as

X̂ = {X̂0, · · · , X̂87} and X = {X0, · · · , X7743}, respectively, satisfy X̂k = Xk
√
7744, for k = 0, · · · , 87.

By executing any DFT algorithm on x̂, one can obtain X̂ and thus determine the harmonic frequencies

of X. For example, by padding the 88-point input signal with zeros to reach a length of 128 points (the

smallest power of two higher than 88), the FFT algorithm can be used to compute all 88 frequencies4.

Note, however, that only six frequencies are relevant for the experiment. Thus, one can choose to compute

six 88-point frequencies following the regular DFTs algorithm instead of a 128-point FFT. In this

case, approximately 87 · 6 = 522 complex multiplications are performed against the O(128 log2 128)

complex multiplications of the FFT algorithm. Besides, the prime-factor DFT algorithm (PFA) can also

be employed with complexity O(88 log 88) in this case, since the input length 88 can be factorized into

co-primes (8 and 11) as required by PFA.

2Please, refer to the entry “A440 (pitch standard)” on Wikipedia for additional informations.
3https://github.com/sauloqueiroz/fastsicdft/.
4Note that the condition for N being a perfect square is a requirement for the signal to be compressed, not for the already

compressed signal.
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Fig. 2. FFT vs. proposed SIC DFT algorithm: 1st to 6th harmonics of the A440 piano key with fundamental frequency 440

Hz.

In any case, the signal compression achieved by our algorithm offers a significant computational

performance advantage over the 8192-point FFT when only a specific subset of frequencies needs to be

observed, as in many scenarios involving harmonic signals. This characteristic corresponds to very sparse

signals. For example, considering the frequency resolution of approximately 4.72 Hz in our experiment,

more than 600 frequencies are present in the range [0, 3000] Hz displayed in Fig. 2, yet only six of these

frequencies are of interest. In spite of that, sparse FFT algorithms are not suitable in this case because

they require much larger inputs to outperform FFT, such as N = 218 [4]. Therefore, the compression

provided by our algorithm serves as a valuable technique to accelerate the DFT computation of sparse

signals.

CONCLUSION

In this article, we demonstrate that the number of points of certain DFT coefficients can be reduced

by means of elementary mathematical tricks. Leveraging this, any regular DFT algorithm can speed up

the computation of those coefficients by operating on inputs of smaller sizes. To this end, we present

a multiplierless algorithm that performs N − 1 complex additions to compress the number of points of

SICs from N to
√
N . Furthermore, if N is a power of two, the FFT algorithm can be preceded by our

algorithm to compute all SICs with O(
√
N log2

√
N) complex multiplications. This method can find

applications in sparse and pruned DFTs, where only a fraction of DFT coefficients are of interest. Our

December 2, 2024 DRAFT



IEEE SIGNAL PROCESSING MAGAZINE, VOL. XX, NO. XX, MONTH 20XX 9

article poses an interesting question about whether our techniques can inspire new methods to speed up

the DFT of other patterns of coefficients. In this regard, the authors would like to challenge the readers.
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