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Abstract—We propose an adaptive secrecy scheme using polar
codes with random frozen bits for a general wiretap channel, in
which to protect the data from a potential eavesdropper, part
or all of the frozen bits are randomly generated per message.
To assess the secrecy level of the proposed scheme, three types
of decoding strategies are evaluated: a matching decoder which
knows the positions of all inserted bits inside the blocklength and
tries to estimate them using the same decoding techniques, a blind
decoder which treats all the frozen bits as the same value, and a
random decoder which considers those dynamic bits as random at
the receiver. Results are presented in terms of the system security
gap, assuming an adaptive decoding strategy. It is shown that the
system achieves combined secrecy and reliability. The proposed
scheme does not assume knowledge of the eavesdropper’s channel
when defining the indices of information and frozen bits.

Index Terms- Polar codes, wiretap channel, security gap,
physical layer security.

I. INTRODUCTION

Polar codes have been adopted by the 3rd Generation Part-
nership Project (3GPP) as the coding technique for uplink and
downlink control information for the enhanced mobile broad-
band (eMBB) communication service on the 5th generation of
wireless systems (5G) [1], and this has created considerable
attention to the encoding and decoding methodology. The
concept was introduced by Arıkan [2] and proved to achieve
the capacity for the binary input memoryless symmetric chan-
nel (BIMSC). Since then, polar codes have been considered
for several applications, including secrecy scenarios, more
specifically the wiretap channel [3]–[8]. In this communication
model, a private message from a transmitter (Alice) must
be sent to a legitimate receiver (Bob) in the presence of an
eavesdropper (Eve), and the main designer goal is to allow
the information to be delivered to the proper receiver without
leakage to any unauthorized device. Moreover, secrecy sce-
narios with integrated polar codes usually rely on information
theoretical analyses, with evaluation based on criteria like
weak secrecy [4] and strong secrecy, while assuming code
lengths tending to infinity. However, finite blocklength coding

This work was partially funded by the following entities and projects:
the US National Science Foundation (Grant Award Number 1761280),
the FLAD project INCISE (Interference and Coding for Secrecy), project
SWING2 (PTDC/EEI-TEL/3684/2014), funded by Fundos Europeus Estrutu-
rais e de Investimento (FEEI) through Programa Operacional Competitividade
e Internacionalização - COMPETE 2020 and by National Funds from FCT
- Fundação para a Ciência e a Tecnologia, through projects POCI-01-0145-
FEDER-016753 and UID/EEA/50008/2013.

schemes employing polar codes for secrecy are still not fully
understood.

The encoding methodology is based on N uses of the chan-
nel W, where part of these sub-channels achieve capacity and
are selected to transmit data, while the remaining F positions
(group F) are noisy and used to send frozen-bits, i.e., they
carry a value known by all participants of the system. There
are several methods for selecting F, and the most common
is the Bhattacharyya parameter [2], which is signal-to-noise
ratio (SNR) dependent. In this context, the basic approach for
works involving polar codes with wiretap channels is inserting
random bits on the most reliable sub-channel indices for the
eavesdropper’s channel to confuse the decoding. Since the
Bhattacharyya parameter is based on channel estimation [3]
and assuming Eve has a stochastically degraded link (lower
SNR compared to Bob), the transmitter can use a bit allocation
strategy of sending the message in sub-channels only good for
Bob and bad for Eve, insert random bits in indices good for
Eve and bad for Bob, and put frozen bits on the remaining
positions [3]–[5], [8].

In a practical transmission scenario, Alice should have
knowledge of both channels, what could be possible with
feedback from Bob, but it is unrealistic for a passive eaves-
dropper’s channel to be learned by the transmitter. Another
assumption of this approach is that Eve bases her decoding on
her own SNR, while the attacker strategy could be based on an
estimation of Bob’s conditions. To overcome the need for these
assumptions over the eavesdropper’s conditions and basing
evaluation on a practical transmission setup, we propose and
analyze the use of polar codes for secrecy when part (or all)
of the frozen bit indices receive random data, i.e., they are
dynamic positions, but with a selection of sub-channels not
based on SNR but using the partial weight (PW) technique [9]
developed by 3GPP. Moreover, the system is analyzed based
on three strategies: a matching decoder (MD) with knowledge
of all the random bit positions that uses this information to try
to estimate the bit values, a blind decoder (BD) assuming all
frozen bits have a pre-defined value, and a random decoder
(RD) that puts random bits at the dynamic positions but
without calculating their content.

The remainder of this paper is organized as follows. In
Section II, the background explored in the proposed scheme
will be detailed, followed by the main metrics for performance



evaluation, while results and discussions appear in Section
III. In Section IV, the major contributions of this paper are
summarized.

II. BACKGROUND

A. Polar Coding and Decoding

The first step on the encoding process using the polar
codes technique is to sort the N sub-channels and determine
the positions selected to transmit information or frozen bits,
with N being the length of the encoded word. For this, some
known techniques are the Bhattacharyya parameter [2] and the
density evolution Gaussian approximation (DE/GA) [10] or,
more recently, the partial weight (PW) sequence [9], explored
by 3GPP when polar codes are used in the context of 5G.
For not requiring any SNR dependence and for purposes of
this work, PW was chosen as the method for selecting frozen
bits, with the weights Pi for each sub-channel i (1 ≤ i ≤ N)
calculated as

Pi =
B

∑
j

b j×2( j/4) (1)

where b j is the bit value in position j of the reversed binary
representation of i and B is the number of bits in it. For
example, the position 8 becomes 100, reversed 001 and with
weight 0× 21/4 + 0× 22/4 + 1× 23/4 = 1.68. In this way, a
table of Pi with length N is achieved, and the M higher values
for i ∈ FC are selected as indices to transmit the data m =
[m1 m2 · · · mM]. The remaining N−M positions (i ∈ F) are
used to transport frozen bits that take on a value known by
all players in the communication system. By this, the data to
be encoded is defined as u = [u1 u2 · · ·uN ], where ui means
the bit in position i. Moreover, the encoded word is given by
the product c = u×G with G = F⊗n, F being the polarization
matrix

F =

[
1 0
1 1

]
(2)

and ⊗ the n-th Kronecker power.
At the decoder side, bits recovery can be made using suc-

cessive cancellation (SC) based on the received log-likelihood
ratio (LLR) calculated by the formula [11]

Li , ln

(
Wi(y, [û1 û2 · · · ˆui−1]|0)
Wi(y, [û1û2 · · · ˆui−1]|1)

)
, (3)

where Li is the LLR value for the sub-channel i, Wi is the
channel probability density function (pdf), y is the received
vector and [û1 û2 · · · ˆui−1] is the vector of estimated bits
until index i− 1. Due to its structure, the conventional polar
decoding is made in S = log2(N) stages, and the internal LLRs
from y until the decision layer are calculated as [11]

L{2i, s} = f1(L{2i−[ds], s−1},L{2s+2i−[ds], s−1}), (4)

L{2i+1, s} = f2(L{2i−[ds], s−1},L{2s+2i−[ds], s−1}, û2i,s), (5)

with L{i,s} the LLR value at layer s and bit index i and ds =
i mod2s−1. The functions f1 and f2 are defined as [11]

f1(α,β ), ln
(

expα +β +1
expα + expβ

)
, (6)

f2(α,β ,λ ), (−1)λ
α +β . (7)

In addition, to avoid computational complexity, (6) can be
replaced by an approximation [11]

f1(α,β )≈ f̃1(α,β ) = sign(α)sign(β )min|α||β |. (8)

From (3), the SC decoder establishes the decision of bit
ûi depending on all previous decisions [û1 û2 · · · ˆui−1]
of lower indices. In case of an erroneous estimation, the
error propagates and can lead to a decoding degradation. To
overcome this issue, an alternative is for each index i to
consider the two alternatives (zero or one), save each in a new
vector û{i,l} = [û1 û2 · · · ˆui−1], attribute a path metric (PM)
for them and prune the list when the size H is reached. This
type of decoder is called a successive cancellation list (SCL)
decoder [12] and is implemented in [11] based on LLRs, with
PM calculated as

PM{i,l} , φ(PM{i−1,l}, L{i,l}, û{i,l}), (9)

where PM{i,l}, L{i,l} and û{i,l} are the path metric, the LLR
value and the estimated message for sub-channel i and list
index l, respectively. Also φ is defined as

φ(θ ,ζ ,σ) = θ + ln(1+ exp(−(1−2σ)ζ )) (10)

or by its approximation

φ̃(θ ,ζ ,σ),

{
θ , if σ = 1

2 [1− sign(ζ )]
θ +ζ , if otherwise.

(11)

At the end of the decoding process, the vector with the
higher path metric is selected, and larger values of H result
in more precise decoding but at the cost of higher compu-
tational demand. In this direction, [13] observed that when
the algorithm does not converge into the right transmitted
information, the correct message is probably inside the list.
To help convergence, an auxiliary cyclic redundancy check
(CRC) code is utilized for verification, concatenated with the
data, and extracted at the decoder side. By doing this, the
vector compatible with the CRC polynomial is selected even
if the PM leads to another result. This technique is called
CRC-aided SCL (CA-SCL) proved capable of outperform the
current low-density parity check (LDPC) codes [14] of the 4th
communication generation (4G).



B. Polar Coding for the General Wiretap Channel

The approach for evaluating secrecy in PLS is generally
based on the wiretap channel proposed by Aaron Wyner [15]
and presented in Fig. 1. In this model, a transmitter (Alice)
establishes communication with a legitimate receiver (Bob)
over a channel in the presence of an eavesdropper (Eve) trying
to intercept the message. The data m = [m1 m2 · · · mM] is
encoded by Alice into x = [x1 x2 · · · xN] and sent through
the channel. At the receiver, Bob receives ẑ = [ẑ1 ẑ2 · · · ẑN]
and decodes it into an estimation of m, m̂ = [m̂1 m̂2 · · · m̂M].
Meanwhile, Eve is listening and also receives a word z̃ = [z̃1
z̃2 · · · z̃M], which is decoded into an estimation of m, m̃ =
[m̃1 m̃2 · · · m̃M]. The situation of Eve discovering the private
information, i.e., m̃ = m is not desirable, and Wyner proved
it is possible to design coding schemes that simultaneously
guarantee secrecy and reliability for the communication model
[15].

Encoder
(Alice)

m Main Channel
Decoder

(Bob)

Eavesdropper’s
Channel

Decoder
(Eve)

x ẑ

z̃ m̃

m̂

Fig. 1. Wiretap channel.

Furthermore, stochastically BIMSC wiretap models with
polar coding are explored in [3], [4] generally reinforced by
theoretical analysis in terms of criteria like weak secrecy and
strong secrecy. The most applied method when using polar
codes in this scenario is designing the selection of frozen bits
positions based on channel conditions of Bob and Eve. For
this, the N sub-channels used for encoding are categorized
into three groups:

• The subset ℘ holds the channels only good for Bob and
selected to transmit data;

• The subset ξ possesses the indices only good for Eve and
used to transmit random bits;

• The remaining F positions are frozen bits and transport
a value known by all parties of the system.

Practical evaluations of this scenario in terms of PLS are
still a recent topic and appear in works like [5], although
still assuming knowledge or an estimation of the eavesdropper
channel when designing the positions of the random bits
with the Bhattacharyya method. In this work, a wireless
environment is considered and both channels in Fig. 1 are
Additive white Gaussian noise (AWGN) channels, instead of
BIMSC. The eavesdropper’s channel is considered stochas-
tically degraded with respect to Bob’s, and Eve is passive,
meaning she does not interfere and is not noticed by the
system. In terms of computational processing and knowledge
of decoding CA-SCL algorithms, list size (H), Eve is assumed
to possess the same capabilities as Bob.

C. Security Gap

Metrics for evaluating secrecy in communication systems
conventionally rely on information theoretic concepts like
weak secrecy [15], strong secrecy [16], perfect secrecy [17],
and semantic secrecy [18]. Although these provide strong
guarantees, they have limited applicability in practical chan-
nels where an analytical calculation of mutual information is
impractical and the restriction of an encoded word tending
to infinity cannot be satisfied. This is particularly true when
short and medium blocklength transmissions are investigated
[19]. Therefore, metrics like bit error rate (BER), security gap
(SG), block error rate (BLER) and frame error rate (FER) are
sometimes preferred for evaluating secrecy and reliability in a
PLS scenario.

To establish a secure zone to transmit data, the SG concept
is utilized, corresponding to the difference between a minimum
reception level SNRBob

min for which the message can be correctly
decoded by a legitimate receiver and a maximum level SNREve

max
for which an eavesdropper is incapable of decoding it. The
conventional security gap definition in dB can be described
mathematically as

SG = SNRBob
min −SNREve

max. (12)

In degraded stochastically channels, (12) presupposes a
power advantage, and usually relies on observing the BER
curve at reception, designing a low BER to the legitimate
receiver BERBob

max, i.e., a reliability threshold imposing that Bob
senses a BER<BERBob

max and a high value to the eavesdropper
(something near 0.5) BEREve

min . Moreover, the SG interval can
be calculated using extracted values at the BER curve in the
points of SNRs or Eb/No corresponding to the thresholds
BEREve

min and BERBob
max. This way, (12) can be rewritten as

SG = fSNR(BERBob
max)− fSNR(BEREve

min), (13)

with fSNR(BERBob
max) meaning the SNR value that achieves

BERBob
max, and fSNR(BEREve

min) the SNR value that achieves
BEREve

min .

III. POLAR CODES FOR PHYSICAL LAYER SECURITY

A. Polar Codes with Random Frozen Bits and Decoding
Strategies

Considering the conventional encoding methodology and
the setup in Fig. 1, the approach on this work for providing
secrecy and reliability using polar codes is based on inserting
random bits to be transmitted with the information but without
any SNR dependence in the choice of message and frozen bit
positions. After evaluating the sub-channels based on PW as
in (1) and allocating the data on indices with higher Pi, a
vector k = [k1 k2 · · · kK] with random bits and length K is
generated per message and placed on the worst K channels.
This way, the transmitter not only sends useful information but
also an amount of data designed to confuse the eavesdropper.
The encoder produces the concatenated vector [m k], which
is sent and decoded by both receivers in Fig. 1 after passing
through the respective AWGN channels.



In order to evaluate the effectiveness of the proposed
scheme, we consider and evaluate three distinct decoding
strategies, with rationale as follows.
• A matching decoder (MD), which presupposes knowledge

over ξ positions inside the encoded word c and the
application of the same CA-SCL decoder to estimate the
data in these positions, but discarding it when evaluating
the CRC polynomial.

• A blind decoder (BD), which has no information about
ξ and assumes all the frozen bits as a pre-defined value,
without loss of generality, in this work they are considered
to be 0.

• A random decoder (RD), which knows ξ but assumes
random values with an equal probability of being zero or
one, instead of calculating or setting them to zero.

B. Results

For evaluating the scenario in Fig. 1, we consider a transmis-
sion of a relativaly small (512, 256) polar code and a randomly
generated k per message with lengths K = [10,20,30,40,50].
The selection of information and frozen bit sub-channels
is made using the PW method, and the encoded word is
modulated using the binary phase shift keying (BPSK) scheme,
with the resulting constellation symbols transmitted over an
AWGN channel. At the legitimate receiver, the demodulated
signal is sent to an internal decoder responsible to estimate
m using the CA-SCL algorithm with list size H = 32, CRC
polynomial g(x) = b11 + b10 + b9 + b5 + b4 + b3 + 1 and the
approximated function in (8). All the techniques, RD, BD,
and MD are evaluated as decoding methods to extract the
information sent.

For this code size, the behavior for several K lengths is
shown in Fig. 2, where a changing performance is observable
when increasing K since Eb/No for reliability and secrecy
are shifted from the reference curve, which represents a polar
encoding without k. As K increases, the BD and RD present
similar behaviors, leading to the conclusion that assuming the
k bits as zero or as random bits are equivalent strategies.
On the other hand, the MD shows less sensitivity in terms
of reliability, especially for a large K, although requiring
information about ξ .

Assuming a secrecy parameter in terms of BERmin
Eve > 0.2

and reliability when BERmax
Bob < 0.001, graphics in Fig. 2 can

be read in terms of SG as in (13) and depicted in Table I.
These data are graphically exposed in Fig. 3 and an increasing
SG as a function of K is observed for all explored decoding
methodologies. In terms of secrecy against an eavesdropper,
all the techniques lead to a small variation when considering
the same K, although, for different sizes of this parameter, a
significant interval is achieved. The MD has a slightly better
performance in terms of reliability, bringing an inferior SG as
presented in Fig. 3. At the extreme situation of changing all
frozen bits for a random vector of size K = 256 as shown in
Fig. 2, a huge shift at the secrecy point is achieved when using
an MD. In this work we only considered small/medium sizes
of K when compared to the length of the encoded word N.
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Fig. 2. Polar decoding strategies evaluation for short blocklength codes (512,
256) with K random frozen bits in a wiretap channel.

TABLE I
SECRECY AND RELIABILITY EVALUATION FOR A SHORT BLOCKLENGTH
POLAR CODING (512,256) WITH RANDOM FROZEN BITS TRANSMISSION.

Eb/No (dB) at Eb/No (dB) at
BER=10−3 BER=0.02

K MD RD BD MD RD BD
10 2.462 2.517 2.605 0.84 0.915 0.915
20 3.25 3.56 3.6 1.24 1.312 1.304
30 3.69 4.684 4.73 1.67 1.76 1.79
40 4.59 6.223 6.224 2.11 2.27 2.29
50 5.5 8.1 8.5 2.55 2.8 2.82
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Fig. 3. Security gap behavior of short blocklength polar coding (512, 256)
with K random frozen bits for a secrecy scheme. The left-most point on each
line corresponds to the security threshold for Eve, while the right-most point
to the reliability threshold for Bob, with the difference between the two being
the security gap.

The same analysis for a medium blocklength (1024, 512)
code is depicted in Fig. 4. In this scenario, the three types of
decoders give almost the same behavior for small K. However,
differently from the short-sized blocklength code, RD and BD
have a slighter better performance than the MD for small
values of K. Moreover, inserting k almost does not change the
secrecy threshold among all approaches for the same value of



K, but does affect the reliability criterion. The three techniques
RD and BD show similar results, and for all the cases the
MD leads to inferior values of the reliability threshold when
compared with the remaining methods. These results motivate
an adaptive PLS as a function of K for short and medium-
sized blocklength codes, whereby the transmitter is able to
adjust secrecy in the system by sensing channel conditions
with its legitimate receiver and changing the size of K so as to
minimize leakage under the constrainy of reliable throughput
to Bob.
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Fig. 4. Polar decoding strategies evaluation for medium-sized blocklength
codes (1024, 512) with K random frozen bits in a wiretap channel.

TABLE II
SECRECY AND RELIABILITY EVALUATION FOR A MEDIUM-SIZED

BLOCKLENGTH (1024, 512) POLAR CODING WITH RANDOM FROZEN BITS.

Eb/No (dB) at Eb/No (dB) at
BER=10−3 BER=0.03

K MD RD BD MD RD BD
25 2.7* 2.424 2.434 0.7825 0.722 0.731
50 3.33 3.63 3.5 1.28 1.2 1.2
75 4.54 5.19 5.327 1.813 1.76 1.73

100 5.64 7.7 7.9 2.341 2.318 2.28

IV. CONCLUSIONS

In this work, we evaluate the use of polar coding with
partial random frozen bits in a wiretap channel, and by this,
an adaptive physical layer security transmission scheme is
proposed for increasing secrecy and reliability requirements.
Three decoding strategies are presented, a blind decoder, a
random decoder, and a matching decoder with different levels
of knowledge over the random bit positions. Results show
that from the methodologies employed to extract the data,
estimating the random frozen bits leads to smalller SG values
when compared with a blind and a random decoder.
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