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Abstract—The increasing number of connected and au-
tonomous vehicles generates an even greater demand for ef-
ficient content delivery in vehicular networks. Estimating the
popularity of content is an important task to proactively cache
and distribute content throughout the networks to add value to
users’ experiences and reduce network congestion. This paper
presents a novel approach for predicting popular content on
vehicular networks based on a Federated Learning-Adversarial
Autoencoder model and anonymised data. Unlike prior works
that relied on users’ raw features, our model protects user
privacy through data anonymisation. This allows us to learn from
the hidden patterns of content popularity and deliver popular
content without compromising user privacy. Experiments showed
that our approach exceeded traditional collaborative filtering and
deep learning methods in terms of accuracy and robustness, even
with sparse data.

Index Terms—Adversarial Autoencoder, Federated Learning,
Data Anonymisation, Popular Content, Vehicular Network

I. INTRODUCTION

Vehicular networks have emerged due to the rapid expan-
sion of Internet-connected cars, allowing for the interchange
of data and information between infrastructure and vehicles
[1]. These networks are used for various purposes, including
infotainment services, content distribution, traffic monitoring,
and accident prediction [2]. Vehicular networks are dynamic
and heterogeneous, which brings challenges involving high
mobility, intermittent connectivity, and privacy concerns [3].
The complexity of this scenario calls for improvements in
content prediction and dissemination methodologies. The ef-
ficiency of content distribution strategies can be greatly im-
proved by accurately predicting the popularity of content in
vehicular networks [4]. However, this task is challenging due
to the dynamic nature of vehicular networks and the need to
maintain user privacy.

Adversarial Autoencoder (AAE) models emerge as a so-
lution due to the power of deep learning and adversarial
networks to learn the underlying patterns in vehicular data
and predict popular content. Kim et al. [5] demonstrated
that adversarial autoencoder models achieve powerful and
generalisable data representations, improving content predic-
tion accuracy with user confidentiality. Yet, due to privacy
concerns, Federated Learning (FL) techniques have come out

to avoid sharing raw sensitive information. However, it is
known that Federated Learning is also subject to a range of
inference attacks [6], [7] against private data. Using Federated
Learning with anonymised data can reduce privacy concerns.
This allows the AAE model to be trained on anonymised data
without centralising data collection.

Edge content caching is a frequent practice that can serve to
relieve network traffic and yield a higher user quality of expe-
rience (QoE) [1], [8], [9]. Proactive caching previously caches
the content based on the prediction of the trained model.
Collaborative filtering and matrix factorisation approaches
have been used to forecast content popularity [4]. Other
methods have been proposed [10] that use the advantages of
adversarial networks and autoencoder architectures to identify
the patterns of content preference and acquire an effective
representation of the data. Some works have shown that user
information could improve content predictions [11]; however,
in compliance with GDPR1 and LGPD2 regulations, user
privacy must be guaranteed.

This work improves upon this Adversarial Autoencoder
Model [10] by adding an anonymisation technique. The aim
is to forecast popular content that most vehicle users find
interesting and cache it at the vehicular network edge. The
goal is to improve privacy without affecting system utility.
Extensive experiments on a real-world dataset demonstrate the
effectiveness of our proposed model compared to other state-
of-the-art methods in terms of prediction accuracy, robustness,
and privacy preservation.

The main contributions are summarised as follows:
1) Develop an Adversarial Autoencoder Model to pre-

dict popular content on vehicular networks using
anonymised data and Federated Learning.

2) Assess the effectiveness of the proposed model concern-
ing prediction accuracy, content diversity, and privacy
preservation.

3) Investigate how adding user information affects the
model’s performance and the trade-offs between accu-

1General Data Protection Regulation - https://gdpr-info.eu/
2Brazil’s General Data Protection Law -

https://www.planalto.gov.br/ccivil 03/ ato2015-2018/2018/lei/l13709.htm



racy and privacy.
The rest of the article is organised as follows: the related
works are presented in Section II. Section III and IV describe
the model implementation and training in detail. The results
found and their corresponding analyses are presented in Sec-
tion V. Finally, the conclusions and the prospective directions
for further research are stated in Section VI.

II. RELATED WORKS

Increasing demands for computing, communication, and
storage in new edge devices have accelerated the development
of Mobile Edge Computing (MEC) as a solution to such chal-
lenges [12]. In this same direction, Vehicular Edge Computing
(VEC) arrives as a paradigm that combines MEC’s features
with vehicular networks to offer communication, computing,
and caching resources closer to vehicular users, allowing
its features to enhance road safety and traffic efficiency
and value-added applications such as infotainment or path
planning [1]. Vehicular applications collect significant data,
including personal details like age, gender, and working hours,
which can endanger user privacy [13]. Hence, ensuring user
privacy in such situations is of the highest priority.

The VEC’s architecture combines vehicular terminals on
the user’s layer, edge servers such as roadside units (RSU) on
the MEC layer, and cloud servers on the cloud layer. Vehicles
can offload their demanding computational tasks to the edge
servers, reducing latency and energy consumption. In VEC
contexts, several research works have suggested solutions for
resource allocation, task offloading, and security assurance
[5], [14]. In addition, content distribution and caching are
other main concerns for VEC. Vehicles also often produce
and consume a wide range of content related to traffic updates,
accident reports, infotainment, and multimedia, which might
cause congestion and add latency to the network.

Using a latent representation of user preferences and net-
work characteristics, an AAE model may accurately forecast
popular content in vehicular networks while maintaining re-
sistance to possible attacks or privacy-preserving issues [15],
[16]. However, despite this strategy, issues of privacy continue
to exist. Federated Learning can help address data privacy
and communication overhead challenges in vehicular networks
[10], [17].

The Federated Learning paradigm has been used to improve
data privacy in many decentralised systems, such as vehicular
networks [10], [11]. This approach allows multiple clients
(e.g., vehicles) to collaboratively train a shared model without
centralising raw data, thereby maintaining privacy and reduc-
ing issues caused by the impact of intermittent connectivity.
It minimises communication by only sharing model updates
(gradients) rather than the raw data itself, significantly reduc-
ing the communication overhead. However, despite its use in
ensuring data privacy, recent research suggests that Federated
Learning has flaws that affect its privacy benefits [17]–[19],
as training data may be reconstructed from the shared model
updates using adversarial methods such as model inversion.

As Jere et al. [17] presented, privacy attacks, such as infer-
ence and poisoning attacks, may compromise the model in-
tegrity and data, limiting Federated Learning use. To deal with
it, Choudhury et al. [20] proposed implementing anonymi-
sation methods to enhance the data utility and the model
efficacy model. Integrating Adversarial Autoencoders, Feder-
ated Learning, and anonymisation techniques, coupled with
caching strategies, offers a robust privacy-preserving approach
for predicting and delivering popular content in vehicular
networks.

Using anonymous data and Federated Learning can improve
privacy. This approach aims to train the model to acquire an
underlying representation of input data, including features like
user demographics, content metadata, and network conditions.
This latent representation is then passed through a discrim-
inator network that differentiates between the true latent
representation and randomly generated data. The developed
model learns a representation that is informative for content
prediction while maintaining robustness against adversarial
perturbations, making it appropriate for implementation in a
privacy-preserving and secure vehicular network context [15].

III. PROPOSAL ARCHITECTURE

Our approach consists of an Adversarial Autoencoder
model employing Federated Learning and anonymised data
to predict popular content within vehicular networks. The
raw data is on vehicles, and before training, it goes through
an anonymisation process. This step ensures that the shared
model updates do not contain personally identifiable infor-
mation (PII), providing an extra layer of privacy protection.
Therefore, the vehicles train the model and return the top K
content and weights from the model trained. At the RSU, the
Federated Learning process aggregates the client’s weights
and computes a new model’s version for the next training
iteration.

The model architecture comprehends the encoder and the
decoder, forming a Variational Autoencoder (VAE). To build
the adversarial part, a discriminator is added to create the
GAN (Generative Adversarial Network). The combination of
them can achieve artificial user-item interactions that simulate
real interactions. This approach can help reduce data sparsity
issues and address the cold start problem [21]. The model
illustration in Figure 1 depicts the overall framework. In this
scheme, the input layer receives anonymised data and passes
it through the encoder to generate a latent representation to
feed the decoder part. The training process involves a min-
max game between the encoder-decoder and the discrimina-
tor to learn a latent representation that effectively captures
key content features while remaining resilient to adversarial
attacks. The process is further detailed in Algorithm 1 where
a subset of clients are selected to participate in each com-
munication round. The clients download the current global
model, preprocess and anonymise their local data, and perform
several steps of local gradient descent updates on the model.
The updated local models are sent back to the central server,



which performs a federated averaging step to aggregate the
updates, generate a new global model, rank predicted content,
and cache the top K contents.

Algorithm 1 explains how the model works, using a Feder-
ated Learning approach to predict popular content in vehicle
networks with an Adversarial Autoencoder design. This priori-
tises protecting user privacy while optimising content caching
for efficient delivery.

Algorithm 1 Model Execution Algorithm
1: Initialise ω0

2: for each round r = 1, 2, . . . do
3: rc: A set of selected clients in the rth round
4: for each client c ∈ C in parallel do
5: Download current global model ωr

6: Preprocess and anonymise local data
7: for epoch e = 1, 2, . . . do
8: Compute parameters with gradient descent
9: ωc+1 = ωc − η∇ι(ωc; b)

10: Predict popular contents popc
11: Store popc into popr
12: Compute federated averaging
13: Rank predicted content
14: Cache Top K contents

IV. MEHODOLOGY

The model was implemented and evaluated using Keras as
the deep learning framework and Tensorflow as the backend
on an M2 notebook with 24GB of memory and ten cores
of graphics processing units (GPUs). The input dataset used
for training the model is MovieLens 1M [22]. This dataset
version counts over 1 million ratings from 6040 anonymised
users, who rated 3883 movies.

A. Autoencoder Model

Before the training phase, the data was preprocessed for use.
It includes applying an arbitrary threshold filter for ratings
to ensure a more reliable statistic, excluding movies and

Fig. 1. AAE Model Illustration

users with low ratings. It improves the model’s quality and
efficiency and brings more accurate and relevant recommen-
dations; checking the movie identifiers in the ratings and the
movies datasets to ensure they are identical; after, a binary
matrix is built with all rated movies marked with 1 (one),
representing interesting content. For the uninterested and the
unknown content, a random sample mechanism was applied
to mark them as 1 (one) based on the probability of the
user’s preference for content and the rest as 0 (zero). This
approach is presented in Yu et al. work [10]. To effectively
contribute to the model, the system encapsulates the personal
information from the users’ dataset using one-hot encod-
ing and then combines it with the previous binary matrix
to conclude the preprocessing phase. The prediction results
should be enhanced by incorporating user information as side
information [11]. Our proposed approach examines the impact
of anonymising that information on prediction accuracy.

After the preprocessing phase, the dataset was split into
80/10/10 rates for training, testing, and validation, respec-
tively, which guaranteed a reliable evaluation and maintained
statistical significance during the evaluation process, thus
reaching a balance between the training, test and validation
processes. The basis parameters for training are shown in
Table I.

TABLE I
MODEL HYPERPARAMETERS FOR TRAINING SIMULATION

General Parameters Learning Parameters
Hyperparameters Value Hyperparameters Value
Number of rounds 3 Dropout rate 0.8
Number of clients 50 VAE learning rate 0.002
Number of epochs 20 Discriminator learning rate 0.002
Batch size 256 Regularisation factor 0.008
Top K 400

The initial training combines the binary matrix aggregated
with raw users’ features (gender, age, occupation, and zip
code), generating the input matrix M. After that, the model
was trained with each user’s features individually to examine
the impact of that information on the model’s performance.
The training output can be seen in Figure 2. This figure shows
the cache hit ratio (CHR) as a function of the cache size (CS)
for the baseline dataset complemented with four user features.

User data anonymisation may reduce prediction accuracy
due to losing valuable information. Therefore, to determine
the significance of user features for the anonymisation process,
we take the CHR for each CS and compute the overall
CHRadvantage regarding the baseline and each user feature. The
CHRadvantage of specific features is defined in Equation (1).

CHRadvantage =

∑(
CHRfeature−CHRbase

CHRbase
× 100

)
n

(1)

where n is the total number of cache sizes, CHRfeature is the
cache hit ratio for the specific feature, and CHRbase is the
cache hit ratio for the baseline model. The features that enable



a higher and CHRadvantage are thus more important for popular
content prediction tasks.

For better visualisation, we plotted the relationship between
user features and the baseline individually. The plots in Figure
2 and Tables III and IV display more performance measures
and respective CHR of each feature as well. We point out the
last column of Table III, which shows the advantage of CHR
for each case. The results indicate that the age feature has a
higher CHRadvantage for content prediction tasks, followed by
gender. The graph highlights the relative importance of these
user features in improving the model’s performance compared
to the baseline. Analysing the impact of each feature provides
insights into which user information is most valuable for
enhancing content predictions. This can help inform strategies
to balance privacy and model accuracy through optimal data
anonymisation.

B. Feature Anonymisation

For the anonymisation step, ARX Data Anonymization
Tool3 was used. ARX is a tool that implements various privacy
models (e.g., k-anonymity, l-diversity, differential privacy)
and enables their configuration to achieve the best privacy-
utility trade-offs. While ARX offers a range of models, this
work focuses on k-anonymity. For our anonymisation process,
we primarily utilised ARX’s generalisation, suppression, and
attribute weights capabilities to create the most effective
anonymisation configuration, balancing privacy and preserv-
ing predictive power. The key parameters we adjusted were
the kappa value, suppression limit, attribute weights, and user
feature generalisation hierarchy, the latter two considering the
CHRadvantage results.

V. RESULTS AND ANALYSIS

We generated multiple anonymisation configurations and
evaluated their utility by comparing the risk level, number
of records suppressed, and overall privacy-utility trade-offs.
Those configurations, along with the risk metrics, are shown
in Table II.

TABLE II
ANONYMISATION CONFIGURATION AND RISK METRICS

Kappa ARX
transformation

Records
supressed

Highest
risk

CHR mean
at CS 100

7 0-0-1-5 66 (1.09%) 14.28% 28.56
7 0-0-2-4 48 (0.8%) 14.28% 28.59
7 0-1-1-5 66 (1.09%) 14.28% 28.72
14 0-0-1-5 203 (3.36%) 7.14% 28.83
14 0-0-2-4 266 (4.40%) 7.14% 28.64
14 0-2-1-5 100 (1.66%) 7.14% 28.70
21 0-0-1-5 396 (6.56%) 4.76% 28.72
21 0-0-24 543 (8.99%) 4.76% 28.72
21 0-2-1-5 235 (3.89%) 4.16% 28.75

The data indicates that varying ARX configurations impact
suppression rates and risk outputs. Various anonymisation
models and configurations were considered for the user data

3https://arx.deidentifier.org

appended to the baseline dataset. An optimal balance is
observed at kappa = 14 with transformation 0-2-1-5, which
suppresses only 1.66% of records and achieves a relatively
low risk of 7.14%. Nevertheless, the final row of the table,
with kappa = 21 and transformation 0-2-1-5, suggests a
configuration with slightly higher suppression yet lower risk.
This is the preferred solution. The transformation indices
indicate the generalisation levels for gender (0-1), age (0-4),
occupation (0-2), and zip code (0-5) features, respectively.
Gender was not generalised (level 0), with original values
kept. Age had a moderate level (2) of abstraction. A simple
level of abstraction (level 1) was used for occupation, and
zip code had a higher degree of abstraction (level 5). This
configuration ensures that each user remains indistinguishable
within a group of at least 21 individuals (the Kappa value) by
generalising attributes such as age, occupation, and zip code
while preserving the original gender values.

Fig. 2. Base x Feature Selection

A. Prediction with Feature Anonymisation

The CHR is the central metric observed to evaluate the
model’s performance. It is contrasted with defined parameters,
like vehicle density, cache size, training time, and communi-
cation rounds. Aside from the cache hit ratio, the model’s
performance was evaluated using the training loss and the
global accuracy computed as a mean square error or MSE.

The proposed AAE model exhibited strong performance in
predicting popular content on vehicular networks, achieving
an accuracy of 94.74% on the validation set. The training
process was conducted across 30 distinct random seed initial-
isations, with each one executed over 3 rounds, 20 epochs,
and 50 clients. On average, this training process took 467.13
seconds and converged to a global loss of 4.711×10−2 and a
validation loss of 2.1985× 10−1. A 95% confidence interval



TABLE III
DETAILED FEATURE SELECTION TRAINING: CACHE HIT RATIO

Input CS 50 CS 100 CS 150 CS 200 CS 250 CS 300 CS 350 CS 400 CHRadvantage
Base 19.35 29.03 35.48 41.94 48.39 51.61 58.06 61.29 -
Base plus Gender 22.58 32.26 35.48 41.94 51.61 54.84 58.06 61.29 5.09
Base plus Age 22.58 35.48 35.48 45.16 51.61 54.84 58.06 61.29 7.44
Base plus Occupation 22.58 32.26 35.48 41.94 51.61 51.61 54.84 61.29 3.62
Base plus Zip Code 22.58 29.03 35.48 41.94 51.61 54.84 58.06 61.29 3.70

TABLE IV
DETAILED FEATURE SELECTION TRAINING: PERFORMANCE METRICS

Input Global Accuracy
(MSE)

Validation
Loss

Validation
Accuracy

Base 0.0473 0.1831 0.9481
Base plus Gender 0.0477 0.1926 0.9482
Base plus Age 0.0478 0.1924 0.9482
Base plus Occupation 0.0476 0.1904 0.9482
Base plus Zip Code 0.0475 0.1923 0.9482

was employed to quantify variability in the results. The model
was evaluated on the test set to predict the top K most popular
contents accurately.

Figure 3 presents the CHR against cache size for the
baseline dataset (with raw users’ feature) and the dataset
with anonymised data following our proposed methodology.
The figure indicates that the Federated Learning-Adversarial
Autoencoder (FL-AAE) is capable of effectively learning
patterns with anonymised data and generating precise pre-
dictions of popular content while maintaining user privacy.
Even considering that the anonymisation process may affect
system performance, the Figure 3 outcomes indicate that
the model utility performs slightly better than the baseline
model, as visible in the close alignment between the CHR
curves for anonymised and baseline datasets across different
cache sizes. However, the error bars for both datasets overlap
slightly, suggesting that while the difference in performance is
statistically significant, the margin of improvement is not very
large. The anonymised data approach improves the base model
without sacrificing performance significantly due to privacy
measures. Using anonymisation appears effective in maintain-
ing or slightly improving the CHR, even with potential data
modifications for privacy. In particular, for the range of cache
sizes, the baseline exhibits an average CHR of 39.03% against
and an average CHR of 41.36% for the anonymised data.

The results highlight the effectiveness of the AAE in pre-
dicting popular content while preserving user privacy through
data anonymisation. The anonymity of the user data is crucial
for the model’s performance. By preserving user privacy, the
model can focus on learning the relevant patterns without
being affected by potentially sensitive personal information.
Therefore, the anonymised data solution is a viable alternative
to the base method, providing comparable or better CHR
results across all cache sizes while preserving user privacy.
The confidence intervals suggest reliable performance, making
the anonymised approach suitable for practical deployment.

Fig. 3. Variation of the CHR with the cache size for the baseline (non-
anonymised solution) in comparison with the anonymised solution (Preferred
solution), as determined in section IV.

These results show the feasibility of improving content predic-
tion models in real-world vehicular networks while protecting
personal data through privacy-preserving techniques.

VI. CONCLUSIONS AND FUTURE WORK

This research introduces a new method for forecasting pop-
ular content in vehicular networks. It uses an FL-AAE model
combined with anonymisation techniques to enhance the data
available for prediction while protecting user privacy. The key
contributions are: it introduces a model that can accurately
predict popular content while preserving user privacy through
data anonymisation. It demonstrates that implementing data
anonymisation enhances privacy without sacrificing prediction
performance. Furthermore, it provides an assessment of the
suggested methodology using real-world vehicular network
data. It demonstrates that by employing anonymised user
data and a Federated Learning approach, the proposed model
can effectively forecast popular content in vehicular networks
while maintaining high privacy protection.

Potential future research could explore integrating the
content prediction model with caching and content delivery
systems to attain thorough optimisation.
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